• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
LIU Siwen, HUANG Yuanying, ZHAO Wenbo, WEI Jixin, XU Chunli, MA Jiabao, LIU Jiuchen, HUANG Caiwen. Water Quality and Health Risk Assessment of an Ion-adsorption Type REE Mining Area of the Huangpi River Basin, Northern Ganzhou of China[J]. Rock and Mineral Analysis, 2022, 41(3): 488-498. DOI: 10.15898/j.cnki.11-2131/td.202111080170
Citation: LIU Siwen, HUANG Yuanying, ZHAO Wenbo, WEI Jixin, XU Chunli, MA Jiabao, LIU Jiuchen, HUANG Caiwen. Water Quality and Health Risk Assessment of an Ion-adsorption Type REE Mining Area of the Huangpi River Basin, Northern Ganzhou of China[J]. Rock and Mineral Analysis, 2022, 41(3): 488-498. DOI: 10.15898/j.cnki.11-2131/td.202111080170

Water Quality and Health Risk Assessment of an Ion-adsorption Type REE Mining Area of the Huangpi River Basin, Northern Ganzhou of China

More Information
  • Received Date: November 07, 2021
  • Revised Date: January 09, 2022
  • Accepted Date: January 23, 2022
  • Available Online: July 28, 2022
  • HIGHLIGHTS
    (1) Health risk assessment and water quality evaluation in an ion-adsorption type REE mining area of the Huangpi River Basin (southeast of China) were investigated systematically.
    (2) Combined with WQI and ADD models, 9 indices such as Mn and Pb were evaluated comprehensively. Anomaly index NH3-N had no harmful effects on human health additively.
    (3) The HQ average values of Mn were more than 1 in groundwater, which may be harmful to human health. As a result of this finding, monitoring of Mn in water systems in mining areas should be carried out routinely.
    BACKGROUND

    Water quality security and human health are important to ensure rural revitalization of old liberated areas. The continuous development and utilization of ion-adsorption type REE deposits in northern Ganzhou aggravate trace elements from ores and tailings to the water cycle, thereby endangering the sanitation and safety of drinking water.

    OBJECTIVES

    To investigate and evaluate health risk and water quality on the watershed scale of rare earth ore concentration area in the Huangpi River Basin.

    METHODS

    The contents of manganese, cadmium and other elements were determined by inductively coupled plasma-optical emission spectrometry/mass spectrometry(ICP-OES/MS). By choosing "standards for drinking water quality" (GB 5749—2006) as the evaluation basis, the water quality index (WQI), hazard quotient (HQ), and cancer risk (CR)were adopted to evaluate water quality and human health risks through analyzing 9 indices including Pb and Mn.

    RESULTS

    NH3-N and Mn were anomaly indices whether in surface water or groundwater. The average values of NH3-N were 750μg/L and 4533μg/L in surface water and groundwater, respectively. Index values of Mn were 207μg/L and 4009μg/L in surface water and groundwater, respectively. Arsenic, class I carcinogen published by the World Health Organization, had no abnormality in surface water and groundwater. Moreover, 85.7% of surface water and groundwater was found to be suitable for drinking upon analyzing the WQI values. The HQ average value of NH3-N was less than 1 in surface water and groundwater so it had no harmful effects on human health. However, the HQ average value of Mn was more than 1, which may be harmful to human health. CR values of As varying from 10-6 to 10-4 were also calculated, and the risk of cancer was acceptable.

    CONCLUSIONS

    It is suggested that relevant departments should pay attention to the status of NH3-N and heavy metal elements in water during the reclamation evaluation of rare earth mines. The research detailed in this paper confirms that the groundwater monitoring system of manganese should be improved.

