• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
HE Ling, WU Chao, ZENG Dao-ming, CHENG Xiao-meng, SUN Bin-bin. Distribution of Heavy Metals and Ecological Risk of Soils in the Typical Geological Background Region of Southwest China[J]. Rock and Mineral Analysis, 2021, 40(3): 384-396. DOI: 10.15898/j.cnki.11-2131/td.202101260016
Citation: HE Ling, WU Chao, ZENG Dao-ming, CHENG Xiao-meng, SUN Bin-bin. Distribution of Heavy Metals and Ecological Risk of Soils in the Typical Geological Background Region of Southwest China[J]. Rock and Mineral Analysis, 2021, 40(3): 384-396. DOI: 10.15898/j.cnki.11-2131/td.202101260016

Distribution of Heavy Metals and Ecological Risk of Soils in the Typical Geological Background Region of Southwest China

More Information
  • Received Date: January 25, 2021
  • Revised Date: March 15, 2021
  • Accepted Date: May 05, 2021
  • Available Online: October 13, 2022
  • HIGHLIGHTS
    (1) The geochemical characteristics and ecological risk of heavy metals in the soils of Emeishan basalt and carbonate rock areas were compared.
    (2) The content of Cd, Cu, Hg, Ni and Zn in the basalt areas were higher than those in the carbonate areas and the background values of Sichuan and China.
    (3) In the studied area, the spatial distribution of heavy metals in soils was mainly determined by the geological background.
    BACKGROUND

    22.3% of the cultivated land in southwest China has excessive heavy metal content. The widely distributed Emeishan basalt and carbonate rocks in the region are considered to be the main source of heavy metals in the soil. At present, the level of research on the ecological risk of soil heavy metals in southwestern China, especially in the Emeishan basalt areas, still needs to be improved. The content, spatial distribution and ecological risk of heavy metals in soils of different geological backgrounds (earthogenic parent rocks) lack comparison.

    OBJECTIVES

    To understand the content and spatial distribution characteristics of heavy metals in the soils from Emeishan basalt and carbonate rock areas.

    METHODS

    Soil samples from the typical geological background areas of Sichuan were collected. AFS, ICP-MS and ICP-OES were used to determine the content of heavy metal elements (As, Cd, Cr, Cu, Hg, Ni, Pb, Zn) and pH values.The content and spatial distribution of the heavy metals in the soils, as well as the ecological risks were studied using the accumulation index and potential ecological risk index methods.

    RESULTS

    The results showed that: (1) The content of Cd, Cr, Cu, Hg, Ni, and Zn in the soils of the basalt areas were generally higher than those of the non-basalt areas and the background values of Sichuan and China. The content of the above elements were respectively 3.25, 1.08, 5.08, 1.72, 1.55, 1.63 times the Sichuan background values and 2.60, 1.40, 6.87, 1.47, 1.87, 1.91 times background values of China. (2) The high content areas of As, Cr and Pb corresponded well to the carbonate rock areas, whereas the high content areas of Cd, Cu, Hg, Ni and Zn corresponded well to the Emeishan basalt areas. The corresponding relationship indicated that the spatial distribution of heavy metals in the soil was mainly determined by the geological background in the studied area. (3) The Geoaccumulation Index results indicated that the soil pollution degree of Cd, Cu, Ni and Zn in Emeishan basalt areas was obviously higher than those of the non-basalt areas; (4) Ecological hazard index results showed that Cd, Cu and Hg were the highest ecological hazard elements in the studied area. The proportions of "strong ecological hazard", "very strong ecological hazard" and "strong estecological hazard" of Cd, Cu and Hg in the basalt areas were respectively 22.4%, 1.15% and 26.0% higher than those in the non-basalt areas.

