Citation: | ZHU Danni, ZHOU Changsong, LI Jun, ZOU Shengzhang, LU Haiping, FAN Lianjie, LIN Yongsheng. Inorganic-Organic Characteristics and Health Risk Assessment of Typical Underground River System in Southwest China[J]. Rock and Mineral Analysis, 2022, 41(3): 463-475. DOI: 10.15898/j.cnki.11-2131/td.202201310018 |
Karst groundwater provides drinking water for about 25% of the world's population. As the main type of karst groundwater, underground rivers are an important water supply source for karst areas in Southwest China. It is of great significance to master the water quality, pollution status and human health risk for water resources protection and safety use in southern karst areas.
To reveal the chemical compositions, pollution degree and health risk of underground river water.
22 groups of underground river water samples (half inorganic and half organic samples) from the underground river system of Shiziyan in Huixian, Guilin, Guangxi were collected. The concentrations and spatial distribution of 21 inorganic ions and 41 organic indices were analyzed by inductively coupled plasma-mass spectrometry (ICP-MS), ion chromatography (IC) and gas chromatography-mass spectrometry (GC-MS).The single index pollution standard index method was used to evaluate the pollution of 17 inorganic ions and 15 detected organic compounds. The health risk assessment model recommended by the United States Environmental Protection Agency (US EPA) was used to study the human health risk of 10 major pollutants.
The results showed that: (1) Ca2+ and HCO3- were the dominant ions in the Shiziyan underground river. The concentrations of NH4+, Fe, Al and Mn in the underground river exceeded the groundwater quality standard by 1.33, 1.2, 1.5 and 1.01 times, respectively, and the exceeding points were mostly located in the discharge area of the underground river. 18 organic compounds were detected, of which the detection rates of volatile organic compounds (VOCs), semi volatile organics (SVOCs) and organochlorine pesticides (OCPs) were 18.75%, 30.77% and 91.67% respectively. (2) Compared with the groundwater background values, the underground river water in the study area was slightly-moderately polluted by 10 inorganic indicators and 14 organic compounds. Some sampling points were seriously polluted by NO3-, Fe, Al and Mn, and one sampling point (UR8) was extremely polluted by benzo [a] pyrene. (3) According to the results of health risk assessment, the non-carcinogenic health risks of being exposed to drinking water and for skin exposure were 9.98×10-3 per year for adults and 1.09×10-2 per year for children, and carcinogenic health risks were 1.33×10-7 per year for adults and 2.82×10-7 per year for children, which were within acceptable levels.
There are various degrees of inorganic and organic pollution in the study area, but the pollutant indicators do not pose a non-carcinogenic or carcinogenic health risk to the population.
[1] |
Reberski J L, Terzí J, D. Maurice L, et al. Emerging organic contaminants in karst groundwater: A global level assessment[J/OL]. Journal of Hydrology, 2022, doi: https://doi.org/10.1016/j.jhydrol.2021.127242.
|
[2] |
邹胜章, 卢海平, 周长松, 等. 岩溶区地下水环境质量调查评估技术方法与实践[M]. 北京: 科学出版社, 2021.
Zou S Z, Lu H P, Zhou C S, et al. Technical method and practice of groundwater environmental quality investigation and evaluation in karst area[M]. Beijing: Science Press, 2021.
|
[3] |
Zhou C S, Zou S Z, Zhu D N, et al. Pollution pattern of underground river in karst area of the southwest China[J]. Journal of Groundwater Science and Engineering, 2018, 6(2): 71-83.
|
[4] |
Li J, Yang G L, Zhu D N, et al. Hydrogeochemistry of karst groundwater for the environmental and health risk assessment: The case of the suburban area of Chongqing (southwest China)[J/OL]. Geochemistry, 2022, doi: https://doi.org/10.1016/j.chemer.2022.125866.