  • [1]
    Wang J, Liu G, Liu H, et al. Multivariate statistical evaluation of dissolved trace elements and a water quality assessment in the middle reaches of Huaihe River, Anhui, China[J]. Science of the Total Environment, 2017, 583: 421-431. doi: 10.1016/j.scitotenv.2017.01.088
    [2]
    Wang J, Li Y, Huang J, et al. Growing water scarcity, food security and government responses in China[J]. Global Food Security, 2017, 14: 9-17. doi: 10.1016/j.gfs.2017.01.003
    [3]
    徐敏, 张涛, 王东, 等. 中国水污染防治40年回顾与展望[J]. 中国环境管理, 2019, 11(3): 7. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHGL201903013.htm

    Xu M, Zhang T, Wang D, et al. Review and prospect of water pollution prevention and control of China in the forty years of reform and opening-up[J]. Chinese Journal of Environmental Management, 2019, 11(3): 7. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHGL201903013.htm
    [4]
    李传琼, 王鹏, 陈波, 等. 鄱阳湖流域赣江水系溶解态金属元素空间分布特征及污染来源[J]. 湖泊科学, 2018, 30(1): 139-149. https://www.cnki.com.cn/Article/CJFDTOTAL-FLKX201801015.htm

    Li C Q, Wang P, Chen B, et al. Spatial distribution and pollution source of dissolved metals in the Ganjiang River of Lake Poyang Basin[J]. Journal of Lake Sciences, 2018, 30(1): 139-149. https://www.cnki.com.cn/Article/CJFDTOTAL-FLKX201801015.htm
    [5]
    Phung D, Connell D, Rutherford S, et al. Cardiovascular risk from water arsenic exposure in Vietnam: Application of systematic review and meta-regression analysis in chemical health risk assessment[J]. Chemosphere, 2017, 177: 167-175. doi: 10.1016/j.chemosphere.2017.03.012
    [6]
    陈仁祥, 高杨, 宋勇, 等. 龙南足洞稀土矿区地下水水质特征及健康风险评价[J]. 有色金属(矿山部分), 2021, 73(3): 111-118. doi: 10.3969/j.issn.1671-4172.2021.03.017

    Chen R X, Gao Y, Song Y, et al. Groundwater quality characteristics and health risk assessment in Longnan Zudong rare earth mine[J]. Nonferrous Metals (Mining Section), 2021, 73(3): 111-118. doi: 10.3969/j.issn.1671-4172.2021.03.017
    [7]
    李世龙, 熊建华, 邓超冰, 等. 西江流域柳江水体重金属污染状况及健康风险评价[J]. 广西科学, 2018, 25(4): 393-399. https://www.cnki.com.cn/Article/CJFDTOTAL-GXKK201804006.htm

    Li S L, Xiong J H, Deng C B, et al. The assessment of the heavy metal pollution and health risks in the Liujiang River, Xijiang Region[J]. Guangxi Sciences, 2018, 25(4): 393-399. https://www.cnki.com.cn/Article/CJFDTOTAL-GXKK201804006.htm
    [8]
    刘友存, 刘正芳, 刘基, 等. 赣江上游龙迳河水体氨氮与重金属污染分布特征及风险评价[J]. 有色金属科学与工程, 2019, 10(4): 85-93. https://www.cnki.com.cn/Article/CJFDTOTAL-JXYS201904014.htm

    Liu Y C, Liu Z F, Liu J, et al. Distribution characteristics and risk assessment of ammonia nitrogen and heavy metal pollution in Longjing River, the upstream of Ganjiang River[J]. Nonferrous Metals Science and Engineering, 2019, 10(4): 85-93. https://www.cnki.com.cn/Article/CJFDTOTAL-JXYS201904014.htm
    [9]
    罗飞, 巴俊杰, 苏春田, 等. 武水河上游区域土壤重金属污染风险及来源分析[J]. 岩矿测试, 2019, 38(2): 195-203. doi: 10.15898/j.cnki.11-2131/td.201806040069

    Luo F, Ba J J, Su C T, et al. Contaminant assessment and sources analysis of heavy metals in soils from the upper reaches of the Wushui River[J]. Rock and Mineral Analysis, 2019, 38(2): 195-203. doi: 10.15898/j.cnki.11-2131/td.201806040069
    [10]
    许燕颖, 刘友存, 张军, 等. 赣江上游典型流域水体三氮及重金属空间分布特征与风险评价[J]. 地球与环境, 2020, 48(5): 574-583. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ202005007.htm

