• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
ZHANG Ke,FAN Cunliang,JIANG Xianqiao,et al. Analysis of Metal Sources in Shallow Groundwater and Environmental Health Risk Evaluation in the Jidong Plain Area[J]. Rock and Mineral Analysis,2024,44(3):1−15. DOI: 10.15898/j.ykcs.202408310175
Citation: ZHANG Ke,FAN Cunliang,JIANG Xianqiao,et al. Analysis of Metal Sources in Shallow Groundwater and Environmental Health Risk Evaluation in the Jidong Plain Area[J]. Rock and Mineral Analysis,2024,44(3):1−15. DOI: 10.15898/j.ykcs.202408310175

Analysis of Metal Sources in Shallow Groundwater and Environmental Health Risk Evaluation in the Jidong Plain Area

More Information
  • Received Date: August 30, 2024
  • Revised Date: October 20, 2024
  • Accepted Date: October 24, 2024
  • Available Online: November 12, 2024
  • HIGHLIGHTS
    (1) Geostatistical methods combined with Positive Matrix Factorization (PMF) were employed to analyze the sources of metallic elements in shallow groundwater and to assess their impacts on human health based on this source analysis.
    (2) The most contaminated metallic element in groundwater is Mn, which is primarily influenced by the geological environment and is predominantly found in the coastal plain.
    (3) The overall risk to human health from metallic elements in groundwater is considered acceptable, with Cr6+ identified as the most harmful element. Areas with high-risk indices are concentrated around the municipal districts.

    In recent years, human activities have affected the groundwater environment, posing potential risks to human health. To investigate the effects of metal elements in groundwater on human health, this paper selects the plain area of Tangshan City, Hebei Province as the study area. A total of sixty-four shallow groundwater samples were collected from the district.. Ten metal elements, such as Fe and Mn, were detected, and their concentration characteristics were analyzed. The main sources of metal elements in the shallow groundwater area were analyzed by combining the geostatistical method and Positive Matrix Factorization (PMF). Based on the source analysis, a health risk assessment model was applied to evaluate the health risk status of the study area. The results showed that: (1) The metal element with the highest exceedance rate in the groundwater of the study area was Mn, with a maximum content of 8.66 mg/L, primarily found near the coastal plain. (2) The areas with high metal exceedance rates in shallow groundwater are primarily located in the coastal plain, and their sources can be classified into four categories Type 1 is characterized by Fe, primarily influenced by geological environment and industrial activities. Type 2 is characterized by Mn, mainly influenced by the geological environment. Type 3 is characterized by Al, mainly influenced by industrial activities and mining. Type 4 is characterized by Zn and Cr6+, mainly influenced by industrial activities. ③The health risk evaluation indicated that the primary concern for metallic elements in shallow groundwater is carcinogenic risk for the receptor population.. The main exposure route is the oral ingestion, with Cr6+ as the primary carcinogen and Mn as the main non-carcinogen. The total health risk for children is higher than for adults, with high spatial concordance between the both receptors, and higher risk areas concentrated in urban regions. To ensure the safety of the receptor population in the study area, efforts should focus on controlling Mn and Cr6+ levels in shallow groundwater.

  • [1]
    孟瑞芳, 杨会峰, 白华, 等. 海河流域大清河平原区地下水化学特征及演化规律分析[J]. 岩矿测试, 2023, 42(2): 383−395. doi: 10.15898/j.cnki.11-2131/td.202207010121

    Meng R F, Yang H F, Bai H, et al. Chemical characteristics and evolutionary patterns of groundwater in the Daqing River plain area of Haihe Basin[J]. Rock and Mineral Analysis, 2023, 42(2): 383−395. doi: 10.15898/j.cnki.11-2131/td.202207010121
    [2]
    付蓉洁, 辛存林, 于奭, 等. 石期河西南子流域地下水重金属来源解析及健康风险评价[J]. 环境科学, 2023, 44(2): 796−806. doi: 10.13227/j.hjkx.202203144