|
[5] |
詹兆君, 陈峰, 杨平恒, 等. 西南典型岩溶地下河系统水文地球化学特征对比: 以重庆市青木关、老龙洞为例[J]. 环境科学, 2016, 37(9): 3365-3374. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201609015.htm
Yan Z J, Chen F, Yang P H, et al. Comparison on the hydrogeochemical hharacteristics of hypical karst groundwater system in southwest China, a sase of Qingmuguan and Laolongdong in Chongqing[J]. Environmental Science, 2016, 37(9): 3365-3374. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201609015.htm
|
[6] |
叶凯, 孙玉川, 贾亚男, 等. 岩溶地下水水体中有机氯农药和多氯联苯的残留特征及健康风险评价[J]. 环境科学, 2020, 41(12): 5448-5457. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202012028.htm
Ye K, Sun Y C, Jia Y N, et al. Residual characteristics and health assessment analysis of OCPs and PCBs in karst groundwater[J]. Environmental Science, 2020, 41(12): 5448-5457. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202012028.htm
|
[7] |
蓝家程, 孙玉川, 田萍, 等. 岩溶地下河流域水中多环芳烃污染特征及生态风险评价[J]. 环境科学, 2014, 35(10): 3722-3730. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201410012.htm
Lan J C, Sun Y C, Tian P, et al. Contamination and ecological risk assessment of polycyclic aromatic hydrocarbons in water and in karst underground river catchment[J]. Environmental Science, 2014, 35(10): 3722-3730. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201410012.htm
|
[8] |
朱琳跃, 蓝家程, 孙玉川, 等. 典型岩溶区土壤和地下水中多环芳烃的分布特征及健康风险研究[J]. 环境科学学报, 2020, 40(9): 3361-3374. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX202009030.htm
Zhu L Y, Lan J C, Sun Y C, et al. Distribution characteristics and health risks of PAHs in soils and groundwater in typical karst areas[J]. Acta Scientiae Circumstantiae, 2020, 40(9): 3361-3374. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX202009030.htm
|
[9] |
盛婷, 杨平恒, 谢国文, 等. 基于δ15N和δ18O的农业区地下河硝酸盐污染来源[J]. 环境科学, 2018, 39(10): 4547-4555. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201810021.htm
Sheng T, Yang P H, Xie G W, et al. Nitrate-nitrogen pollution sources of an underground river in karst agricultural area using 15N and 18O isotope technique[J]. Environmental Science, 2018, 39(10): 4547-4555. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201810021.htm
|
[10] |
Xiang S Z, Wang X S, Ma W, et al. Response of microbial communities of karst river water to antibiotics and microbial source tracking for antibiotics[J]. Science of the Total Environment, 2020, 706: 135730. doi: 10.1016/j.scitotenv.2019.135730
|
[11] |
张新钰, 辛宝东, 王晓红, 等. 我国地下水污染研究进展[J]. 地球与环境, 2011, 39(3): 415-422. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201103022.htm
Zhang X Y, Xin B D, Wang X H, et al. Progress in research on groundwater pollution in our country[J]. Earth and Environment, 2011, 39(3): 415-422. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201103022.htm
|
[12] |
张兆吉, 费宇红, 郭春艳, 等. 华北平原区域地下水污染评价[J]. 吉林大学学报(地球科学版), 2012, 42(5): 1456-1461. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201205019.htm
Zhang Z J, Fei Y H, Guo C Y, et al. Regional groundwater contamination assessment in the North China Plain[J]. Journal of Jilin University (Earth Science Edition), 2012, 42(5): 1456-1461. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201205019.htm
|
[13] |
李军, 赵一, 邹胜章, 等. 会仙岩溶湿地丰平枯时期地下水金属元素污染与健康风险[J]. 环境科学, 2021, 42(1): 184-194. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202101021.htm
Li J, Zhao Y, Zou S Z, et al. Metal pollutions and human health risks on groundwater from wet, normal, and dry periods in Huixian karst wetland, China[J]. Environmental Science, 2021, 42(1): 184-194. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202101021.htm
|
[14] |
李军, 邹胜章, 赵一, 等. 会仙岩溶湿地地下水主要离子特征及成因分析[J]. 环境科学, 2021, 42(4): 1750-1760. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202104018.htm
Li J, Zou S Z, Zhao Y, et al. Major ionic characteristics and factors of karst groundwater at Huixian karst wetland, China[J]. Environmental Science, 2021, 42(4): 1750-1760. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202104018.htm
|
[15] |
Huang L L, Rad S, Xu L, et al. Heavy metals distribution, sources, and ecological risk assessment in Huixian wetland, South China[J/OL]. Water, 2020, 12(2), doi: 10.3390/w12020431.
|
[16] |
Qin L T, Pang X R, Zeng H H, et al. Ecological and human health risk of sulfonamides in surface water and groundwater of Huixian karst wetland in Guilin, China[J]. Science of the Total Environment, 2019, doi: https://doi.org/ 10.1016/j.scitotenv.2019.134552.
|
[17] |
朱丹尼, 邹胜章, 周长松, 等. 桂林会仙岩溶湿地水位动态特征及水文生态效应[J]. 中国岩溶, 2021, 40(4): 661-670. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202104013.htm
Zhu D N, Zou S Z, Zhou C S, et al. Dynamic characteristics of water level and hydro-ecological effects in Huixian karst wetland in Guilin[J]. Carsologica Sinica, 2020, 40(4): 661-670. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202104013.htm
|
[18] |
吴伊琳. 河北省某市地下水有机污染特征及评价[D]. 石家庄: 河北地质大学, 2020.
