• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
LI Feng-yan, JIANG Tian-yu, YU Tao, YANG Zhong-fang, HOU Qing-ye, WANG ling-xiao. Review on Sources of Fluorine in the Environment and Health Risk Assessment[J]. Rock and Mineral Analysis, 2021, 40(6): 793-807. DOI: 10.15898/j.cnki.11-2131/td.202109290133
Citation: LI Feng-yan, JIANG Tian-yu, YU Tao, YANG Zhong-fang, HOU Qing-ye, WANG ling-xiao. Review on Sources of Fluorine in the Environment and Health Risk Assessment[J]. Rock and Mineral Analysis, 2021, 40(6): 793-807. DOI: 10.15898/j.cnki.11-2131/td.202109290133

Review on Sources of Fluorine in the Environment and Health Risk Assessment

More Information
  • Received Date: September 28, 2021
  • Revised Date: November 03, 2021
  • Accepted Date: November 11, 2021
  • Published Date: November 27, 2021
  • HIGHLIGHTS
    (1) Fluorine is unevenly distributed due to the geochemical behavior, and natural sources mainly cause fluorine health problems.
    (2) The fluorine content in the soil is affected by parent material, physical and chemical properties, and landform conditions of the soil.
    (3) The comprehensive application of the health risk assessment and fluorine risk prediction models are a target for future research.
    BACKGROUNDFluorine is an essential trace element that exists in the natural environment, and its deficiency or excess in the environment can cause health problems.
    OBJECTIVESTo summarize the research progress of sources of fluorine in the environment and to assess the risk to health.
    METHODSThe sources of fluorine in the natural atmosphere, rocks, soils, water, and plants, were reviewed, and the factors affecting its form and content by the environment were analyzed, such as topography, rain leaching, soil parent material, soil pH, soil organic matter and geochemical behavior.
    RESULTSFluorine has a wide range of sources. At present, more than 260 million people in the world have been affected by environmental problems caused by fluorine. Therefore, it is of great significance to carry out a health risk assessment. The common health risk assessment models of fluorine include Hazard Quotient and Hazard Index. Probabilistic methods are often used in risk analysis. At present, there are also applications of multi-channel exposure assessment methods to assess fluorine. The feasibility and limitations of traditional models were compared.
    CONCLUSIONSIt is necessary to consider the uncertainty and sensitivity of the health risk assessment models, determine the fluorine enrichment pathway, improve the combined exposure assessment models, and consider the bioavailability of fluorine intake for health risk assessment of fluorine. The next step of research on health risk assessment of fluorine can use models to predict the risks of fluorine. It is still necessary to have a deep understanding of the source, occurrences, migration path and content influencing factors of fluorine to assess the health risks.

  • Choubisa S L, Choubisa D, Wong M, et al. Status of industrial fluoride pollution and its diverse adverse health effects in man and domestic animals in India[J]. Environmental Science and Pollution Research International, 2016, 23(8): 7244-7254. doi: 10.1007/s11356-016-6319-8
    谢正苗, 吴卫红, 徐建民. 环境中氟化物的迁移和转化及其生态效应[J]. 环境科学进展, 1999, 7(2): 41-54. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ902.005.htm

    Xie Z M, Wu W H, Xu J M. Translocation and transfromation of fluorides in the environment and their biological effects[J]. Advances in Environmental Science, 1999, 7(2): 41-54. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ902.005.htm
    李仪, 桂腾越, 燕倩, 等. 贵阳市主要饮用水源地水中氟化物含量与健康风险评价[J]. 贵州师范学院学报, 2019, 35(6): 10-14. doi: 10.3969/j.issn.1674-7798.2019.06.003

    Li Y, Gui T Y, Yan Q, et al. Assessment of the fluoride content and health risk in the water of main drinking water sources of Guiyang City[J]. Journal of Guizhou Education University, 2019, 35(6): 10-14. doi: 10.3969/j.issn.1674-7798.2019.06.003
    Sharma D, Singh A, Verma K, et al. Fluoride: A review of pre-clinical and clinical studies[J]. Environmental Toxicology and Pharmacology, 2017, 56: 297-313. doi: 10.1016/j.etap.2017.10.008
    李静, 谢正苗, 徐建明. 我国氟的土壤环境质量指标与人体健康关系的研究概况[J]. 土壤通报, 2006, 37(1): 194-199. doi: 10.3321/j.issn:0564-3945.2006.01.042