    Fu R J, Xin C L, Yu S, et al. Anaiysis of heavy metal sources in groundwater and assessment of health risks: An example from the southwest sub-basin of the Shiqi River[J]. Environmental Science, 2023, 44(2): 796−806. doi: 10.13227/j.hjkx.202203144
    [3]
    文冬光, 林良俊, 孙继朝, 等. 中国东部主要平原地下水质量与污染评价[J]. 地球科学(中国地质大学学报), 2012, 37(2): 220−228. doi: 10.3799/dqkx.2010.022

    Wen D G, Lin L J, Sun J C, et al. Groundwater quality and contamination assessment in the main plains of Eastern China[J]. Earth Science—Journal of China University of Geosciences, 2012, 37(2): 220−228. doi: 10.3799/dqkx.2010.022
    [4]
    Hao Y, Lin M L, Peng W H, et al. Seasonal changes of heavy metals and health risk assessment based on Monte Carlo simulation in alternate water sources of the Xinbian River in Suzhou City, Huaibei Plain, China[J]. Ecotoxicology and Environmental Safety, 2022, 236: 113445. doi: 10.1016/j.ecoenv.2022.113445
    [5]
    康文辉, 周殷竹, 孙英, 等. 新疆玛纳斯河流域地下水砷氟分布及共富集成因[J]. 干旱区研究, 2023, 40(9): 1425−1437. doi: 10.13866/j.azr.2023.09.06

    Kang W H, Zhou Y Z, Sun Y, et al. Distribution and coenrichment of arsenic and fluorine in the groundwater of the Manas River Basin in Xinjiang[J]. Arid Zone Research, 2023, 40(9): 1425−1437. doi: 10.13866/j.azr.2023.09.06
    [6]
    李谨丞, 曹文庚, 潘登, 等. 黄河冲积扇平原浅层地下水中氮循环对砷迁移富集的影响[J]. 岩矿测试, 2022, 41(1): 120−132. doi: 10.15898/j.cnki.11-2131/td.202110080140

    Li J C, Cao W G, Pan D, et al. Influences of nitrogen cycle on arsenic enrichment in shallow groundwater from the Yellow River alluvial fan plain[J]. Rock and Mineral Analysis, 2022, 41(1): 120−132. doi: 10.15898/j.cnki.11-2131/td.202110080140
    [7]
    Jiang C L, Zhao Q, Zheng L G, et al. Distribution, source and health risk assessment based on the Monte Carlo method of heavy metals in shallow groundwater in an area affected by mining activities, China[J]. Ecotoxicology and Environmental Safety, 2021, 224: 112679. doi: 10.1016/j.ecoenv.2021.112679
    [8]
    Meng Y Y, Wu J H, Li P Y, et al. Distribution characteristics, source identification and health risk assessment of trace metals in the coastal groundwater of Taizhou City, China[J]. Environmental Research, 2023, 238: 117085. doi: 10.1016/j.envres.2023.117085
    [9]
    马常莲, 周金龙, 曾妍妍, 等. 新疆若羌县绿洲带地下水重金属来源解析及健康风险评价[J]. 环境科学学报, 2023, 43(2): 266−277. doi: 10.13671/j.hjkxxb.2022.0245

    Ma C L, Zhou J L, Zeng Y Y, et al. Source analysis and health risk assessment of heavy metals in groundwater in the Oasis Belt of Ruoqiang County, Xinjiang[J]. Acta Scientiae Circumstantiae, 2023, 43(2): 266−277. doi: 10.13671/j.hjkxxb.2022.0245
    [10]
    赵增锋, 付永亮, 邱小琮, 等. 黄河流域宁夏段地表水氟污染特征与风险评价[J]. 中国环境科学, 2023, 43(11): 5800−5811. doi: 10.19674/j.cnki.issn1000-6923.2023.0205