Wu Y L. Characteristics and evaluation of groundwater organic pollution in a city of Hebei Province[D]. Shijiazhuang: Hebei GEO University, 2020.
|
[19] |
Li J, Miao X Y, Hao Y P, et al. Health risk assessment of metals (Cu, Pb, Zn, Cr, Cd, As, Hg, Se) in angling fish with different lengths collected from Liuzhou, China[J]. International Journal of Environmental Research Public Health, 2020, 17: 2192. doi: 10.3390/ijerph17072192
|
[20] |
Miao X Y, Hao Y P, Tang X, et al. Analysis and health risk assessment of toxic and essential elements of the wild fish caught by anglers in Liuzhou as a large industrial city of China[J]. Chemosphere, 2020, 243: 125337. doi: 10.1016/j.chemosphere.2019.125337
|
[21] |
张春艳, 高柏, 郭亚丹, 等. 鄱阳湖区域地下水有机污染物特征与风险评价[J]. 生态毒理学报, 2016, 11(2): 524-530. https://www.cnki.com.cn/Article/CJFDTOTAL-STDL201602063.htm
Zhang C Y, Gao B, Guo Y D, et al. Pollution characteristics and risk assessment of organic pollutants in groundwater of Poyang Lake[J]. Asian Journal of Ecotoxicology, 2016, 11(2): 524-530. https://www.cnki.com.cn/Article/CJFDTOTAL-STDL201602063.htm
|
[22] |
张清华, 韦永著, 曹建华, 等. 柳江流域饮用水源地重金属污染与健康风险评价[J]. 环境科学, 2018, 39(4): 1598-1607. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201804019.htm
Zhang Q H, Wei Y Z, Cao J H, et al. Heavy metal pollution of the drinking water sources in the Liujiang River Basin, and related health risk assessments[J]. Environmental Science, 2018, 39(4): 1598-1607. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201804019.htm
|
[23] |
周巾枚, 蒋忠诚, 徐光黎, 等. 铁矿周边地下水金属元素分布及健康风险评价[J]. 中国环境科学, 2019, 39(5): 1934-1944. doi: 10.3969/j.issn.1000-6923.2019.05.017
Zhou J M, Jiang Z C, Xu G L, et al. Distribution and health risk assessment of metals in groundwater around iron mine[J]. China Environmental Science, 2019, 39(5): 1934-1944. doi: 10.3969/j.issn.1000-6923.2019.05.017
|
[24] |
罗庆, 孙丽娜, 张耀华. 细河流域地下水中持久性有机氯污染物的健康风险评价[J]. 水土保持研究, 2011, 18(6): 119-124. https://www.cnki.com.cn/Article/CJFDTOTAL-STBY201106025.htm
Luo Q, Sun L N, Zhang Y H. Health risk assessment of persistent organochlorine pollutants in groundwater from Xihe River area[J]. Research of Soil and Water Conservation, 2011, 18(6): 119-124. https://www.cnki.com.cn/Article/CJFDTOTAL-STBY201106025.htm
|
[25] |
赵庆令, 李清彩, 谢江坤, 等. 鲁中南地区双村岩溶水系统地下水中化学致癌物和非致癌物的健康风险评价[J]. 岩矿测试, 2016, 35(1): 90-97. doi: 10.15898/j.cnki.11-2131/td.2016.01.015
Zhao Q L, Li Q C, Xie J K, et al. Health risk assessment of carcinogenic and non-carcingenic substances in underground water from the Shuangcun karst system of central southern Shandong Province[J]. Rock and Mineral Analysis, 2016, 35(1): 90-97. doi: 10.15898/j.cnki.11-2131/td.2016.01.015
|
[26] |
陈卫平, 彭程伟, 杨阳, 等. 北京市地下水有机氯和有机磷农药健康风险评价[J]. 环境科学, 2018, 39(1): 117-122. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201801015.htm
Chen W P, Peng C W, Yang Y, et al. Health risk evaluation of organochlorine and organophosphorous pesticides in groundwater in Beijing[J]. Environmental Science, 2018, 39(1): 117-122. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201801015.htm