    CONCLUSIONS

    The content, distribution and ecological risk of heavy metal elements in the soil in the study area are closely related to the geological background. Reasons include the differences in the element content in the parent rock, the geochemical behavior of the elements during the soil formation, and the secondary enrichment of the elements. The pH of the soil in the study area is low, and it is necessary to prevent the risk of heavy metal activation caused by further acidification of the soil.

  • [1]
    中国地质调查局. 中国耕地质量调查报告(2015年)[DB/OL]. http://zrzy.jiangsu.gov.cn/upfile/File/201512/10/10431190.pdf (2015).

    China Geological Survey. Investigation report on cultivated land quality in China (2015)[DB/OL]. http://zrzy.jiangsu.gov.cn/upfile/File/201512/10/10431190.pdf (2015).
    [2]
    Wang C Y, Sun X F, Wang M, et al. Chinese cropland quality and its temporal and spatial changes due to urbanization in 2000-2015[J]. Journal of Resources and Ecology, 2019, 10(2): 174-183. doi: 10.5814/j.issn.1674-764x.2019.02.008
    [3]
    朱瑕, 张立亭, 靳焕焕. 基于因素法和SVM模型的耕地质量评价方法研究[J]. 土壤通报, 2020, 51(3): 561-567. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB202003008.htm

    Zhu X, Zhang L T, Jin H H. Cultivated land quality assessment methodology based on factor method and SVM model[J]. Chinese Journal of Soil Science, 2020, 51(3): 561-567. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB202003008.htm
    [4]
    向梦杰, 胡晓亮. 溧阳市耕地质量空间分布特征与保护分区研究[J]. 土壤通报, 2020, 51(1): 18-25. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB202001004.htm

    Xiang M J, Hu X L. Spatial distribution and protection zoning of cultivated land in Liyang[J]. Chinese Journal of Soil Science, 2020, 51(1): 18-25. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB202001004.htm
    [5]
    侯磊, 段建南, 李萍, 等. 国内耕地质量研究知识图谱分析[J]. 湖北农业科学, 2019, 58(11): 135-140. https://www.cnki.com.cn/Article/CJFDTOTAL-HBNY201911034.htm

    Hou L, Duan J N, Li P, et al. Analysis of knowledge graph of cultivated land quality research in China[J]. Hubei Agricultural Sciences, 2019, 58(11): 135-140. https://www.cnki.com.cn/Article/CJFDTOTAL-HBNY201911034.htm
    [6]
    陈文轩, 李茜, 王珍, 等. 中国农田土壤重金属空间分布特征及污染评价[J]. 环境科学, 2020, 41(6): 2822-2833. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202006041.htm

    Chen W X, Li Q, Wang Z, et al. Spatial distribution characteristics and pollution evaluation of heavy metals in arable land soil of China[J]. Environmental Science, 2020, 41(6): 2822-2833. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202006041.htm
    [7]
    成杭新, 彭敏, 赵传冬, 等. 表生地球化学动力学与中国西南土壤中化学元素分布模式的驱动机制[J]. 地学前缘, 2019, 26(6): 159-191. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201906021.htm

    Chen H X, Peng M, Zhao C D, et al. Epigenetic geochemical dynamics and driving mechanisms of distribution patterns of chemical elements in soil, southwest China[J]. Earth Science Frontiers, 2019, 26(6): 159-191. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201906021.htm
    [8]
    唐瑞玲, 王惠艳, 吕许朋, 等. 西南重金属高背景区农田系统土壤重金属生态风险评价[J]. 现代地质, 2020, 34(5): 917-927. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202005005.htm

    Tang R L, Wang H Y, Lv X P, et al. Ecological risk assessment of heavy metals in farmland system from an area with high background of heavy metals, southwestern China[J]. Geoscience, 2020, 34(5): 917-927. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202005005.htm
    [9]
    李括, 彭敏, 赵传冬, 等. 全国土地质量地球化学调查二十年[J]. 地学前缘, 2019, 26(6): 128-158. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201906020.htm

    Li K, Peng M, Zhao C D, et al. Vicennial implementation of geochemical survey of land quality in China[J]. Earth Science Frontiers, 2019, 26(6): 128-158. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201906020.htm
    [10]
    陈满怀. 环境土壤学[M]. 北京: 科学出版社, 2005.