    Li J, Xie Z M, Xu J M. Research progress in the relationship between soil environmental quality index of fluorine and human health in China[J]. Chinese Journal of Soil Science, 2006, 37(1): 194-199. doi: 10.3321/j.issn:0564-3945.2006.01.042
    Mukherjee I, Singh U K. Groundwater fluoride contamination, probable release, and containment mechanisms: A review on Indian context[J]. Environ Geochem Health, 2018, 40(6): 2259-2301. doi: 10.1007/s10653-018-0096-x
    Alarcón-Herrera M T, Martin-Alarcon D A, Gutiérrez M, et al. Co-occurrence, possible origin, and health-risk assessment of arsenic and fluoride in drinking water sources in Mexico: Geographical data visualization[J]. Science of the Total Environment, 2020, 698: 134168. doi: 10.1016/j.scitotenv.2019.134168
    Skórka-Majewicz M, Goschorska M, żwierełło W, et al. Effect of fluoride on endocrine tissues and their secretory functions-Review[J]. Chemosphere, 2020, 260: 127565. doi: 10.1016/j.chemosphere.2020.127565
    Adeyeye O A, Xiao C, Zhang Z, et al. Groundwater fluoride chemistry and health risk assessment of multi-aquifers in Jilin Qianan, northeastern China[J]. Ecotoxicology and Environmental Safety, 2021, 211: 111926. doi: 10.1016/j.ecoenv.2021.111926
    Wu L, Fan C, Zhang Z, et al. Association between fluoride exposure and kidney function in adults: A cross-sectional study based on endemic fluorosis area in China[J]. Ecotoxicology and Environmental Safety, 2021, 225: 112735. doi: 10.1016/j.ecoenv.2021.112735
    Amalraj A, Pius A. Health risk from fluoride exposure of a population in selected areas of Tamil Nadu South India[J]. Food Science and Human Wellness, 2013, 2(2): 75-86. doi: 10.1016/j.fshw.2013.03.005
    王根绪, 程国栋. 西北干旱区水中氟的分布规律及环境特征[J]. 地理科学, 2000, 20(2): 153-159. doi: 10.3969/j.issn.1000-0690.2000.02.011

    Wang G X, Cheng G D. The distributing regularity of fluorine and its environmental characteristics in arid area of northwest China[J]. Scientia Geographica Sinica, 2000, 20(2): 153-159. doi: 10.3969/j.issn.1000-0690.2000.02.011
    Amini M, Mueller K, Abbaspour K C, et al. Statistical modeling of global geogenic fluoride contamination in groundwaters[J]. Environmental Science & Technology, 2008, 42(10): 3662-3668. doi: 10.1021/es702859e
    Mukherjee I, Singh U K. Exploring a variance decomposition approach integrated with the Monte Carlo method to evaluate groundwater fluoride exposure on the residents of a typical fluorosis endemic semi-arid tract of India[J]. Environmental Research, 2022, 203: 111697. doi: 10.1016/j.envres.2021.111697
    Raju N J. Prevalence of fluorosis in the fluoride enriched groundwater in semi-arid parts of eastern India: Geochemistry and health implications[J]. Quaternary International, 2017, 443: 265-278. doi: 10.1016/j.quaint.2016.05.028
    张杰, 周金龙, 乃尉华, 等. 叶尔羌河流域平原区高氟地下水成因分析[J]. 干旱区资源与环境, 2020, 34(4): 100-106. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH202004017.htm

    Zhang J, Zhou J L, Nai W H, et al. Characteristics of high fluoride groundwater in plain of Yarkant River Basin in Xinjiang[J]. Journal of Arid Land Resources and Environment, 2020, 34(4): 100-106. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH202004017.htm
    郝启勇, 徐晓天, 张心彬, 等. 鲁西北阳谷地区浅层高氟地下水化学特征及成因[J]. 地球科学与环境学报, 2020, 42(5): 668-677. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX202005008.htm

    Hao Q Y, Xu X T, Zhang X B, et al. Hydrochemical characteristics and genesis of high-flourine shallow groundwater in Yanggu area of the northwestern Shandong, China[J]. Journal of Earth Sciences and Environment, 2020, 42(5): 668-677. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX202005008.htm
    刘春华, 王威, 卫政润, 等. 微山湖流域高氟地下水的成因分析[J]. 地球学报, 2018, 39(3): 351-357. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201803009.htm

    Liu C H, Wang W, Wei Z R, et al. Distribution characteristics and genesis of high fluoride groundwater in Weishan Lake watershed[J]. Acta Geoscientica Sinica, 2018, 39(3): 351-357. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201803009.htm
    杨振宁. 鲁北高氟地下水形成的水化学及水循环演化作用分析[D]. 北京: 中国地质大学(北京), 2016.