    Xu Y Y, Liu Y C, Zhang J, et al. Spatial distribution and risk assessment of nitrogen and heavy metals in typical watershed of the upper reaches of Ganjiang River[J]. Earth and Environment, 2020, 48(5): 574-583. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ202005007.htm
    [11]
    Fernandes M M, Baeyens B. Cation exchange and surface complexation of lead on montmorillonite and illite including competitive adsorption effects[J]. Applied Geochemistry, 2019, 100: 190-202. doi: 10.1016/j.apgeochem.2018.11.005
    [12]
    Qiao J, Tang J, Xue Q. Study on Pb release by several new lixiviants in weathered crust elution-deposited rare earth ore leaching process: Behavior and mechanism[J]. Ecotoxicology and Environmental Safety, 2020, 190: 110138. doi: 10.1016/j.ecoenv.2019.110138
    [13]
    李凤果, 陈明, 师艳丽, 等. 赣江上游沉积物重金属空间分布及污染特征[J]. 生态学杂志, 2020, 39(3): 920-927. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ202003024.htm

    Li F G, Chen M, Shi Y L, et al. Spatial distribution and pollution characteristics of heavy metals in sediments of the upper reaches of Ganjiang River[J]. Chinese Journal of Ecology, 2020, 39(3): 920-927. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ202003024.htm
    [14]
    Gao B, Gao L, Gao J, et al. Simultaneous evaluations of occurrence and probabilistic human health risk associated with trace elements in typical drinking water sources from major river basins in China[J]. Science of the Total Environment, 2019, 666: 139-146. doi: 10.1016/j.scitotenv.2019.02.148
    [15]
    Song L, Dai Q, Feng Y, et al. Estimating uncertainties of source contributions to PM2.5 using moving window evolving dispersion normalized PMF[J]. Environmental Pollution, 2021, 286: 117576. doi: 10.1016/j.envpol.2021.117576
    [16]
    Tong S, Li H, Tudi M, et al. Comparison of characteristics, water quality and health risk assessment of trace elements in surface water and groundwater in China[J]. Ecotoxicology and Environmental Safety, 2021, 219: 112283. doi: 10.1016/j.ecoenv.2021.112283
    [17]
    Jiménez-Oyola S, Chavez E, García-Martínez M, et al. Probabilistic multi-pathway human health risk assessment due to heavy metal(loid)s in a traditional gold mining area in Ecuador[J]. Ecotoxicology and Environmental Safety, 2021, 224: 112629. doi: 10.1016/j.ecoenv.2021.112629
    [18]
    Maleki A, Jari H. Evaluation of drinking water quality and non-carcinogenic and carcinogenic risk assessment of heavy metals in rural areas of Kurdistan, Iran[J]. Environmental Technology & Innovation, 2021, 23: 101668.
    [19]
    于沨, 王伟, 于扬, 等. 川西九龙地区锂铍矿区土壤重金属分布特征及生态风险评价[J]. 岩矿测试, 2021, 40(3): 408-424. doi: 10.15898/j.cnki.11-2131/td.202011300154

    Yu F, Wang W, Yu Y, et al. Distribution characteristics and ecological risk assessment of heavy metals in soils from Jiulong Li-Be mining area, western Sichuan Province, China[J]. Rock and Mineral Analysis, 2021, 40(3): 408-424. doi: 10.15898/j.cnki.11-2131/td.202011300154
    [20]
    Meng Q, Zhang J, Zhang Z, et al. Geochemistry of dis-solved trace elements and heavy metals in the Dan River Drainage (China): Distribution, sources, and water quality assessment[J]. Environmental Science and Pollution Research, 2016, 23(8): 8091-8103. doi: 10.1007/s11356-016-6074-x
    [21]
    Sener S, Sener E, Davraz A. Evaluation of water quality using water quality index (WQI) method and GIS in Aksu River (SW-Turkey)[J]. Science of the Total Environment, 2017, 584-585: 131-144. doi: 10.1016/j.scitotenv.2017.01.102
    [22]
    Xiao J, Wang L, Deng L, et al. Characteristics, sources, water quality and health risk assessment of trace elements in river water and well water in the Chinese Loess Plateau[J]. Science of the Total Environment, 2019, 650: 2004-2012. doi: 10.1016/j.scitotenv.2018.09.322
    [23]
    Huang S, Li Z, Yu J, et al. Vertical distribution and occurrence state of the residual leaching agent (ammonium sulfate) in the weathered crust elution-deposited rare earth ore[J]. Journal of Environmental Management, 2021, 299: 113642. doi: 10.1016/j.jenvman.2021.113642
    [24]
    邓振乡, 秦磊, 王观石, 等. 离子型稀土矿山氨氮污染及其治理研究进展[J]. 稀土, 2019, 40(2): 120-129. https://www.cnki.com.cn/Article/CJFDTOTAL-XTZZ201902017.htm