    Chen M H. Environmental pedology[M]. Beijing: Science Press, 2005.
    [11]
    Jiao W T, Chen W P, Chang A C, et al. Environmental risks of trace elements associated with long-term phosphate fertilizers applications: A review[J]. Environmental Pollution, 2012, 168: 44-53. doi: 10.1016/j.envpol.2012.03.052
    [12]
    罗慧, 刘秀明, 王世杰, 等. 中国南方喀斯特集中分布区土壤Cd污染特征及来源[J]. 生态学杂志, 2018, 37(5): 1538-1544. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201805032.htm

    Luo H, Liu X M, Wang S J, et al. Pollution characteristics and sources of cadmium in soils of the Karst Area in South China[J]. Chinese Journal of Ecology, 2018, 37(5): 1538-1544. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201805032.htm
    [13]
    和淑娟, 李丽娜, 杨牧青, 等. 云南某冰川侵蚀区域土壤高背景值成因及农作物重金属累积规律探究[J]. 环境科学导刊, 2020, 40(2): 68-75.

    He S J, Li L N, Yang M Q, et al. Research on the causes of high soil background value and the accumulation of heavy metals in crops in a glacier eroded area in Yunnan[J]. Environmental Science Survey, 2020, 40(2): 68-75.
    [14]
    张富贵, 彭敏, 王惠艳, 等. 基于乡镇尺度的西南重金属高背景区土壤重金属生态风险评价[J]. 环境科学, 2020, 41(9): 4197-4209. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202009038.htm

    Zhang F G, Peng M, Wang H Y, et al. Ecological risk assessment of heavy metals at township scale in the high background of heavy metals, southwestern, China[J]. Environmental Science, 2020, 41(9): 4197-4209. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202009038.htm
    [15]
    刘意章, 肖唐付, 熊燕, 等. 西南高镉地质背景区农田土壤与农作物的重金属富集特征[J]. 环境科学, 2019, 40(6): 2877-2884. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201906045.htm

    Liu Y Z, Xiao T F, Xiong Y, et al. Accumulation of heavy metals in agricultural soils and crops from an area with a high geochemical background of cadmium, southwestern China[J]. Environmental Science, 2019, 40(6): 2877-2884. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201906045.htm
    [16]
    韩伟, 王成文, 彭敏, 等. 川南山区土壤与农作物重金属特征及成因[J]. 环境科学, https://doi.org/10.13227/j.hjkx.202008257.

    Han W, Wang C W, Peng M, et al. Characteristics and origin of heavy metals in soil and crops in mountain area of southern Sichuan[J]. Environmental Science. https://doi.org/10.13227/j.hjkx.202008257.
    [17]
    Thompson G M, Ali J R, Song X Y, et al. Emeishan basalts, SW China: Reappraisal of the formation's type area stratigraphy and a discussion of its significance as a large igneous province[J]. Journal of the Geological Society, 2001, 158: 593-599. doi: 10.1144/jgs.158.4.593
    [18]
    Courtillot V E, Renne P R. On the ages of flood basalt events Surlȃge des trapps basaltiques[J]. Comptes Rendus-Geoscience, 2003, 335: 113-140.
    [19]
    Hanski E, Richard J, Walker H H, et al. Origin of the Permian-Triassic komatiites, northwestern Vietnam[J]. Contributions to Mineralogy and Petrology, 2004, 147: 453-469. doi: 10.1007/s00410-004-0567-1
    [20]
    Xu Y G, He B. Thick, high-velocity crust in the Emeishan large igneous province, southwestern China: Evidence for crustal growth by magmatic underplating or intraplating[J]. Article in Special Paper of the Geological Society of America, 2007, DOI: 10.1130/2007.2430(39).
    [21]
    刘成英, 朱日祥. 试论峨眉山玄武岩的地球动力学意义[J]. 地学前缘, 2009, 16(2): 52-69. doi: 10.3321/j.issn:1005-2321.2009.02.003