    Yang Z N. The influence of hydrochemistry and water cycle for the formation of high fluorosis groundwater in northern plain of Shandong Province[D]. Beijing: China University of Geosciences (Beijing), 2016.
    Wen D, Zhang F, Zhang E, et al. Arsenic, fluoride and iodine in groundwater of China[J]. Journal of Geochemical Exploration, 2013, 135: 1-21. doi: 10.1016/j.gexplo.2013.10.012
    Meenakshi, Maheshwari R C. Fluoride in drinking water and its removal[J]. Journal of Hazardous Materials, 2006, 137(1): 456-463. doi: 10.1016/j.jhazmat.2006.02.024
    赵艳, 刘开泰, 薛茜. 我国饮水型氟中毒预防措施效果评价[J]. 中国地方病学杂志, 2006, 25(2): 222-224. doi: 10.3760/cma.j.issn.1000-4955.2006.02.046

    Zhao Y, Liu K T, Xue Q. Evaluation the effect of preventive measures on drinking-water-type fluorosis in China[J]. Chinese Journal of Endemiology, 2006, 25(2): 222-224. doi: 10.3760/cma.j.issn.1000-4955.2006.02.046
    Zhang L, Huang D, Yang J, et al. Probabilistic risk assessment of Chinese residents' exposure to fluoride in improved drinking water in endemic fluorosis areas[J]. Environmental Pollution, 2017, 222: 118-125. doi: 10.1016/j.envpol.2016.12.074
    何令令, 何守阳, 陈琢玉, 等. 环境中氟污染与人体氟效应[J]. 地球与环境, 2020, 48(1): 87-95. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ202001011.htm

    He L L, He S Y, Chen Z Y, et al. Fluorine pollution in the environment and human fluoride effect[J]. Earth and Environment, 2020, 48(1): 87-95. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ202001011.htm
    Ozsvath L D. Fluoride and environmental health: A review[J]. Reviews in Environmental Science and Biotechnology, 2009, 8(1): 59-79. doi: 10.1007/s11157-008-9136-9
    Cronin S J, Neall V E, Lecointre J A, et al. Environmental hazards of fluoride in volcanic ash: A case study from Ruapehu Volcano, New Zealand[J]. Journal of Volcanology and Geothermal Research, 2003, 121(3-4): 271-291. doi: 10.1016/S0377-0273(02)00465-1
    Rezaei M, Nikbakht M, Shakeri A. Geochemistry and sources of fluoride and nitrate contamination of groundwater in Lar area, South Iran[J]. Environmental Science and Pollution Research, 2017, 24(18): 15471-15487. doi: 10.1007/s11356-017-9108-0
    杨朔, 陈辉伦, 盖楠, 等. 北京市大气颗粒物中全氟烷基化合物的粒径分布特征[J]. 岩矿测试, 2018, 37(5): 549-557. doi: 10.15898/j.cnki.11-2131/td.20180620074

    Yang S, Chen H L, Gai N, et al. Particle size distribution of perfluoroalkyl substances in atmospheric particulate matter in Beijing[J]. Rock and Mineral Analysis, 2018, 37(5): 549-557. doi: 10.15898/j.cnki.11-2131/td.20180620074
    Feng Y W, Ogura N, Feng Z W, et al. The concentrations and sources of fluoride in atmospheric depositions in Beijing, China[J]. Water Air and Soil Pollution, 2003, 145(1): 95-107. doi: 10.1023/A:1023680112474
    Chae G, Yun S, Mayer B, et al. Fluorine geochemistry in bedrock groundwater of South Korea[J]. Science of the Total Environment, 2007, 385(1-3): 272-283. doi: 10.1016/j.scitotenv.2007.06.038
    Ozsvath, L D. Fluoride concentrations in a crystalline bedrock aquifer Marathon County, Wisconsin[J]. Environmental Geology, 2006, 50(1): 132-138. doi: 10.1007/s00254-006-0192-6
    Yang Q, Jung H B, Culbertson C W, et al. Spatial pattern of groundwater arsenic occurrence and association with bedrock geology in greater Augusta, maine[J]. Environmental Science & Technology, 2009, 43(8): 2714-2719. http://www.pubmedcentral.nih.gov/picrender.fcgi?artid=PMC2694612&blobtype=pdf
    Singh G, Kumari B, Sinam G, et al. Fluoride distribution and contamination in the water, soil and plants continuum and its remedial technologies, an Indian perspective-A review[J]. Environmental Pollution, 2018, 239: 95-108. doi: 10.1016/j.envpol.2018.04.002
    Kabir H, Gupta A K, Tripathy S. Fluoride and human health: Systematic appraisal of sources, exposures, metabolism, and toxicity[J]. Critical Reviews in Environmental Science and Technology, 2020, 50(11): 1116-1193. doi: 10.1080/10643389.2019.1647028
    Apambire W B, Boyle D R, Michel F A. Geochemistry, genesis, and health implications of fluoriferous groundwaters in the upper regions of Ghana[J]. Environmental Geology, 1997, 33(1): 13-24. doi: 10.1007/s002540050221
    Obst M, Schmid G. 3D chemical mapping: Application of scanning transmission (soft) X-ray microscopy (STXM) in combination with angle-scan tomography in bio-, geo-, and environmental sciences[J]. Methods in Molecular Biology, 2014, 1117: 757-781. doi: 10.1007/978-1-62703-776-1_34
    Cronin S J, Manoharan V, Hedley M J, et al. Fluoride: A review of its fate, bioavailability, and risks of fluorosis in grazed-pasture systems in New Zealand[J]. New Zealand Journal of Agricultural Research, 2000, 43(3): 295-321. doi: 10.1080/00288233.2000.9513430
    Lv L, He J, Wei M, et al. Factors influencing the removal of fluoride from aqueous solution by calcined Mg-Al-CO3 layered double hydroxides[J]. Journal of Hazardous Materials, 2006, 133(1-3): 119-128. doi: 10.1016/j.jhazmat.2005.10.012
    Fuge R. Fluorine in the environment, a review of its sources and geochemistry[J]. Applied Geochemistry, 2019, 100: 393-406. doi: 10.1016/j.apgeochem.2018.12.016
    易春瑶, 汪丙国, 靳孟贵. 水-土-植物系统中氟迁移转化规律的研究进展[J]. 安全与环境工程, 2013, 20(6): 59-64. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ201306012.htm