    Zhao Z F, Fu Y L, Qiu X C, et al. Characteristics and risk assessment of surface water fluorine pollution in Ningxia section of Yellow River Basin[J]. China Environmental Science, 2023, 43(11): 5800−5811. doi: 10.19674/j.cnki.issn1000-6923.2023.0205
    [11]
    Kim M, Goerzen D, Jena P V, et al. Human and environmental safety of carbon nanotubes across their life cycle[J]. Nature Reviews Materials, 2024, 9: 63−81. doi: 10.1038/s41578-023-00611-8
    [12]
    Ghosh G C, Khan M J H, Chakraborty T K, et al. Human health risk assessment of elevated and variable iron and manganese intake with arsenic-safe groundwater in Jashore, Bangladesh[J]. Scientific Reports, 2020, 10(1): 5206. doi: 10.1038/s41598-020-62187-5
    [13]
    Soleimani-Sardo M, Shirani M, Strezov V. Heavy metal pollution levels and health risk assessment of dust storms in Jazmurian region, Iran[J]. Scientific Reports, 2023, 13(1): 7337. doi: 10.1038/s41598-023-34318-1
    [14]
    Manawi Y, Subeh M, Al-Marri J, et al. Spatial variations and health risk assessment of heavy metal levels in groundwater of Qatar[J]. Scientific Reports, 2024, 14: 15904. doi: 10.1038/s41598-024-64201-6
    [15]
    刘岚昕, 朱悦. 辽河流域典型控制单元水环境承载力评估与预警[J]. 环境保护科学, 2023, 49(2): 132−136, 144. doi: 10.16803/j.cnki.issn.1004-6216.2022010039

    Liu L X, Zhu Y. Evaluation and early warning of water environment carrying capacity of typical control units in Liao River Basin[J]. Environmental Protection Science, 2023, 49(2): 132−136, 144. doi: 10.16803/j.cnki.issn.1004-6216.2022010039
    [16]
    田稳, 宗大鹏, 方成刚, 等. 西南典型菜地土壤重金属健康风险和毒性效应[J]. 中国环境科学, 2022, 42(10): 4901−4908. doi: 10.16803/j.cnki.issn.1004-6216.2022010039

    Tian W, Zong D P, Fang C G, et al. Health risk and toxic effect of heavy metals in soils from typical vegetable planting areas in Southwest China[J]. China Environmenta Science, 2022, 42(10): 4901−4908. doi: 10.16803/j.cnki.issn.1004-6216.2022010039
    [17]
    周巾枚, 蒋忠诚, 徐光黎, 等. 铁矿周边地下水金属元素分布及健康风险评价[J]. 中国环境科学, 2019, 39(5): 1934−1944. doi: 10.19674/j.cnki.issn1000-6923.2019.0230

    Zhou J M, Jiang Z C, Xu G L, et al. Distribution and health risk assessment of metals in groundwater around iron mine[J]. China Environmental Science, 2019, 39(5): 1934−1944. doi: 10.19674/j.cnki.issn1000-6923.2019.0230
    [18]
    马海珍, 段磊, 朱世峰, 等. 基于梯形模糊数的地下水源地环境健康风险评价[J]. 西北地质, 2021, 54(2): 248−258. doi: 10.19751/j.cnki.61-1149/p.2021.02.022

    Ma H Z, Duan L, Zhu S F, et al. Assessment of the environmental risk of groundwater source based on trapezoidal fuzzy number[J]. Northwestern Geology, 2021, 54(2): 248−258. doi: 10.19751/j.cnki.61-1149/p.2021.02.022
    [19]
    田稳, 宗大鹏, 方成刚, 等. 西南典型菜地土壤重金属健康风险和毒性效应[J]. 中国环境科学, 2022, 42(10): 4901−4908. doi: 10.16803/j.cnki.issn.1004-6216.2022010039

    Tian W, Zong D P, Fang C G, et al. Health risk and toxic effect of heavy metals in soils from typical vegetable planting areas in Southwest China[J]. China Environmental Science, 2022, 42(10): 4901−4908. doi: 10.16803/j.cnki.issn.1004-6216.2022010039
    [20]
    李军, 李旭, 李开明, 等. 基于特定源-风险评估模型的兰州黄河风情线绿地土壤重金属污染优先控制源分析[J]. 环境科学, 2024, 45(4): 2428−2439. doi: 10.13227/j.hjkx.202304165