    Liu C Y, Zhu R X. Discussion on geodynamic significance of the Emeishan basalts[J]. Earth Science Frontiers, 2009, 16(2): 52-69. doi: 10.3321/j.issn:1005-2321.2009.02.003
    [22]
    李一蒙, 马建华, 刘德新, 等. 开封城市土壤重金属污染及潜在生态风险评价[J]. 环境科学, 2015, 36(3): 1037-1044. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201503043.htm

    Li Y M, Ma J H, Liu D X, et al. Assessment of heavy metal pollution and potential ecological risk of urban soil in Kaifeng City, China[J]. Environmental Science, 2015, 36(3): 1037-1044. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201503043.htm
    [23]
    陈佳林, 李仁英, 谢晓金, 等. 南京市绿地土壤重金属分布特征及其污染评价[J]. 环境科学, 2021, 42(2): 909-916.

    Chen J L, Li R Y, Xie X J, et al. Distribution characteristics and pollution evaluation of heavy metals in greenbelt soils of Nanjing City[J]. Environmental Science, 2021, 42(2): 909-916.
    [24]
    胡月琪, 郭建辉, 张超, 等. 北京市道路扬尘重金属污染特征及潜在生态风险[J]. 环境科学, 2019, 40(9): 3924-3934. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201909009.htm

    Hu Y Q, Guo J H, Zhang C, et al. Pollution characteristics and potential ecological risks of heavy metals in road dust in Beijing[J]. Environmental Science, 2019, 40(9): 3924-3934. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201909009.htm
    [25]
    顾涛, 赵信文, 胡雪原, 等. 珠海市新马墩村农业园区土壤重金属分布特征及风险评价[J]. 岩矿测试, 2018, 37(4): 419-430. doi: 10.15898/j.cnki.11-2131/td.201712100190

    Gu T, Zhao X W, Hu X Y, et al. Distribution on characteristics and risk assessment of heavy metals in soil from an agricultural park of Xinma Dun Village, Zhuhai City[J]. Rock and Mineral Analysis, 2018, 37(4): 419-430. doi: 10.15898/j.cnki.11-2131/td.201712100190
    [26]
    Müller G. Index of geoaccumulation in sediments of the Rhine River[J]. Geology Journal, 1969, 2(3): 109-118. http://ci.nii.ac.jp/naid/10030367619
    [27]
    Hakanson L. An ecological risk index for aquatic pollution control-A sedimentological approach[J]. Water Research, 1980, 14(8): 975-1001. doi: 10.1016/0043-1354(80)90143-8
    [28]
    Loska K, Wiechulła D, Korus I. Metal contamination of farming soils affected by industry[J]. Environment International, 2004, 30: 159-165.
    [29]
    中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990.

    China National Environmental Monitoring Center. Background value of soil elements in China[M]. Beijing: China Environmental Science Press, 1990.
    [30]
    Wilding L P. Spatial variability: Its documentation, accommodation and implication to soil surveys[J]. Spatial Variations, 1985: 166-194. http://www.researchgate.net/publication/284417458_Spatial_variability_Its_documentation_accommodation_and_implication_to_soil_survey
    [31]
    吴月照, 潘懋. 中国东部玄武岩地区母岩及土壤元素含量变化规律研究[J]. 环境科学进展, 1993(5): 26-36. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ199305002.htm