    Yi C Y, Wang B G, Jin M G. Research progress of migration and transformation laws of fluoride in groundwater-soil-plant system[J]. Safety and Environmental Engineering, 2013, 20(6): 59-64. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ201306012.htm
    范晨子, 刘永兵, 赵文博, 等. 云南安宁水系沉积污染物分布特征与风险评价[J]. 岩矿测试, 2021, 40(4): 570-582. doi: 10.15898/j.cnki.11-2131/td.202103080035

    Fan C Z, Liu Y B, Zhao W B, et al. Pollution distribution characteristics and ecological risk assessment of heavy metals and polycyclic aromatic hydrocarbons in the river sediments in Anning, Yunnan Province[J]. Rock and Mineral Analysis, 2021, 40(4): 570-582. doi: 10.15898/j.cnki.11-2131/td.202103080035
    Sarkar M, Banerjee A, Pramanick P P, et al. Use of laterite for the removal of fluoride from contaminated drinking water[J]. Journal of Colloid and Interface Science, 2006, 302(2): 432-441. doi: 10.1016/j.jcis.2006.07.001
    Li Z L, Tainosho Y, Shiraishi K, et al. Chemical characteristics of fluorine-bearing biotite of early Paleozoic plutonic rocks from the Sor Rondane Mountains, East Antarctica[J]. Geochemical Journal, 2003, 37(2): 145-161. doi: 10.2343/geochemj.37.145
    Solanki Y S, Agarwal M, Gupta A B, et al. Fluoride occur-rences, health problems, detection, and remediation methods for drinking water: A comprehensive review[J]. Science of the Total Environment, 2022, 807: 150601. doi: 10.1016/j.scitotenv.2021.150601
    Ali S, Fakhri Y, Golbini M, et al. Concentration of flu-oride in groundwater of India: A systematic review, meta-analysis and risk assessment[J]. Groundwater for Sustainable Development, 2019, 9: 100224. doi: 10.1016/j.gsd.2019.100224
    Wang B Y, Chen Z L, Zhu J, et al. Pilot-scale fluoride-containing wastewater treatment by the ballasted flocculation process[J]. Water Science and Technology, 2013, 68(1): 134-143. doi: 10.2166/wst.2013.204
    Li Y M, Liang C K, Slemenda C W, et al. Effect of long-term exposure to fluoride in drinking water on risks of bone fractures[J]. Journal of Bone and Mineral Research, 2001, 16(5): 932-939. doi: 10.1359/jbmr.2001.16.5.932
    Addison M J, Rivett M O, Robinson H, et al. Fluoride occurrence in the lower East African Rift System, Southern Malawi[J]. Science of the Total Environment, 2020, 712: 136260. doi: 10.1016/j.scitotenv.2019.136260
    Guzmán A, Nava J L, Coreño O, et al. Arsenic and fluoride removal from groundwater by electrocoagulation using a continuous filter-press reactor[J]. Chemosphere, 2016, 144: 2113-2120. doi: 10.1016/j.chemosphere.2015.10.108
    Kashyap S J, Sankannavar R, Madhu G M. Fluoride sources, toxicity and fluorosis management techniques-A brief review[J]. Journal of Hazardous Materials Letters, 2021, 2: 100033. doi: 10.1016/j.hazl.2021.100033
    Lacson C F Z, Lu M, Huang Y. Fluoride- containing water: A global perspective and a pursuit to sustainable water defluoridation management-An overview[J]. Journal of Cleaner Production, 2021, 280: 124236. doi: 10.1016/j.jclepro.2020.124236
    Chavoshi E, Afyuni M, Hajabbasi M A, et al. Health risk assessment of fluoride exposure in soil, plants, and water at Isfahan, Iran[J]. Human and Ecological Risk Assessment, 2011, 17(2): 414-430. doi: 10.1080/10807039.2011.552397
    Elloumi N, Ben Abdallah F, Mezghani I, et al. Effect of fluoride on almond seedlings in culture solution[J]. Fluoride, 2005, 38(3): 193-198.
    Ruan J Y, Ma L F, Shi Y Z, et al. The impact of pH and calcium on the uptake of fluoride by tea plants (Camellia sinensis L. )[J]. Annals of Botany, 2004, 93(1): 97-105. doi: 10.1093/aob/mch010
    Barbier O, Arreola-Mendoza L, Maria Del Razo L. Molecular mechanisms of fluoride toxicity[J]. Chemico-Biological Interactions, 2010, 188: 319-333. doi: 10.1016/j.cbi.2010.07.011
    Yadav K K, Kumar S, Quoc B P, et al. Fluoride con-tamination, health problems and remediation methods in Asian groundwater: A comprehensive review[J]. Ecotoxicology and Environmental Safety, 2019, 182. http://www.sciencedirect.com/science/article/pii/S0147651319306839
    Mumtaz N, Pandey G, Labhasetwar P K. Global fluoride occurrence, available technologies for fluoride removal and electrolytic defluoridation: A review[J]. Critical Reviews in Environmental Science and Technology, 2015, 45(21): 2357-2389. doi: 10.1080/10643389.2015.1025638
    Tanouayi G, Gnandi K, Ouro-Sama K, et al. Distribution of fluoride in the phosphorite mining area of Hahotoe-Kpogame (Togo)[J]. Journal of Health & Pollution, 2016, 6(10): 84-94. doi: 10.5696/2156-9614-6.10.84?code=bsie-site
    Chowdhury A, Adak M K, Mukherjee A, et al. A critical review on geochemical and geological aspects of fluoride belts, fluorosis and natural materials and other sources for alternatives to fluoride exposure[J]. Journal of Hydrology, 2019, 574: 333-359. doi: 10.1016/j.jhydrol.2019.04.033
    桂建业, 韩占涛, 张向阳, 等. 土壤中氟的形态分析[J]. 岩矿测试, 2008, 27(4): 284-286. http://www.ykcs.ac.cn/article/id/ykcs_20080495

