LI Li-jun, WANG Hai-jiao, MA Jian-sheng. Pollution Characteristics and Health Risk Assessment of Volatile Organic Compounds in Groundwater in the Lower Liaohe River Plain[J]. Rock and Mineral Analysis, 2021, 40(6): 930-943. DOI: 10.15898/j.cnki.11-2131/td.202108200105
Citation: LI Li-jun, WANG Hai-jiao, MA Jian-sheng. Pollution Characteristics and Health Risk Assessment of Volatile Organic Compounds in Groundwater in the Lower Liaohe River Plain[J]. Rock and Mineral Analysis, 2021, 40(6): 930-943. DOI: 10.15898/j.cnki.11-2131/td.202108200105

Pollution Characteristics and Health Risk Assessment of Volatile Organic Compounds in Groundwater in the Lower Liaohe River Plain

More Information
  • Received Date: August 19, 2021
  • Revised Date: September 03, 2021
  • Accepted Date: September 20, 2021
  • Published Date: November 27, 2021
  • HIGHLIGHTS
    (1) The content of 60 volatile organic compounds (VOCs) in the Lower Liaohe Plain was measured by purge and trap-gas chromatography/mass spectrometry (PT-GC/MS).
    (2) Groundwater VOCs had a low pollution degree, and the pollution mainly came from the industrial source of VOCs emissions.
    (3) The areas with high total carcinogenic risk and total non-carcinogenic risk index of groundwater VOCs were concentrated around dyes and chemical enterprises.
    BACKGROUNDAs important industrial chemicals, intermediates and organic solvents, volatile organic compounds (VOCs) have increased the impact on the environment and human health with the development of human industry and agriculture. As a densely populated and highly industrialized plain area, the concentration of VOCs in groundwater of the Lower Liaohe River Plain poses potential risks to human health as human activities constantly intensify.
    OBJECTIVESTo study the pollution characteristics of VOCs and the health risks in groundwater in the Lower Liaohe Plain.
    METHODSThe concentration of 60 VOCs in groundwater samples was determined by purge and trap-gas chromatography/mass spectrometry (PT-GC/MS) to investigate the VOCs pollution sources. By calculating the long-term intake of pollutants with three VOCs exposure routes via oral drinking, bath respiratory inhalation, and bath skin exposure, the health risk was assessed by the CSOIL health risk assessment model.
    RESULTSThe VOCs in 20 sampling sites were detectable from the whole 24 sampling sites, with a detection rate of 83.3%. The content of naphthalene, benzene, 1, 2-dichloropropane in some sites exceeded the limits of the standard for groundwater quality (GB 14848-2017, limit values of 100, 10.0, 5.0μg/L). The industrial sources were the main sources of groundwater VOCs in the study area. The total carcinogenic risk index of VOCs in groundwater samples was 0-4.0×10-5, and the total non-carcinogenic risk index was 0-0.93. Both were lower than the standard recommended by US EPA (United States Environmental Protection Agency). The health risk index in groundwater around enterprise land was higher than in the groundwater of agricultural land.
    CONCLUSIONSThe study shows that the VOCs detection rate is higher in groundwater in the lower Liaohe River Plain, however, the health risk is within acceptable levels for people. It provides reference for the control of VOCs pollution from regional groundwater industrial sources.

  • 程云轩, 高秋生, 李捷, 等. 淮河流域南四湖可挥发性有机物污染特征及风险评价[J]. 环境科学, 2021, 42(4): 1820-1829. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202104026.htm

    Cheng Y X, Gao Q S, Li J, et al. Characteristics of volatile organic compounds pollution and risk assessment of Nansi Lake in Huaihe River Basin[J]. Environmental Science, 2021, 42(4): 1820-1829. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202104026.htm
    朱帅, 沈亚婷, 贾静, 等. 环境介质中典型新型有机污染物分析技术研究进展[J]. 岩矿测试, 2018, 37(5): 586-606. doi: 10.15898/j.cnki.11-2131/td.201603300054