    Li J, Li X, Li K M, et al. Identification priority source of heavy metal pollution in green space soils based on source-specific ecological and human health risk analysis in the Yellow River custom tourist line of Lanzhou[J]. Environmental Science, 2024, 45(4): 2428−2439. doi: 10.13227/j.hjkx.202304165
    [21]
    Jiang Z J, Yang S Z, Luo S. Source analysis and health risk assessment of heavy metals in agricultural land of multi-mineral mining and smelting area in the karst region—A case study of Jichangpo Town, Southwest China[J]. Heliyon, 2023, 9(7): e17246 doi: 10.1016/j.heliyon.2023.e17246
    [22]
    李丽君, 刘强. 黑龙江省海伦地区浅层地下水中“三氮”分布特征及来源解析[J]. 岩矿测试, 2023, 42(4): 809−822. doi: 10.15898/j.ykcs.202208270160

    Li L J, Liu Q. Distribution characteristics and source analysis of “three nitrogen” in shallow groundwater in Hailun area of Heilongjiang Province[J]. Rock and Mineral Analysis, 2023, 42(4): 809−822. doi: 10.15898/j.ykcs.202208270160
    [23]
    Huang X Y, Zhang D, Zhao Z Q, et al. Determining hydrogeological and anthropogenic controls on N pollution in groundwater beneath piedmont alluvial fans using multi-isotope data[J]. Journal of Geochemical Exploration, 2021, 229: 106844. doi: 10.1016/j.gexplo.2021.106844
    [24]
    龙玉桥, 崔婷婷, 李伟, 等. 地质统计学法在地下水污染溯源中的应用及参数敏感性分析[J]. 水利学报, 2017, 48(7): 816−824. doi: 10.13243/j.cnki.slxb.20161173

    Long Y Q, Cui T T, Li W, et al. Application and sensitivity analysis of geostatistical approach to groundwater pollution source identification[J]. Journal of Hydraulic Engineering, 2017, 48(7): 816−824. doi: 10.13243/j.cnki.slxb.20161173
    [25]
    Ma J W, Chen L, Chen H S, et al. Spatial distribution, sources, and risk assessment of potentially toxic elements in cultivated soils using isotopic tracing techniques and Monte Carlo simulation[J]. Ecotoxicology and Environmental Safety, 2023, 259: 115044. doi: 10.1016/j.ecoenv.2023.115044
    [26]
    Zou H, Ren B Z, Deng X P, et al. Geographic distribution, source analysis, and ecological risk assessment of PTEs in the topsoil of different land uses around the antimony tailings tank: A case study of Longwangchi tailings pond, Hunan, China[J]. Ecological Indicators, 2023, 150: 110205. doi: 10.1016/j.ecolind.2023.110205
    [27]
    Yang Z R, Wang M, Dong Z, et al. Potentially toxic elements contamination, risk and source analysis in sediments of Beiyun River supplied with reclaimed water, China[J]. Ecological Indicators, 2023, 154: 110622. doi: 10.1016/j.ecolind.2023.110622
    [28]
    Li Z, Cai Y P, Lin G. Pathways for sustainable municipal energy systems transition: A case study of Tangshan, a resource-based city in China[J]. Journal of Cleaner Production, 2022, 330: 129835. doi: 10.1016/j.jclepro.2021.129835
    [29]
    李曼, 葛大庆, 张玲, 等. 基于PSInSAR技术的唐山南部沿海地区地面沉降研究[J]. 工程地质学报, 2016, 24(4): 704−712. doi: 10.13544/j.cnki.jeg.2016.04.028

    Li M, Ge D Q, Zhang L, et al. Land subsidence of coastal area in southern Tangshan using PSInSAR technique[J]. Journal of Engineering Geology, 2016, 24(4): 704−712. doi: 10.13544/j.cnki.jeg.2016.04.028
    [30]
    侯国华, 高茂生, 党显璋. 唐山曹妃甸浅层地下水水化学特征及咸化成因[J]. 地学前缘, 2019, 26(6): 49−57.