    Gui J Y, Han Z T, Zhang X Y, et al. Rock and mineral analysis[J]. Rock and Mineral Analysis, 2008, 27: 284-286. http://www.ykcs.ac.cn/article/id/ykcs_20080495
    王滨滨, 郑宝山, 廖昂. 氟在土壤中的富集与淋滤[J]. 矿物学报, 2010, 30(4): 496-500. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201004016.htm

    Wang B B, Zheng B S, Liao A. Fluoride enrichment and leaching in the soil: A review[J]. Acta Mineralogica Sinica, 2010, 30(4): 496-500. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201004016.htm
    焦有, 宝德俊, 尹川芬. 氟的土壤地球化学[J]. 土壤通报, 2000, 31(6): 251-254. doi: 10.3321/j.issn:0564-3945.2000.06.013

    Jiao Y, Bao D J, Yin C F. Geochemistry of fluorine[J]. Chinese Journal of Soil Science, 2000, 31(6): 251-254. doi: 10.3321/j.issn:0564-3945.2000.06.013
    何锦, 张福存, 韩双宝, 等. 中国北方高氟地下水分布特征和成因分析[J]. 中国地质, 2010, 37(3): 621-626. doi: 10.3969/j.issn.1000-3657.2010.03.012

    He J, Zhang F C, Han S B, et al. The distribution and genetic types of high-fluoride groundwater in northern China[J]. Geology in China, 2010, 37(3): 621-626. doi: 10.3969/j.issn.1000-3657.2010.03.012
    汤洁, 卞建民, 李昭阳, 等. 松嫩平原氟中毒区地下水氟分布规律和成因研究[J]. 中国地质, 2010, 37(3): 614-620. doi: 10.3969/j.issn.1000-3657.2010.03.011

    Tang J, Bian J M, Li Z Y, et al. The distribution regularity and causes of fluoride in groundwater of the fluorosis area, Songnen Plain[J]. Geology in China, 2010, 37(3): 614-620. doi: 10.3969/j.issn.1000-3657.2010.03.011
    孟伟, 潘自平, 何邵麟, 等. 西南氟病区典型高氟土壤的地球化学特征及氟富集原因[J]. 地球与环境, 2012, 40(2): 144-147. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201202003.htm