    Deng Z X, Qin L, Wang G S, et al. Ammonia nitrogen pollution and progress in its treatment of ionic rare earth mines[J]. China Rare Earths, 2019, 40(2): 120-129. https://www.cnki.com.cn/Article/CJFDTOTAL-XTZZ201902017.htm
    [25]
    林圣玉, 莫明浩, 王凌云. 赣州市山水林田湖草生态保护修复问题识别和技术探析[J]. 中国水土保持, 2021(1): 28-31. doi: 10.3969/j.issn.1000-0941.2021.01.012

    Lin S Y, Mo M H, Wang L Y. Identification and technical analysis of ecological protection and restoration of landscape forest, field, lake and grass in Ganzhou City[J]. Soil and Water Conservation in China, 2021(1): 28-31. doi: 10.3969/j.issn.1000-0941.2021.01.012
    [26]
    郑先坤, 冯秀娟, 陈哲, 等. 离子型稀土矿原地浸矿废弃地中残存的氮素垂直分布规律及意义[J]. 稀土, 2020, 41(4): 30-40. https://www.cnki.com.cn/Article/CJFDTOTAL-XTZZ202004004.htm

    Zheng X K, Feng X J, Chen Z, et al. Distribution of nitrogen residues in ion-type rare earth in-situ leached wasteland and its significance[J]. China Rare Earths, 2020, 41(4): 30-40. https://www.cnki.com.cn/Article/CJFDTOTAL-XTZZ202004004.htm
    [27]
    张塞, 于扬, 王登红, 等. 赣南离子吸附型稀土矿区土壤重金属形态分布特征及生态风险评价[J]. 岩矿测试, 2020, 39(5): 726-738. doi: 10.15898/j.cnki.11-2131/td.201911050152

    Zhang S, Yu Y, Wang D H, et al. Forms distribution of heavy metals and their ecological risk evaluation in soils of ion adsorption type in the rare earth mining area of southern Jiangxi, China[J]. Rock and Mineral Analysis, 2020, 39(5): 726-738. doi: 10.15898/j.cnki.11-2131/td.201911050152
    [28]
    Zhao L, Yan Y, Yu R, et al. Source apportionment and health risks of the bioavailable and residual fractions of heavy metals in the park soils in a coastal city of China using a receptor model combined with Pb isotopes[J]. CATENA, 2020, 194: 104736. doi: 10.1016/j.catena.2020.104736
    [29]
    陈陵康, 陈海霞, 金雄伟, 等. 离子型稀土矿粒度、粘土矿物、盐基离子迁移及重金属释放研究及展望[J/OL]. 中国稀土学报, 2022, http://kns.cnki.net/kcms/detail/11.2365.TG.20210928.0337.008.html.

    Chen L K, Chen H X, Jin X W, et al. Research and prospect of particle size, clay minerals, base ion migration and heavy metal release of ionic rare earth ore[J/OL]. Journal of the Chinese Society of Rare Earths, 2022, http://kns.cnki.net/kcms/detail/11.2365.TG.20210928.0337.008.html.
    [30]
    王学锋, 许春雪, 顾雪, 等. 典型稀土矿区周边土壤中稀土元素含量及赋存形态研究[J]. 岩矿测试, 2019, 38(2): 137-146. doi: 10.15898/j.cnki.11-2131/td.201807180085