    Wu Y Z, Pan M. Study on the regularity of changes of contents of the parent rock and soil elements in the basalt regions, eastern China[J]. Advances in Environmental Science, 1993(5): 26-36. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ199305002.htm
    [32]
    陈静生, 洪松, 邓宝山, 等. 中国东部花岗岩、玄武岩及石灰岩上土壤微量元素含量的纬向分异[J]. 土壤与环境, 1999, 8(3): 161-167. doi: 10.3969/j.issn.1674-5906.1999.03.001

    Chen J S, Hong S, Deng B S, et al. Geographical tendencies of trace element contents in soils derived from granite, basalt and limestone of eastern China[J]. Soil and Environmental Sciences, 1999, 8(3): 161-167. doi: 10.3969/j.issn.1674-5906.1999.03.001
    [33]
    洪涛, 孔祥胜, 岳祥飞. 滇东南峰丛洼地土壤重金属含量、来源及潜在生态风险评价[J]. 环境科学, 2019, 40(10): 4620-4627. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201910036.htm

    Hong T, Kong X S, Yue X F. Concentration characteristics, source analysis, and potential ecological risk assessment of heavy metals in a peak-cluster depression area, southeast of Yunnan Province[J]. Environmental Science, 2019, 40(10): 4620-4627. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201910036.htm
    [34]
    宋波, 王佛鹏, 周浪, 等. 广西高镉异常区水田土壤Cd含量特征及生态风险评价[J]. 环境科学, 2019, 40(5): 2443-2452. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201905053.htm

    Song B, Wang F P, Zhou L, et al. Cd content characteristics and ecological risk assessment of paddy soil in high cadmium anomaly area of Guangxi[J]. Environmental Science, 2019, 40(5): 2443-2452. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201905053.htm
    [35]
    Xu Y G, Chung S L, Jahn B M, et al. Petrologic and geochemical constraints on the petrogenesis of Permian-Triassic Emeishan flood basalts in southwestern China[J]. Lithos, 2001, 58: 145-168. http://www.sciencedirect.com/science/article/pii/S002449370100055X
    [36]
    胡瑞忠, 陶琰, 钟宏, 等. 地幔柱成矿系统: 以峨眉山地幔柱为例[J]. 地学前缘, 2005, 12(1): 42-54. doi: 10.3321/j.issn:1005-2321.2005.01.007

    Hu R Z, Tao Y, Zhong H, et al. Mineralization systems of a mantle plume: A case study from the Emeishan igneous province, southwest China[J]. Earth Science Frontiers, 2005, 12(1): 42-54. doi: 10.3321/j.issn:1005-2321.2005.01.007
    [37]
    叶德宪, 李昆. 四川土壤养分及酸碱性变化趋势分析[J]. 西南农业学报, 2003, 16(增刊): 101-107. https://www.cnki.com.cn/Article/CJFDTOTAL-XNYX2003S1024.htm

    Ye D X, Li K. Analysis of the variation of soil nutrient contents and soil pH in Sichuan Province[J]. Southwest China Journal of Agricultural Sciences, 2003, 16(Supplement): 101-107. https://www.cnki.com.cn/Article/CJFDTOTAL-XNYX2003S1024.htm
    [38]
    李珊, 肖怡, 李启权, 等. 近30年川中丘陵县域表层土壤pH值时空变化分析——以四川仁寿县为例[J]. 四川农业大学学报, 2015, 33(4): 377-384. https://www.cnki.com.cn/Article/CJFDTOTAL-SCND201504005.htm

    Li S, Xiao Y, Li Q Q, et al. Temporal and spatial variation of top soil pH value in hilly area of middle Sichuan Basin during 1981-2012: A case study in Renshou County, Sichuan[J]. Journal of Sichuan Agricultural University, 2015, 33(4): 377-384. https://www.cnki.com.cn/Article/CJFDTOTAL-SCND201504005.htm
    [39]
    王珊, 廖桂堂, 熊鸿焰, 等. 川南地区耕地土壤pH时空变化分析——以宜宾市南溪区长兴镇为例[J]. 内江师范学院学报, 2013, 28(2): 52-55. https://www.cnki.com.cn/Article/CJFDTOTAL-NJSG201302014.htm