    Meng W, Pan Z P, He S L, et al. Element geochemistry and fluoride enrichment mechanism in high-fluoride soils of endemic fluorosis-affected areas in southwest china[J]. Earth and Environment, 2012, 40(2): 144-147. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201202003.htm
    何世春. 氟的富集规律[J]. 东华理工大学学报(自然科学版), 1990, 13(1): 88-97. https://www.cnki.com.cn/Article/CJFDTOTAL-HDDZ199001011.htm

    He S C. The concentrate law of flouride[J]. Journal of East China College of Geology (Natural Science), 1990, 13(1): 88-97. https://www.cnki.com.cn/Article/CJFDTOTAL-HDDZ199001011.htm
    袁立竹, 王加宁, 马春阳, 等. 土壤氟形态与氟污染土壤修复[J]. 应用生态学报, 2019, 30(1): 10-20. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201901002.htm

    Yuan L Z, Wang J N, Ma C Y, et al. Fluorine speciation in soil and the remediation of fluorine contaminated soil[J]. Chinese Journal of Applied Ecology, 2019, 30(1): 10-20. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201901002.htm
    陈劲松, 周金龙, 陈云飞, 等. 新疆喀什地区地下水氟的空间分布规律及其富集因素分析[J]. 环境化学, 2020, 39(7): 1800-1808. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX202007007.htm

    Chen J S, Zhou J L, Chen Y F, et al. Spatial distribution and enrichment factors of groundwater fluoride in Kashgar Region, Xinjiang[J]. Environmental Chemistry, 2020, 39(7): 1800-1808. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX202007007.htm
    刘海燕, 刘茂涵, 张卫民, 等. 华北平原高氟地下水中稀土元素分布和分异特征[J]. 地学前缘, 2021: 1-16.

    Liu H Y, Liu M H, Zhang W M, et al. Distribution and fractionation of rare earth elements in high-fluoride groundwater from the North China Plain[J]. Earth Science Frontiers, 2021: 1-16.
    龚子同, 黄标. 土壤中硒、氟、碘元素的空间分异与人类健康[J]. 土壤学进展, 1994, 22(5): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-TRJZ199405000.htm

    Gong Z T, Huang B. Spatial distribution of selenium, fluorine and iodine in soil for human health[J]. Progress in Soil Science, 1994, 22(5): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-TRJZ199405000.htm
    杨彦, 陆晓松, 李定龙. 我国环境健康风险评价研究进展[J]. 环境与健康杂志, 2014, 31(4): 357-363. https://www.cnki.com.cn/Article/CJFDTOTAL-HJYJ201404029.htm

    Yang Y, Lu X S, Li D L. Research progress of environmental health risk assessment in China[J]. Journal of Environment and Health, 2014, 31(4): 357-363. https://www.cnki.com.cn/Article/CJFDTOTAL-HJYJ201404029.htm
    赵庆令, 李清彩, 谢江坤, 等. 鲁中南地区双村岩溶水系统地下水中化学致癌物和非致癌物的健康风险评价[J]. 岩矿测试, 2016, 35(1): 90-97. doi: 10.15898/j.cnki.11-2131/td.2016.01.015

    Zhao Q L, Li Q C, Xie J K, et al. Health risk assessment of carcinogenic and non-carcingenic substances in underground water from the Shuangcun karst system of central southern Shandong Province[J]. Rock and Mineral Analysis, 2016, 35(1): 90-97. doi: 10.15898/j.cnki.11-2131/td.2016.01.015
    侯捷, 曲艳慧, 宁大亮, 等. 我国居民暴露参数特征及其对风险评估的影响[J]. 环境科学与技术, 2014, 37(8): 179-187. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201408035.htm

    Hou J, Qu Y H, Ning D L, et al. Characteristics of human exposure factors in China and their uncertainty analysis in health risk assessment[J]. Environmental Science & Technology, 2014, 37(8): 179-187. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201408035.htm
    张映映, 冯流, 刘征涛. 长江口区域水体半挥发性有机污染物健康风险评价[J]. 环境科学研究, 2007, 20(1): 18-23. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKX200701003.htm

    Zhang Y Y, Feng L, Liu Z T. Health risk assessment on semivolatile organic compounds in water of Yangtze Estuary area[J]. Research of Environmental Sciences, 2007, 20(1): 18-23. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKX200701003.htm
    段小丽, 王宗爽, 王贝贝, 等. 我国北方某地区居民饮水暴露参数研究[J]. 环境科学研究, 2010, 23(9): 1216-1220. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKX201009019.htm