    Wang X F, Xu C X, Gu X, et al. Concentration and fractionation of rare earth elements in soils surrounding rare earth ore area[J]. Rock and Mineral Analysis, 2019, 38(2): 137-146. doi: 10.15898/j.cnki.11-2131/td.201807180085
    [31]
    徐春丽, 刘斯文, 魏吉鑫, 等. 离子型稀土矿区及周边土壤中稀土、重金属元素的地球化学特征[J]. 矿产保护与利用, 2021, 41(4): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-KCBH202104001.htm

    Xu C L, Liu S W, Wei J X, et al. Geochemical characteristics of rare earth and heavy metal elements in ion-type rare earth mining area and surrounding soil[J]. Conservation and Utilization of Mineral Resources, 2021, 41(4): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-KCBH202104001.htm
    [32]
    陈能汪, 王德利, 鲁婷, 等. 九龙江流域地表水锰的污染来源和迁移转化机制[J]. 环境科学学报, 2018, 38(8): 2955-2964. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201808001.htm

    Chen N W, Wang D L, Lu T, et al. Manganese pollution in the Jiulong River watershed: Sources and transformation[J]. Acta Scientiae Circumstantiae, 2018, 38(8): 2955-2964. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201808001.htm
    [33]
    罗杰, 张嵚, 罗密密, 等. 某离子型稀土矿不同功能区土壤退化特征[J]. 中国稀土学报, 2022, 40(2): 229-338. https://www.cnki.com.cn/Article/CJFDTOTAL-XTXB202202017.htm
    [34]
    Jiang Y. China's water security: Current status, emerging challenges and future prospects[J]. Environmental Science & Policy, 2015, 54: 106-125.
    [35]
    卢陈彬. 赣南某离子型稀土矿区土壤中锰的赋存形态与释放特性研究[D]. 赣州: 江西理工大学, 2020.

    Lu C B. Occurrence and release characteristics of manganese in the soil from an ion-absorbed rare earth mining area in South Jiangxi[D]. Ganzhou: Jiangxi University of Science and Technology, 2020.
    [36]
    Neslund-Dudas C M, Mcbride R B, Kandegedara A, et al. Association between cadmium and androgen receptor protein expression differs in prostate tumors of African-American and European-American men[J]. Journal of Trace Elements in Medicine and Biology, 2018, 48: 233-238.
    [37]
    Qing Y, Yang J, Zhu Y, et al. Cancer risk and disease burden of dietary cadmium exposure changes in Shanghai residents from 1988 to 2018[J]. Science of the Total Environment, 2020, 734: 139411.
    [38]
    Mason L H, Harp J P, Han D Y. Pb neurotoxicity: Neuro-psychological effects of lead toxicity[J]. BioMed Research International, 2014, doi: 10.1155/2014/840547.
  • Related Articles