|
[27] |
李丽君, 王海娇, 马健生. 下辽河平原地下水中挥发性有机物的污染特征及健康风险评价[J]. 岩矿测试, 2021, 40(6): 930-943. doi: 10.15898/j.cnki.11-2131/td.202108200105
Li L L, Wang H J, Ma J S. Pollution characteristics and health risk assessment of volatile organic compounds in groundwater in the Lower Liaohe River Plain[J]. Rock and Mineral Analysis, 2021, 40(6): 930-943. doi: 10.15898/j.cnki.11-2131/td.202108200105
|
[28] |
段磊, 王文科, 孙亚乔, 等. 关中盆地浅层地下水氮污染的健康风险评价[J]. 水文地质工程地质, 2011, 38(3): 92-97. doi: 10.3969/j.issn.1000-3665.2011.03.017
Duan L, Wang W K, Sun Y Q, et al. Health risk assessment of "Three Nitrogen" in shallow groundwater in the Guanzhong Basin[J]. Hydrogeology and Engineering Geology, 2011, 38(3): 92-97. doi: 10.3969/j.issn.1000-3665.2011.03.017
|
[29] |
朱丹尼, 邹胜章, 周长松, 等. 不同城镇功能区岩溶地下水化学敏感因子识别[J]. 中国岩溶, 2018, 37(4): 484-492. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201804002.htm
Zhu D N, Zou S Z, Zhou C S, et al. Identification of hydrochemical sensitive factors of karst groundwater in different functional urban areas[J]. Carsologica Sinica, 2018, 37(4): 484-492. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201804002.htm
|
[30] |
Li J, Zhu D N, Zhang S, et al. Application of the hydro- chemistry, stable isotopes and MixSIAR model to identify nitrate sources and transformations in surface water and groundwater of an intensive agricultural karst wetland in Guilin, China[J/OL]. Ecotoxicology and Environmental Safety, 2022, 231, https://doi.org/10.1016/j.ecoenv.2022.113205.
|
[31] |
周巾枚, 蒋忠诚, 徐光黎, 等. 崇左响水地区地下水水质分析及健康风险评价[J]. 环境科学, 2019, 40(6): 2675-2685. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201906022.htm
Zhou J M, Jiang Z C, Xu G L, et al. Waterquality analysis and health risk assessment for groundwater at Xiangshui, Chongzuo[J]. Environmental Science, 2019, 40(6): 2675-2685. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201906022.htm
|
[32] |
张人权, 梁杏, 靳孟贵, 等. 水文地质学基础[M]. 北京: 地质出版社, 2011.
Zhang R Q, Liang X, Jin M G, et al. General hydrogeology[M]. Beijing: Geological Publishing House, 2011.
|
[33] |
朱丹尼, 邹胜章, 李军, 等. 会仙岩溶湿地丰平枯水期地表水污染及灌溉适用性评价[J]. 环境科学, 2021, 42(5): 2240-2250. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202105017.htm
Zhu D N, Zou S Z, Li J, et al. Pollution and irrigation applicability of surface water from wet, normal, and dry periods in the Huixian karst wetland, China[J]. Environmental Science, 2021, 42(5): 2240-2250. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202105017.htm
|
[34] |
孔祥胜, 祁士华, Oramah I T, 等. 广西大石围天坑群地下河水中多环芳烃的污染特征[J]. 环境科学, 2011, 32(4): 1081-1087. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201104027.htm
Kong X S, Qi S H, Oramah I T, et al. Contamination of polycyclic aromatic hydrocarbons in surface water in underground river of Dashiwei Tiankeng Group in karst area, Guangxi[J]. Environmental Science, 2011, 32(4): 1081-1087. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201104027.htm
|
[35] |