    Zhu S, Shen Y T, Jia J, et al. Review on the analytical methods of typical emerging organic pollutants in the environment[J]. Rock and Mineral Analysis, 2018, 37(5): 586-606. doi: 10.15898/j.cnki.11-2131/td.201603300054
    Shi P, Zhou S C, Xiao H X, et al. Toxicological and chemical insights into representative source and drinking water in eastern China[J]. Environmental Pollution, 2018, 233: 35-44. doi: 10.1016/j.envpol.2017.10.033
    Zhao Q, Wang Q, Li Y J, et al. Influence of volatile organic compounds (VOCs) on pulmonary surfactant monolayers at air-water interface: Implication for the pulmonary health[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 562: 402-408. http://www.onacademic.com/detail/journal_1000041583899799_8101.html
    Cao F M, Qin P, Lu S Y, et al. Measurement of volatile organic compounds and associated risk assessments through ingestion and dermal routes in Dongjiang Lake, China[J]. Ecotoxicology and Environmental Safety, 2018, 165: 645-653. doi: 10.1016/j.ecoenv.2018.08.108
    张栋, 于世杰, 王楠, 等. 郑州市冬季VOCs污染特征、来源及健康风险评估[J]. 环境科学学报, 2020, 40(8): 2935-2943. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX202008027.htm

    Zhang D, Yu S J, Wang N, et al. Characteristics, sources and health risk assessment of ambient VOCs in winter of Zhengzhou[J]. Acta Scientiae Circumstantiae, 2020, 40(8): 2935-2943. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX202008027.htm
    Yu S, Lee P, Yun S, et al. Comparison of volatile organic compounds in stormwater and groundwater in Seoul Metropolitan City, South Korea[J]. Environmental Earth Sciences, 2017, 76: 338. doi: 10.1007/s12665-017-6666-x
    杜士林. 沙颍河流域水环境优控污染物筛选及潜在生态风险评价研究[D]. 桂林: 桂林理工大学, 2020.

    Du S L. The research on screening of priority pollutants in the water environment and potential ecological risk assessment in Shaying River Basin[D]. Guilin: Guilin University of Technology, 2020.
    郭永丽, 全洗强, 吴庆. 北方喀斯特地区地下水VOCs污染特征及健康风险——以山东省淄博市临淄区为例[J]. 广西师范大学学报(自然科学版), 2020, 38(6): 102-113. https://www.cnki.com.cn/Article/CJFDTOTAL-GXSF202006012.htm

    Guo Y L, Quan X Q, Wu Q. Pollution characteristics and health risk assessment of volatile organic compounds of typical karst groundwater source in North China[J]. Journal of Guangxi Normal University (Natural Science Edition), 2020, 38(6): 102-113. https://www.cnki.com.cn/Article/CJFDTOTAL-GXSF202006012.htm
    张坤锋, 赵少延, 孙兴滨, 等. 海拉尔河及傍河地下水饮用水源中挥发性有机物的污染特征与风险[J]. 河南师范大学学报(自然科学版), 2021, 49(5): 74-82. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSX202105010.htm

    Zhang K F, Zhao S Y, Sun X B, et al. Pollution characteristics and risks of volatile organic compounds in drinking water sources of Hailar River and nearby rivers groundwater[J]. Journal of Henan Normal University (Natural Science Edition), 2021, 49(5): 74-82. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSX202105010.htm
    Chen X C, Luo Q, Wang D H, et al. Simultaneous assessments of occurrence, ecological, human health, and organoleptic hazards for 77 VOCs in typical drinking water sources from 5 major river basins, China[J]. Environmental Pollution, 2015, 206: 64-72. doi: 10.1016/j.envpol.2015.06.027
    李沫蕊, 王亚飞, 王金生, 等. 下辽河平原区域地下水典型污染物的筛选[J]. 中国环境监测, 2015, 31(3): 62-69. https://www.cnki.com.cn/Article/CJFDTOTAL-IAOB201503013.htm

    Li M R, Wang Y F, Wang J S, et al. Application of modified potential damage index method to screening of the typical pollutants in groundwater of the Liao River Basin[J]. Environmental Monitoring in China, 2015, 31(3): 62-69. https://www.cnki.com.cn/Article/CJFDTOTAL-IAOB201503013.htm
    赵岩. 下辽河平原区辽阳-鞍山地段浅层地下水污染评价[J]. 地质与资源, 2015, 24(4): 388-393. doi: 10.3969/j.issn.1671-1947.2015.04.018