    Hou G H, Gao M S, Dang X Z. Hydrochemical characteristics and salinization causes of shallow groundwater in Caofeidian, Tangshan City[J]. Earth Science Frontiers, 2019, 26(6): 49−57.
    [31]
    李铎, 毕攀, 张可, 等. 地下水应急水源地综合研究——以唐山市平原区为例[J]. 中国地质调查, 2022, 9(6): 67−75. doi: 10.19388/j.zgdzdc.2022.06.09

    Li D, Bi P, Zhang K, et al. Comprehensive study on groundwater emergency sources: A case study of Tangshan plain area[J]. Geological Survey of China, 2022, 9(6): 67−75. doi: 10.19388/j.zgdzdc.2022.06.09
    [32]
    张力斐, 何玛峰. 基于拓广韦伯定律的唐山市地下水水质分析评价[J]. 水文, 2011, 31(2): 75−78. doi: 10.3969/j.issn.1000-0852.2011.02.018

    Zhang L F, He M F. Assessment of groundwater quality in Tangshan City based on Weber-Fechner’s Law[J]. Journal of China Hydrology, 2011, 31(2): 75−78. doi: 10.3969/j.issn.1000-0852.2011.02.018
    [33]
    Jiang C L, Zhao D S, Chen X, et al. Distribution, source and ecological risk assessment of polycyclic aromatic hydrocarbons in groundwater in a coal mining area, China[J]. Ecological Indicators, 2022, 136: 108683. doi: 10.1016/j.ecolind.2022.108683
    [34]
    Shen W B, Hu Y, Zhang J. et al. Spatial distribution and human health risk assessment of soil heavy metals based on sequential Gaussian simulation and positive matrix factorization model: A case study in irrigation area of the Yellow River[J]. Ecotoxicology and Environmental Safety, 2021, 136: 112752. doi: 10.1016/j.ecoenv.2021.112752
    [35]
    荆秀艳, 李小珍, 王文姬, 等. 银川平原地下水中氟分布特征及健康风险评价[J]. 环境科学与技术, 2022, 45(2): 174−181. doi: 10.19672/j.cnki.1003-6504.1833.21.338

    Jing X Y, Li X Z, Wang W J, et al. Distribution characteristics and health risk assessment of fluorine in groundwater in Yinchuan Plain[J]. Environmental Science & Technology, 2022, 45(2): 174−181. doi: 10.19672/j.cnki.1003-6504.1833.21.338
    [36]
    张广禄, 刘海燕, 郭华明, 等. 华北平原典型山前冲洪积扇高硝态氮地下水分布特征及健康风险评价[J]. 地学前缘, 2023, 30(4): 485−503. doi: 10.13745/j.esf.sf.2023.2.53

    Zhang G L, Liu H Y, Guo H M, et al. Occurrences and health risks of high-nitrate groundwater in typical piedmont areas of the North China Plain[J]. Earth Science Frontiers, 2023, 30(4): 485−503. doi: 10.13745/j.esf.sf.2023.2.53
    [37]
    陈慧, 赵鑫宇, 常帅, 等. 华北平原典型城市(石家庄)地下水重金属污染源解析与健康风险评价[J]. 环境科学, 2023, 44(9): 4884−4895. doi: 10.13227/j.hjkx.202210121

    Chen H, Zhao X Y, Chang S, et al. Source analysis and health risk assessment of heavy metals in the groundwater of Shijiazhuang, a typical city in North China Plain[J]. Environment Science, 2023, 44(9): 4884−4895. doi: 10.13227/j.hjkx.202210121
    [38]
    Deng J Y, Yang G, Yan X Y, et al. Quality evaluation and health risk assessment of karst groundwater in Southwest China[J]. Science of the Total Environment, 2024, 946: 174371. doi: 10.1016/j.scitotenv.2024.174371
    [39]
    Javad S. Modelling hydrogeological parameters to assess groundwater pollution and vulnerability in Kashan aquifer: Novel calibration-validation of multivariate statistical methods and human health risk considerations[J]. Environmental Research, 2022, 211: 113028. doi: 10.1016/j.envres.2022.113028
    [40]
    郭春艳, 马震, 张兆吉, 等. 唐山市平原区浅层地下水环境特征研究[J]. 南水北调与水利科技, 2014, 12(4): 77−80. doi: 10.13476/j.cnki.nsbdqk.2014.04.017