    Wang S, Liao G T, Xiong H Y, et al. Analysis of spatial and temporal change of the farmland soil pH in southern Sichuan Province-A case study of Changxi, Nanxi District of Yibin[J]. Journal of Neijiang Normal University, 2013, 28(2): 52-55. https://www.cnki.com.cn/Article/CJFDTOTAL-NJSG201302014.htm
    [40]
    周国华. 土壤重金属生物有效性研究进展[J]. 物探与化探, 2014, 38(6): 1097-1106. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201406001.htm

    Zhou G H. Recent progress in the study of heavy metal bioavailability in soil[J]. Geophysical and Geochemical Exploration, 2014, 38(6): 1097-1106. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201406001.htm
    [41]
    Jin C W, Zheng S J, He Y F, et al. Lead contamination in tea garden soils and factors affecting its bioavailability[J]. Chemosphere, 2005, 59: 1151-1159.
    [42]
    Mcbride M, Sauvea S, Hendershot W. Solubility control of Cu, Zn, Cd and Pb in contaminated soils[J]. European Journal of Soil Science, 1997, 48: 337-346.
    [43]
    Nordberg G F. Cadmium and health in the 21st Century -Historical remarks and trends for the future[J]. BioMetals, 2004, 17: 485-489.
    [44]
    Bjørklund G, Chirumbolo S, Dadar M, et al. Mercury exposure and its effects on fertility and pregnancy outcome[J]. Basic Clinical Pharmacology Toxicology, 2019, 125: 317-327. http://d.wanfangdata.com.cn/periodical/ChlQZXJpb2RpY2FsRW5nTmV3UzIwMjEwMzAyEiA4MjM5MzlkZjAzOGU2MDg2OGM4Nzg4NDcxNTJkZTJkMBoIeWJzeGs4aGY%3D
    [45]
    李平, 陈敏, 王波. 中国居民甲基汞暴露的来源和健康风险[J]. 矿物岩石地球化学通报, 2019, 38(4): 725-728. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201904007.htm

    Li P, Chen M, Wang B. Sources and health risks of methylmercury exposure in Chinese residents[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2019, 38(4): 725-728. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201904007.htm
    [46]
    Bhattacharya P T, Misra S R, Hussain M. Nutritional aspects of essential trace elements in oral health and disease: An extensive review[J]. Scientifica, 2016: 1-12. http://europepmc.org/articles/PMC4940574/
    [47]
    Ameh T, Sayes C M. The potential exposure and hazards of copper nanoparticles: A review[J]. Environmental Toxicology and Pharmacology, 2019, 71: 1-8. http://www.sciencedirect.com/science/article/pii/S1382668919300912
    [48]
    贺灵, 孙彬彬, 吴超, 等. 浙江省江山市猕猴桃果园土壤环境质量与生态风险评价[J]. 岩矿测试, 2019, 38(5): 524-533. doi: 10.15898/j.cnki.11-2131/td.201901080003

    He L, Sun B B, Wu C, et al. Assessment of soil environment quality and ecological risk for kiwifruit orchard in Jiangshan City, Zhejiang Province[J]. Rock and Mineral Analysis, 2019, 38(5): 524-533. doi: 10.15898/j.cnki.11-2131/td.201901080003
    [49]
    王立婷, 刘仁志. 土壤污染的健康风险评价研究进展[J]. 中国环境管理, 2020(2): 62-68. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201210009.htm

    Wang L T, Liu R Z. Research progress on soil pollution risk assessment[J]. Chinese Journal of Environmental Management, 2020(2): 62-68. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201210009.htm
  • Cited by

    Periodical cited type(17)