    Zhao Y. Evaluation of shallow groundwater pollution in Liaoyang-Anshan section of Lower Liaohe River Plain[J]. Geology and Resources, 2015, 24(4): 388-393. doi: 10.3969/j.issn.1671-1947.2015.04.018
    奚旭, 张新长, 孙才志, 等. 不确定性条件下的下辽河平原地下水脆弱性评价及空间分布软区划[J]. 地理科学, 2017, 37(9): 1439-1448. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX201709017.htm

    Xi X, Zhang X C, Sun C Z, et al. Assessment and soft zoning of groundwater vulnerability in the lower reach of the Liaohe River Plain under uncertainty condition[J]. Scientia Geographica Sinica, 2017, 37(9): 1439-1448. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX201709017.htm
    陈相涛. 下辽河平原浅层地下水污染风险评价及空间热点分析[D]. 大连: 辽宁师范大学, 2016. http://cdmd.cnki.com.cn/article/cdmd-10165-1016244014.htm

    Chen X T. Evaluation and hotspots analysis of shallow groundwater contamination risk in the lower reach of the Liaohe River Plain[D]. Dalian: Liaoning Normal University, 2016. http://cdmd.cnki.com.cn/article/cdmd-10165-1016244014.htm
    李仙波, 左锐, 滕彦国, 等. 基于RRM模型的化工企业对下辽河平原区域地下水环境风险评价[J]. 北京师范大学学报(自然科学版), 2016, 52(5): 580-585. https://www.cnki.com.cn/Article/CJFDTOTAL-BSDZ201605008.htm

    Li X B, Zuo R, Teng Y G, et al. A risk assessment model of regional groundwater risk due to chemical enterprises in the Lower Liaohe River Plain[J]. Journal of Beijing Normal University (Natural Science), 2016, 52(5): 580-585. https://www.cnki.com.cn/Article/CJFDTOTAL-BSDZ201605008.htm
    罗庆. 细河沿岸地下水中特征有机污染物健康风险评价[D]. 沈阳: 沈阳大学, 2011. http://cdmd.cnki.com.cn/article/cdmd-11035-1011069080.htm

    Luo Q. Health risk assessment of the typical organic pollutants in the groundwater of Xihe River area[D]. Shenyang: Shenyang University, 2011. http://cdmd.cnki.com.cn/article/cdmd-11035-1011069080.htm
    鲁统民. 淄博市大武水源地地下水有机污染特征及健康风险评价[D]. 青岛: 山东科技大学, 2020.

    Lu T M. Characteristics of organic pollution and health risk assessment of Dawu water source area in Zibo City[D]. Qingdao: Shandong University of Science and Technology, 2020.
    冯丽丽, 胡晓芳. 顶空固相微萃取/气相色谱-三重四极杆串联质谱法测定地表水与饮用水中的挥发性有机物[J]. 分析测试学报, 2019, 38(11): 1294-1300. doi: 10.3969/j.issn.1004-4957.2019.11.002

    Feng L L, Hu X F. Determination ofvolatile organic compounds in surface water and drinking water by gas chromatography-triple quadrupole tandem mass spectrometry with head space-solid phase micro-extraction[J]. Journal of Instrumental Analysis, 2019, 38(11): 1294-1300. doi: 10.3969/j.issn.1004-4957.2019.11.002
    姜洋, 房丽萍, 杨刚, 等. 水体中挥发性有机物分析方法研究进展[J]. 环境化学, 2015, 34(9): 1611-1618. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201509006.htm

    Jiang Y, Fang L P, Yang G, et al. Analytical methods of volatile organic compounds in water samples[J]. Environmental Chemistry, 2015, 34(9): 1611-1618. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201509006.htm
    张春艳, 高柏, 郭亚丹, 等. 鄱阳湖区域地下水有机污染物特征与风险评价[J]. 生态毒理学报, 2016, 11(2): 524-530. https://www.cnki.com.cn/Article/CJFDTOTAL-STDL201602063.htm