    Guo C Y, Ma Z, Zhang Z J, et al. Shallow groundwater environment in Tangshan plain area[J]. South-to-North Water Transfers and Water Science & Technology, 2014, 12(4): 77−80. doi: 10.13476/j.cnki.nsbdqk.2014.04.017
    [41]
    Yang L Y, Li S W, Wen T T, et al. Influence of ferrous-metal production on mercury contamination and fractionation in farmland soil around five typical iron and steel enterprises of Tangshan, China[J]. Ecotoxicology and Environmental Safety, 2020, 188: 109774. doi: 10.1016/j.ecoenv.2019.109774
    [42]
    Nayak A, Matta G, Prasad U D, et al. Assessment of potentially toxic elements in groundwater through interpolation, pollution indices, and chemometric techniques in Dehradun in Uttarakhand State[J]. Environmental Science and Pollution Research, 2023, 31: 36241−36263. doi: 10.1007/s11356-023-27419-x
    [43]
    Wang P, Zhang W, Zhu Y C, et al. Evolution of groundwater hydrochemical characteristics and formation mechanism during groundwater recharge: A case study in the Hutuo River alluvial–pluvial fan, North China Plain[J]. Science of the Total Environment, 2024, 915: 170159. doi: 10.1016/j.scitotenv.2024.170159
    [44]
    张丽婷, 成杭新, 谢伟明, 等. 河北省土壤化学元素的背景值与基准值[J]. 环境科学, 2023, 44(5): 2817−2828. doi: 10.13227/j.hjkx.202206205

    Zhang L T, Cheng H X, Xie W M, et al. Geochemical background and baseline value of soil chemical elements in Hebei Province[J]. Environmental Science, 2023, 44(5): 2817−2828. doi: 10.13227/j.hjkx.202206205
    [45]
    Zhang Q Q, Zhang R, Ying C Y, et al. Surface-bound radicals enhancing detoxification of enrofloxacin during peroxymonosulfate oxidation: Activated carbon vs. alumina as catalyst carriers[J]. Journal of Environmental Chemical Engineering, 2024, 12(3): 112714. doi: 10.1016/j.jece.2024.112714
    [46]
    Zhao S Z, Yi H H, Tang X L, et al. Methyl mercaptan removal from gas streams using metal-modified activated carbon[J]. Journal of Cleaner Production, 2015, 87: 856−861. doi: 10.1016/j.jclepro.2014.10.001
    [47]
    Du J W, Zeng L, Zhang S L, et al. Complete recycling of valuable metals from electroplating sludge: Green and selective recovery of chromium[J]. Chemical Engineering Journal, 2023, 467: 143484. doi: 10.1016/j.cej.2023.143484
    [48]
    Madhurima D, Sirshendu D. Polythiophene incorporated polysulfone blend membranes for effective removal of zinc and iron from electroplating effluent: Experimental studies and performance modelling[J]. Chemical Engineering Science, 2024, 285: 119581. doi: 10.1016/j.ces.2023.119581
    [49]
    Jiang W J, Liu H W, Sheng Y Z, et al. Distribution, source apportionment, and health risk assessment of heavy metals in groundwater in a multi-mineral resource area, North China[J]. Exposure and Health, 2022, 14: 807−827. doi: 10.1007/s12403-021-00455-z
    [50]
    任丽江, 张妍, 张鑫, 等. 渭河流域关中段地表水重金属的污染特征与健康风险评价[J]. 生态环境学报, 2022, 31(1): 131−141. doi: 10.16258/j.cnki.1674-5906.2022.01.015

    Ren L J, Zhang Y, Zhang X, et al. Pollution characteristics and health risk assessment of heavy metals in surface water in Guanzhong Section of the Weihe River Basin[J]. Ecology and Environmental Sciences, 2022, 31(1): 131−141. doi: 10.16258/j.cnki.1674-5906.2022.01.015

Catalog

    Article views (47) PDF downloads (9) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return