    Duan X L, Wang Z S, Wang B B, et al. Drinking water-related exposure factors in a typical area of northern China[J]. Research of Environmental Sciences, 2010, 23(9): 1216-1220. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKX201009019.htm
    段小丽, 黄楠, 王贝贝, 等. 国内外环境健康风险评价中的暴露参数比较[J]. 环境与健康杂志, 2012, 29(2): 99-104. https://www.cnki.com.cn/Article/CJFDTOTAL-HJYJ201202001.htm

    Duan X L, Huang N, Wang B B, et al. Development of exposure factors research methods in environmental health risk assessment[J]. Journal of Environment and Health, 2012, 29(2): 99-104. https://www.cnki.com.cn/Article/CJFDTOTAL-HJYJ201202001.htm
    段小丽, 王宗爽, 李琴, 等. 基于参数实测的水中重金属暴露的健康风险研究[J]. 环境科学, 2011, 32(5): 1329-1339. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201105017.htm

    Duan X L, Wang Z S, Li Q, et al. Health risk assessment of heavy metals in drinking water based on field measurement of exposure factors of Chinese people[J]. Environmental Science, 2011, 32(5): 1329-1339. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201105017.htm
    王宗爽, 段小丽, 刘平, 等. 环境健康风险评价中我国居民暴露参数探讨[J]. 环境科学研究, 2009, 22(10): 1164-1170. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKX200910008.htm

    Wang Z S, Duan X L, Liu P, et al. Human exposure factors of Chinese people in environmental health risk assessment[J]. Research of Environmental Sciences, 2009, 22(10): 1164-1170. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKX200910008.htm
    Jha S K, Nayak A K, Sharma Y K. Potential fluoride contamination in the drinking water of Marks Nagar, Unnao District, Uttar Pradesh, India[J]. Environmental Geochemistry and Health, 2010, 32(3): 217-226. http://www.onacademic.com/detail/journal_1000034500829610_33e3.html
    Hu Y, You M, Liu G, et al. Spatial distribution and potential health risk of fluoride in drinking groundwater sources of Huaibei, Anhui Province[J]. Scientific Reports, 2021, 11(1): 8371. http://www.nature.com/articles/s41598-021-87699-6?utm_source=other&utm_medium=other&utm_content=null
    Narsimha A, Hui Q, Nandan M J M. Groundwater chem-istry integrating the pollution index of groundwater and evaluation of potential human health risk: A case study from hard rock terrain of South India[J]. Ecotoxicology and Environmental Safety, 2020, 206: 111217. http://www.sciencedirect.com/science/article/pii/S0147651320310563
    赵锁志, 王喜宽, 黄增芳, 等. 内蒙古河套地区高氟水成因分析[J]. 岩矿测试, 2007, 26(4): 320-324. http://www.ykcs.ac.cn/article/id/ykcs_200704103

    Zhao S Z, Wang X K, Huang Z F, et al. Study on formation causes of high fluorine groundwater in Hetao area of Inner Mongolia[J]. Rock and Mineral Analysis, 2007, 26(4): 320-324. http://www.ykcs.ac.cn/article/id/ykcs_200704103
    Musah S Z, Emmanuel D S, Mahamuda A, et al. Hydro-geochemical controls and human health risk assessment of groundwater fluoride and boron in the semi-arid North East region of Ghana[J]. Journal of Geochemical Exploration, 2019, 207: 106363. http://www.sciencedirect.com/science/article/pii/S0375674219301906
    Zang F, Wang S, Nan Z, et al. Accumulation, spatio-temporal distribution, and risk assessment of heavy metals in the soil-corn system around a polymetallic mining area from the Loess Plateau, northwest China[J]. Geoderma, 2017, 305: 188-196.
    Li Y, Wang S, Nan Z, et al. Accumulation, fractionation and health risk assessment of fluoride and heavy metals in soil-crop systems in northwest China[J]. Science of the Total Environment, 2019, 663: 307-314. http://www.onacademic.com/detail/journal_1000041594306599_de73.html
    Rahman M M, Bodrud-Doza M, Siddiqua M T, et al. Spatiotemporal distribution of fluoride in drinking water and associated probabilistic human health risk appraisal in the coastal region, Bangladesh[J]. Science of the Total Environment, 2020, 724: 138316. http://www.sciencedirect.com/science/article/pii/S0048969720318295
    Enalou H B, Moore F, Keshavarzi B, et al. Source apportionment and health risk assessment of fluoride in water resources, south of Fars province, Iran: Stable isotopes (delta O-18 and delta D) and geochemical modeling approaches[J]. Applied Geochemistry, 2018, 98: 197-205. http://www.onacademic.com/detail/journal_1000040857377210_3248.html
    Liu J, Peng Y, Li C, et al. A characterization of gro-und water fluoride, influencing factors and risk to human health in the southwest plain of Shandong Province, North China[J]. Ecotoxicology and Environmental Safety, 2021, 207. http://www.sciencedirect.com/science/article/pii/S014765132031349X
    He L, Tu C, He S, et al. Fluorine enrichment of vegetables and soil around an abandoned aluminium plant and its risk to human health[J]. Environmental Geochemistry and Health, 2021, 43(3): 1137-1154. http://www.researchgate.net/publication/340892602_Fluorine_enrichment_of_vegetables_and_soil_around_an_abandoned_aluminium_plant_and_its_risk_to_human_health
    Fan Y, Zhu T, Li M, et al. Heavy metal contamination in soil and brown rice and human health risk assessment near three mining areas in central China[J]. Journal of Healthcare Engineering, 2017, 2017. doi. org/10.1155/2017/4124302.
    Brahman K D, Kazi T G, Baig J A, et al. Fluoride and arsenic exposure through water and grain crops in Nagarparkar, Pakistan[J]. Chemosphere, 2014, 100: 182-189.
    Li Z, Ma Z, van der Kuijp T J, et al. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment[J]. Science of The Total Environment, 2014, 468: 843-853.
    李梦莹, 王成尘, 毕珏, 等. 食品中重金属的人体健康风险评估方法研究进展[J]. 福建农林大学学报(自然科学版), 2021, 50(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-FJND202101001.htm