    Zhang C Y, Gao B, Guo Y D, et al. Pollution characteristics and risk assessment of organic pollutants in groundwater of Poyang Lake[J]. Asian Journal of Ecotoxicology, 2016, 11(2): 524-530. https://www.cnki.com.cn/Article/CJFDTOTAL-STDL201602063.htm
    昌盛, 赵兴茹, 刘琰, 等. 滹沱河冲洪积扇地下水中挥发性有机物的分布特征与健康风险[J]. 环境科学研究, 2016, 29(6): 854-862. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKX201606010.htm

    Chang S, Zhao X R, Liu Y, et al. Distribution characteristics and health risk assessment of volatile organic compounds in groundwater of Hutuo River Pluvial Fan[J]. Research of Environmental Sciences, 2016, 29(6): 854-862. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKX201606010.htm

    Siddiqi S, Mamun A, Baawain M, et al. Groundwater contamination in the Gulf Cooperation Council (GCC)countries: A review[J]. Environmental Science and Pollution Research, 2021, 28: 21023-21044. doi: 10.1007/s11356-021-13111-5
    杨帆, 闫雨龙, 戈云飞, 等. 晋城市冬季环境空气中挥发性有机物的污染特征及来源解析[J]. 环境科学, 2018, 39(9): 4042-4050. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201809052.htm

    Yang F, Yan Y L, Ge Y F, et al. Characteristics and source apportionment of ambient volatile organic compounds in winter in Jincheng[J]. Environmental Science, 2018, 39(9): 4042-4050. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201809052.htm
    徐蓉桢, 刘菲, 荆继红, 等. 典型浅层孔隙水和岩溶水中多环芳烃分布特征[J]. 岩矿测试, 2018, 37(4): 411-418. doi: 10.15898/j.cnki.11-2131/td.201801120004

    Xu R Z, Liu F, Jing J H, et al. Distribution characteristics of polycyclic aromatic hydrocarbons in typical shallow pore water and karst water[J]. Rock and Mineral Analysis, 2018, 37(4): 411-418. doi: 10.15898/j.cnki.11-2131/td.201801120004
    崔晓嫒. 长江中下游饮用水水源地中典型POPs的污染特征及风险分析[D]. 石家庄: 河北师范大学, 2020. http://cdmd.cnki.com.cn/Article/CDMD-10094-1020622722.htm

    Cui X A. Pollution characteristics and risk assessment of typical POPs in drinking water sources in the middle and lower reaches of the Yangtze River[D]. Shijiazhuang: Hebei Normal University, 2020. http://cdmd.cnki.com.cn/Article/CDMD-10094-1020622722.htm
    范晨子, 刘永兵, 赵文博, 等. 云南安宁水系沉积污染物分布特征与风险评价[J]. 岩矿测试, 2021, 40(4): 1-13. doi: 10.15898/j.cnki.11-2131/td.202103080035

    Fan C Z, Liu Y B, Zhao W B, et al. Pollution distribution characteristics and ecological risk assessment of heavy metals and polycyclic aromatic hydrocarbons in the river sediments in Anning, Yunnan Province[J]. Rock and Mineral Analysis, 2021, 40(4): 570-582. doi: 10.15898/j.cnki.11-2131/td.202103080035
    卢浩. 济南市东部城区地下水系统氯代烃污染预警研究[D]. 济南: 济南大学, 2019. http://cdmd.cnki.com.cn/Article/CDMD-10427-1019234236.htm

    Lu H. Study on the early waring of groundwater chlorinated hydrocarbons pollution in the eastern area of Jinan[D]. Jinan: University of Jinan, 2019. http://cdmd.cnki.com.cn/Article/CDMD-10427-1019234236.htm
    谢先军, 刘红杏, 高爽, 等. 典型纳污坑塘周边地下水污染来源识别及其健康风险评估[J]. 地质科技通报, 2020, 39(1): 34-42. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202001005.htm