    [1]WANG Weijie, WANG Hongtao. Research Progress on the Ecological Risk Status and Analytical Techniques of Per- and Polyfluoroalkyl Substances[J]. Rock and Mineral Analysis, 2025, 44(2): 174-186. DOI: 10.15898/j.ykcs.202412080252
    [2]LIU Zeyang, XU Chun, SUN Shuhai. Aquatic Toxicity and Ecological Risk Assessment of Chlorophenol Insecticides[J]. Rock and Mineral Analysis. DOI: 10.15898/j.ykcs.202407190161
    [3]BAI Yuming, LI Yongli, ZHOU Wenhui, HU Haoyuan, LU Zhen, BIAN Peng. Speciation Characteristics and Ecological Risk Assessment of Heavy Metal Elements in Soils of Typical Industrial City[J]. Rock and Mineral Analysis, 2022, 41(4): 632-641. DOI: 10.15898/j.cnki.11-2131/td.202109030113
    [4]YU Feng, WANG Wei, YU Yang, WANG Deng-hong, LIU Shan-bao, GAO Juan-qin, LV Bing-ting, LIU Li-jun. Distribution Characteristics and Ecological Risk Assessment of Heavy Metals in Soils from Jiulong Li-Be Mining Area, Western Sichuan Province, China[J]. Rock and Mineral Analysis, 2021, 40(3): 408-424. DOI: 10.15898/j.cnki.11-2131/td.202011300154
    [5]ZHANG Sai, YU Yang, WANG Deng-hong, WANG Wei, ZHANG Hong-guo, CEN Kuang. Forms Distribution of Heavy Metals and Their Ecological Risk Evaluation in Soils of Ion Adsorption Type in the Rare Earth Mining Area of Southern Jiangxi, China[J]. Rock and Mineral Analysis, 2020, 39(5): 726-738. DOI: 10.15898/j.cnki.11-2131/td.201911050152
    [6]MA Sheng-ming, ZHU Li-xin, TANG Li-ling, TANG Shi-xin. The Occurrences of Hg and Cd in Soils around Cities and Rivers and Their Ecological Risk Assessment[J]. Rock and Mineral Analysis, 2020, 39(2): 225-234. DOI: 10.15898/j.cnki.11-2131/td.201906060081
    [7]HE Ling, SUN Bin-bin, WU Chao, CHENG Xiao-meng, WU Zheng-feng, ZHOU Rong-qiang, HOU Shu-jun. Assessment of Soil Environment Quality and Ecological Risk for Kiwifruit Orchards in Jiangshan City, Zhejiang Province[J]. Rock and Mineral Analysis, 2019, 38(5): 524-533. DOI: 10.15898/j.cnki.11-2131/td.201901080003
    [8]Jing WANG, Yu-feng WU, Bin WANG, Lei ZHANG, Xin WANG, Yi ZHAO. Ecological Risk Assessment of Heavy Metals in Industrial Land and Farmland Soils of Tianjin with Toxicity Characteristic Leaching Procedure[J]. Rock and Mineral Analysis, 2015, 34(4): 464-470. DOI: 10.15898/j.cnki.11-2131/td.2015.04.015
    [9]Qing-ling ZHAO, Qing-cai LI, Jiang-kun XIE, Yuan-zhong LI, Yong-hong JI, Cheng-bao PANG, Miao WAN. Characteristics of Soil Heavy Metal Pollution and Its Ecological Risk Assessment in South Jining District[J]. Rock and Mineral Analysis, 2015, 34(1): 129-137. DOI: 10.15898/j.cnki.11-2131/td.2015.01.017
    [10]Xiao-ming SHEN, Ai-juan LV, Jia-lin SHEN, Jing-ke HU, Lei SHI, Xiao-hu CAI. Distribution Characteristics, Sources and Ecological Risk Assessment of Polycyclic Aromatic Hydrocarbons in Waterway Sediments from Qidong and Chongming Island of Yangtze River Estuary[J]. Rock and Mineral Analysis, 2014, 33(3): 379-385.
  • Cited by

    Periodical cited type(7)

    1. 赵令浩,孙冬阳,胡明月,袁继海,范晨子,詹秀春. 激光剥蚀-扇形磁场电感耦合等离子体质谱法同时测定锆石U-Pb年龄和微量元素含量. 岩矿测试. 2024(01): 47-62 . 本站查看
    2. 王奇奇,孙贺,顾海欧,侯振辉,葛粲,汪方跃,周涛发. 磺酸型阳离子树脂的元素分配行为及高精度同位素分析应用. 岩矿测试. 2024(01): 63-75 . 本站查看
    3. 曹瑞芹,杨忠芳,余涛. 镉锌稳定同位素地球化学及其在土壤等地质体中的危害与治理研究进展. 中国地质. 2024(03): 833-864 .
    4. 程文瀚,吴萌,赵艳丽,赵俊哲. 锌同位素环境地球化学研究进展. 高校地质学报. 2024(03): 312-321 .
    5. 李卫娜,蔡虹明,袁玮,郑旺,陈玖斌. 土柱实验在土壤重金属污染研究中的应用进展与展望. 地球与环境. 2024(05): 652-661 .
    6. 帅旺财,刘文奇,马丽雅,蔡虹明,陈玖斌,袁玮. 典型有色金属冶炼场地重金属来源解析及生态健康风险评估. 地球与环境. 2024(06): 756-770 .
    7. 夏亚飞,刘宇晖,高庭,刘承帅. 基于金属稳定同位素的矿冶影响区土壤重金属污染源解析研究进展. 地球科学进展. 2023(04): 331-348 .

    Other cited types(1)

Catalog

    Article views (260) PDF downloads (42) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return