    Li M Y, Wang C C, Bi Y, et al. Human health risk assessment of heavy metals in food: A review[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2021, 50: 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-FJND202101001.htm
    Giovanni L, Francesca Z. Probabilistic health risk assessment of carcinogenic emissions from a MSW gasification plant[J]. Environment International, 2012, 44: 80-91. http://www.onacademic.com/detail/journal_1000035381205310_419d.html
    Li Y, Bi Y, Mi W, et al. Land-use change caused by anthropogenic activities increase fluoride and arsenic pollution in groundwater and human health risk[J]. Journal of Hazardous Materials, 2021, 406: 124337. http://www.ncbi.nlm.nih.gov/pubmed/33144018
    Ali S, Ali H, Pakdel M, et al. Spatial analysis and probabilistic risk assessment of exposure to fluoride in drinking water using GIS and Monte Carlo simulation[J]. Environmental Science and Pollution Research, 2021. doi: 10.1007/s11356-021-16075-8
    Yu Y, Cui S, Fan R, et al. Distribution and superposed health risk assessment of fluorine co-effect in phosphorous chemical industrial and agricultural sources[J]. Environmental Pollution, 2020, 262: 114249. http://www.sciencedirect.com/science/article/pii/S0269749119359883
    Cao H, Xie X, Wang Y, et al. Predicting geogenic ground-water fluoride contamination throughout China[J]. Journal of Environmental Sciences, 2022, 115: 140-148. http://www.sciencedirect.com/science/article/pii/S1001074221002710
    Yu Y Q, Yang J Y. Health risk assessment of fluorine in fertilizers from a fluorine contaminated region based on the oral bioaccessibility determined by Biomimetic Whole Digestion-Plasma in-vitro Method (BWDPM)[J]. Journal of Hazardous Materials, 2020, 383: 121-124. http://www.ncbi.nlm.nih.gov/pubmed/31505426
    Rizzu M, Tanda A, Canu L, et al. Fluoride uptake and translocation in food crops grown in fluoride-rich soils[J]. Journal of The Science of Food and Agriculture, 2020, 100(15): 5498-5509. doi: 10.1002/jsfa.10601
    Rizzu M, Tanda A, Cappai C, et al. Impacts of soil and water fluoride contamination on the safety and productivity of food and feed crops: A systematic review[J]. Science of the Total Environment, 2021, 787: 147650. http://www.sciencedirect.com/science/article/pii/S0048969721027212
  • Cited by

    Periodical cited type(3)

    1. 肖子廉,李玲君. 电感耦合等离子体质谱测定钼酸铵中12种痕量杂质元素时的基体干扰消除研究. 分析测试技术与仪器. 2025(01): 45-54 .
    2. 蔡玮,赵博,赵少雷,陈欢欢,李潇,逯海,韦超. ICP-QQQ-MS法分析婴幼儿谷物辅助食品中镉含量的干扰及其校正. 食品科学. 2024(14): 234-239 .
    3. 刘骐榕,楚部,陈树航,贾筱旭,张智航,谢卫宁,王帅,冯培忠. 基体匹配-电感耦合等离子体质谱法定量金矿各浮选产物中有害元素. 岩矿测试. 2024(06): 957-966 . 本站查看

    Other cited types(0)

Catalog

    Article views (1413) PDF downloads (79) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return