    1. 任宇,曹文庚,肖舜禹,李祥志,潘登,王帅. 重金属在土壤中的分布、危害与治理技术研究进展. 中国地质. 2024(01): 118-142 .
    2. 王仁琪,谭科艳,孙倩,李航,张隆隆,王玉,袁欣,朱晓华,蔡敬怡. 河北省张家口坝上典型莜麦产区重金属元素健康风险评价. 中国地质. 2024(01): 264-275 .
    3. 张莹. 基于GIS的地下水质疏水性污染地理空间分布研究. 环境科学与管理. 2024(04): 49-54 .
    4. 张妍,赵新雷,冯雪珍,郭亚娇. 河南荥阳市耕地土壤重金属分布特征及来源解析. 岩矿测试. 2024(02): 330-343 . 本站查看
    5. 孙建伟,贾煦,刘向东,程贤达,商连南. 豫西金矿集区矿业活动对周边农田土壤重金属影响研究. 岩矿测试. 2023(01): 192-202 . 本站查看
    6. 陈丹利,刘冠男,行正松,刘伟,潘飞飞,徐建军,赵元艺. 河南栾川钼铅锌多金属矿集区土壤重金属累积及源解析. 岩矿测试. 2023(04): 839-851 . 本站查看
    7. 宋绵,龚磊,王艳,田大争,王新峰,李跃,李伟. 河北阜平县表层土壤重金属对人体健康的风险评估. 岩矿测试. 2022(01): 133-144 . 本站查看
    8. 杜贯新,闫百泉,孙雨,钱程,秦涛,臧延庆,杜继宇. 松嫩平原黑土区西北部阿荣旗黑土重金属分布特征、评价及预警. 地质科学. 2022(02): 606-621 .
    9. 王昌宇,李永利,周文辉,毛磊,卢震,胡浩远,杜鑫,边鹏,高琪. 内蒙古包头市固阳县某铁矿区周边土壤多元素测定与健康风险评价. 岩矿测试. 2022(03): 476-487 . 本站查看
    10. 刘斯文,黄园英,赵文博,魏吉鑫,徐春丽,马嘉宝,刘久臣,黄采文. 赣南北部黄陂河流域离子型稀土矿地区水质与健康风险评价. 岩矿测试. 2022(03): 488-498 . 本站查看
    11. 李笑路,戴余优,郭先明,凌炳,杨银根,梁洪瑞,沈威,张海慧. 某工业园周边农田土壤重金属污染特征及潜在风险评价. 中国矿业. 2022(07): 73-81 .
    12. 范晨子,袁继海,刘成海,郭威,孙冬阳,刘崴,赵九江,胡俊栋,赵令浩. 云南省安宁地区土壤重金属等元素生态地球化学调查与评价. 物探与化探. 2022(03): 761-771 .
    13. 范晨子,刘永兵,袁继海,郭威,孙冬阳,刘成海. 滇中典型工矿业城市大气干湿沉降重金属等元素特征及健康风险评价. 环境科学. 2022(08): 3923-3933 .
    14. 许泰,鄂崇毅. 高原高寒露天煤矿区土壤重金属污染及潜在生态风险评价. 广西科学. 2022(03): 584-594 .
    15. 白宇明,李永利,周文辉,胡浩远,卢震,边鹏. 典型工业城市土壤重金属元素形态特征及生态风险评估. 岩矿测试. 2022(04): 632-641 . 本站查看
    16. 杨杰,董静,宋洲,杨成梅,刘田,周顺超,胡核,黄聪. 鄂西铜铅锌尾矿库周边农田土壤-水稻重金属污染状况及风险评价. 岩矿测试. 2022(05): 867-879 . 本站查看
    17. 王毛兰,何昶,赵茜宇. 江西某养殖场废水灌溉土壤重金属污染特征及健康风险评价. 岩矿测试. 2022(06): 1072-1081 . 本站查看

    Other cited types(7)

Catalog

    Article views (3121) PDF downloads (93) Cited by(24)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return