    Xie X J, Liu H X, Gao S, et al. Source identification and health risk assessment of groundwater pollution in typical sewage pits and ponds[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 34-42. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202001005.htm
    张道来, 刘娜, 朱志刚, 等. 山东半岛典型海岸带多环芳烃分布特征、来源解析及风险评价[J]. 岩矿测试, 2016, 35(5): 521-529. doi: 10.15898/j.cnki.11-2131/td.2016.05.011

    Zhang D L, Liu N, Zhu Z G, et al. Distribution, sources and risk assessment of polycyclic aromatic hydrocarbons in surface sediments from typical coast of Shandong Peninsula[J]. Rock and Mineral Analysis, 2016, 35(5): 521-529. doi: 10.15898/j.cnki.11-2131/td.2016.05.011
    陈玺, 朱亮, 刘景涛, 等. 银川平原饮用地下水健康风险评价及风险控制研究[J]. 安徽农业科学, 2019, 47(18): 78-84. doi: 10.3969/j.issn.0517-6611.2019.18.019

    Chen X, Zhu L, Liu J T, et al. Study on health risk assessment and risk control of drinking groundwater in Yinchuan Plain[J]. Journal of Anhui Agricultural Sciences, 2019, 47(18): 78-84. doi: 10.3969/j.issn.0517-6611.2019.18.019
    饶志, 储小东, 颜春, 等. 鄱阳湖平原浅层地下水有机污染物含量特征与健康风险评价[J]. 地球与环境, 2019, 47(5): 662-670. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201905011.htm

    Rao Z, Chu X D, Yan C, et al. Characteristics and health risk assessment of organic pollutants in groundwater of the Poyang Lake Plain[J]. Earth and Environment, 2019, 47(5): 662-670. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201905011.htm
    刘姝媛, 王红旗. 某地下水源地有机污染健康风险评价[J]. 环境科学与技术, 2014, 37(2): 174-177. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201402034.htm

    Liu S Y, Wang H Q. Health risk assessment of organic pollution in a groundwater source[J]. Environmental Science & Technology, 2014, 37(2): 174-177. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201402034.htm
    赵庆令, 李清彩, 谢江坤, 等. 鲁中南地区双村岩溶水系统地下水中化学致癌物和非致癌物的健康风险评价[J]. 岩矿测试, 2016, 35(1): 90-97. doi: 10.15898/j.cnki.11-2131/td.2016.01.015

    Zhao Q L, Li Q C, Xie J K, et al. Health risk assessment of carcinogenic and non-carcinogenic substances in underground water from the Shuangcun karst system of central-southern Shandong Province[J]. Rock and Mineral Analysis, 2016, 35(1): 90-97. doi: 10.15898/j.cnki.11-2131/td.2016.01.015
  • Related Articles