徐蓉桢, 刘菲, 荆继红, 等. 典型浅层孔隙水和岩溶水中多环芳烃分布特征[J]. 岩矿测试, 2018, 37(4): 411-418. doi: 10.15898/j.cnki.11-2131/td.201801120004
Xu R Z, Liu F, Jin J H, et al. Distribution characteristics of polycyclic aromatic hydrocarbons in typical shallow pore water and karst water[J]. Rock and Mineral Analysis, 2018, 37(4): 411-418. doi: 10.15898/j.cnki.11-2131/td.201801120004
|
[36] |
张坤锋, 昌盛, 赵少延, 等. 克鲁伦河流域地下水饮用水水源中挥发性有机物的污染特征与风险评价[J]. 环境工程技术学报, 2021, 11(6): 1083-1091. https://www.cnki.com.cn/Article/CJFDTOTAL-HKWZ202106006.htm
Zhang K F, Chang S, Zhao S Y, et al. Pollution characteristics and risk assessment of volatile organic compounds in groundwater drinking water sources in Klulun River Basin[J]. Journal of Environmental Engineering Technology, 2021, 11(6): 1083-1091. https://www.cnki.com.cn/Article/CJFDTOTAL-HKWZ202106006.htm
|
[37] |
Pan H, Lei H, He X, et al. Spatial distribution of organochlorine and organophosphorus pesticides in soil-groundwater systems and their associated risks in the middle reaches of the Yangtze River Basin[J]. Environmental Geochemistry and Health, 2019, 41: 1833-1845. doi: 10.1007/s10653-017-9970-1
|
[38] |
Moreau M, Hadfield J, Hughey J, et al. A baseline assessment of emerging organic contaminants in New Zealand groundwater[J]. Science of the Total Environment, 2019, 686: 425-439. doi: 10.1016/j.scitotenv.2019.05.210
|
[39] |
Dong W H, Xie W, Su X S, et al. Review: Micro-organic contaminants in groundwater in China[J]. Hydrogeology Journal, 2018, 26: 1351-1369. doi: 10.1007/s10040-018-1760-z
|
[40] |
韦丽丽, 郭芳, 王健哲, 等. 柳州岩溶地下河水体有机氯农药分布特征[J]. 中国岩溶, 2011, 30(1): 16-21. doi: 10.3969/j.issn.1001-4810.2011.01.003
Wei L L, Guo F, Wang J Z, et al. Distribution characteristics of organochlorine pesticides in karst subterranean river in Liuzhou[J]. Carsologica Sinica, 2011, 30(1): 16-21. doi: 10.3969/j.issn.1001-4810.2011.01.003
|
[41] |
Kurwadkar S R, Kanel S, Nakarmi A. Groundwater pollution: Occurrence, detection, and remediation of organic and inorganic pollutants[J]. Water Environment Research, 2020, 92(10): 1659-1668. doi: 10.1002/wer.1415
|
[42] |
李海明, 陈鸿汉, 郑西来, 等. 地下水中苯并[a]芘来源探讨[J]. 水文地质工程地质, 2006, 33(6): 21-24. doi: 10.3969/j.issn.1000-3665.2006.06.006
Li H M, Chen H H, Zheng X L, et al. A discussion of the source of B[a]P in groundwater[J]. Hydrogeology and Engineering Geology, 2006, 33(6): 21-24. doi: 10.3969/j.issn.1000-3665.2006.06.006
|
1. |
赵令浩,孙冬阳,胡明月,袁继海,范晨子,詹秀春. 激光剥蚀-扇形磁场电感耦合等离子体质谱法同时测定锆石U-Pb年龄和微量元素含量. 岩矿测试. 2024(01): 47-62 .
![]() | |
2. |
王奇奇,孙贺,顾海欧,侯振辉,葛粲,汪方跃,周涛发. 磺酸型阳离子树脂的元素分配行为及高精度同位素分析应用. 岩矿测试. 2024(01): 63-75 .
![]() | |
3. |
曹瑞芹,杨忠芳,余涛. 镉锌稳定同位素地球化学及其在土壤等地质体中的危害与治理研究进展. 中国地质. 2024(03): 833-864 .
![]() | |
4. |
程文瀚,吴萌,赵艳丽,赵俊哲. 锌同位素环境地球化学研究进展. 高校地质学报. 2024(03): 312-321 .
![]() | |
5. |
李卫娜,蔡虹明,袁玮,郑旺,陈玖斌. 土柱实验在土壤重金属污染研究中的应用进展与展望. 地球与环境. 2024(05): 652-661 .
![]() | |
6. |
帅旺财,刘文奇,马丽雅,蔡虹明,陈玖斌,袁玮. 典型有色金属冶炼场地重金属来源解析及生态健康风险评估. 地球与环境. 2024(06): 756-770 .
![]() | |
7. |
夏亚飞,刘宇晖,高庭,刘承帅. 基于金属稳定同位素的矿冶影响区土壤重金属污染源解析研究进展. 地球科学进展. 2023(04): 331-348 .
![]() |