    [1]ZHANG Ke, FAN Cunliang, JIANG Xianqiao, LI Duo, ZHANG Liye, LI Xiaoming. Analysis of Metal Sources in Shallow Groundwater and Environmental Health Risk Evaluation in the Jidong Plain Area[J]. Rock and Mineral Analysis. DOI: 10.15898/j.ykcs.202408310175
    [2]WANG Maolan, HE Chang, ZHAO Qianyu. Characteristics of Heavy Metal Pollution and Health Risk Assessment of the Long-term Livestock Wastewater Irrigated Soils in Jiangxi Province[J]. Rock and Mineral Analysis, 2022, 41(6): 1072-1081. DOI: 10.15898/j.cnki.11-2131/td.202111180177
    [3]CHEN Dian, ZHANG Zhaohe, ZHAO Wei, LI Jun, JIAO Xingchun. The Occurrence, Distribution and Risk Assessment of Typical Perfluorinated Compounds in Groundwater from a Reclaimed Wastewater Irrigation Area in Beijing[J]. Rock and Mineral Analysis, 2022, 41(3): 499-510. DOI: 10.15898/j.cnki.11-2131/td.202111300190
    [4]LIU Siwen, HUANG Yuanying, ZHAO Wenbo, WEI Jixin, XU Chunli, MA Jiabao, LIU Jiuchen, HUANG Caiwen. Water Quality and Health Risk Assessment of an Ion-adsorption Type REE Mining Area of the Huangpi River Basin, Northern Ganzhou of China[J]. Rock and Mineral Analysis, 2022, 41(3): 488-498. DOI: 10.15898/j.cnki.11-2131/td.202111080170
    [5]ZHU Danni, ZHOU Changsong, LI Jun, ZOU Shengzhang, LU Haiping, FAN Lianjie, LIN Yongsheng. Inorganic-Organic Characteristics and Health Risk Assessment of Typical Underground River System in Southwest China[J]. Rock and Mineral Analysis, 2022, 41(3): 463-475. DOI: 10.15898/j.cnki.11-2131/td.202201310018
    [6]MENG Jie, WANG Jing, XIAO Xian-de, ZHANG Yan, ZHAI Zeng-xiu, LI Wei-fang. Investigation of the Major Odor Contributors and Health Risk Assessment in the Organophosphorus Pesticide Field[J]. Rock and Mineral Analysis, 2021, 40(6): 907-918. DOI: 10.15898/j.cnki.11-2131/td.202012140164
    [7]LI Feng-yan, JIANG Tian-yu, YU Tao, YANG Zhong-fang, HOU Qing-ye, WANG ling-xiao. Review on Sources of Fluorine in the Environment and Health Risk Assessment[J]. Rock and Mineral Analysis, 2021, 40(6): 793-807. DOI: 10.15898/j.cnki.11-2131/td.202109290133
    [8]YU Feng, WANG Wei, YU Yang, WANG Deng-hong, LIU Shan-bao, GAO Juan-qin, LV Bing-ting, LIU Li-jun. Distribution Characteristics and Ecological Risk Assessment of Heavy Metals in Soils from Jiulong Li-Be Mining Area, Western Sichuan Province, China[J]. Rock and Mineral Analysis, 2021, 40(3): 408-424. DOI: 10.15898/j.cnki.11-2131/td.202011300154
    [9]Qing-ling ZHAO, Qing-cai LI, Jiang-kun XIE, Qi-peng SHI, Li-jiao CHEN. Health Risk Assessment of Carcinogenic and Non-carcingenic Substances in Underground Water from the Shuangcun Karst System of Central-Southern Shandong Province[J]. Rock and Mineral Analysis, 2016, 35(1): 90-97. DOI: 10.15898/j.cnki.11-2131/td.2016.01.015
    [10]Analysis of 12 Trace Semi-volatile Organic Compounds in Groundwater for China Groundwater Survey Project[J]. Rock and Mineral Analysis, 2008, 27(2): 91-94.
  • Cited by

    Periodical cited type(6)

    1. 陈星韵,张良,王豪帅,张瑞锐,孙思辰. 福建云霄石榴子石宝石矿物学特征. 岩石矿物学杂志. 2024(03): 673-684 .
    2. 韩萧萧,梁涛,王思雨,熊竹楠,王凌青. 电感耦合等离子体质谱联用技术在稀土元素物源指示研究中的应用进展. 岩矿测试. 2023(01): 1-15 . 本站查看
    3. 毛金伟,冷成彪,赵严,李凯旋,陈涛亮,梁丰,高粉粉,张兴春. 云南中甸红牛-红山大型夕卡岩铜矿床石榴子石U-Pb年代学、元素地球化学及地质意义. 矿物岩石地球化学通报. 2023(06): 1329-1343+1-11 .
    4. 胡靓,张德贤,娄威,胡子奇,刘金波. 含膏盐建造铁矿床中磁铁矿LA-ICP-MS微量元素测定与地球化学特征研究. 岩矿测试. 2022(04): 564-574 . 本站查看
    5. 王浩,杨岳衡,杨进辉. 矿物微区Lu-Hf同位素分析技术研究进展. 岩矿测试. 2022(06): 881-905 . 本站查看
    6. 朱丽,杨永琼,顾汉念,温汉捷,杜胜江,罗重光. 电感耦合等离子体质谱-X射线衍射法研究云南玉溪和美国内华达地区黏土型锂资源矿物学特征. 岩矿测试. 2021(04): 532-541 . 本站查看

    Other cited types(5)

Catalog

    Article views (1327) PDF downloads (43) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return