Citation: | HE Ling, WU Chao, ZENG Dao-ming, CHENG Xiao-meng, SUN Bin-bin. Distribution of Heavy Metals and Ecological Risk of Soils in the Typical Geological Background Region of Southwest China[J]. Rock and Mineral Analysis, 2021, 40(3): 384-396. DOI: 10.15898/j.cnki.11-2131/td.202101260016 |
22.3% of the cultivated land in southwest China has excessive heavy metal content. The widely distributed Emeishan basalt and carbonate rocks in the region are considered to be the main source of heavy metals in the soil. At present, the level of research on the ecological risk of soil heavy metals in southwestern China, especially in the Emeishan basalt areas, still needs to be improved. The content, spatial distribution and ecological risk of heavy metals in soils of different geological backgrounds (earthogenic parent rocks) lack comparison.
To understand the content and spatial distribution characteristics of heavy metals in the soils from Emeishan basalt and carbonate rock areas.
Soil samples from the typical geological background areas of Sichuan were collected. AFS, ICP-MS and ICP-OES were used to determine the content of heavy metal elements (As, Cd, Cr, Cu, Hg, Ni, Pb, Zn) and pH values.The content and spatial distribution of the heavy metals in the soils, as well as the ecological risks were studied using the accumulation index and potential ecological risk index methods.
The results showed that: (1) The content of Cd, Cr, Cu, Hg, Ni, and Zn in the soils of the basalt areas were generally higher than those of the non-basalt areas and the background values of Sichuan and China. The content of the above elements were respectively 3.25, 1.08, 5.08, 1.72, 1.55, 1.63 times the Sichuan background values and 2.60, 1.40, 6.87, 1.47, 1.87, 1.91 times background values of China. (2) The high content areas of As, Cr and Pb corresponded well to the carbonate rock areas, whereas the high content areas of Cd, Cu, Hg, Ni and Zn corresponded well to the Emeishan basalt areas. The corresponding relationship indicated that the spatial distribution of heavy metals in the soil was mainly determined by the geological background in the studied area. (3) The Geoaccumulation Index results indicated that the soil pollution degree of Cd, Cu, Ni and Zn in Emeishan basalt areas was obviously higher than those of the non-basalt areas; (4) Ecological hazard index results showed that Cd, Cu and Hg were the highest ecological hazard elements in the studied area. The proportions of "strong ecological hazard", "very strong ecological hazard" and "strong estecological hazard" of Cd, Cu and Hg in the basalt areas were respectively 22.4%, 1.15% and 26.0% higher than those in the non-basalt areas.
The content, distribution and ecological risk of heavy metal elements in the soil in the study area are closely related to the geological background. Reasons include the differences in the element content in the parent rock, the geochemical behavior of the elements during the soil formation, and the secondary enrichment of the elements. The pH of the soil in the study area is low, and it is necessary to prevent the risk of heavy metal activation caused by further acidification of the soil.
[1] |
中国地质调查局. 中国耕地质量调查报告(2015年)[DB/OL]. http://zrzy.jiangsu.gov.cn/upfile/File/201512/10/10431190.pdf (2015).
China Geological Survey. Investigation report on cultivated land quality in China (2015)[DB/OL]. http://zrzy.jiangsu.gov.cn/upfile/File/201512/10/10431190.pdf (2015).
|
[2] |
Wang C Y, Sun X F, Wang M, et al. Chinese cropland quality and its temporal and spatial changes due to urbanization in 2000-2015[J]. Journal of Resources and Ecology, 2019, 10(2): 174-183. doi: 10.5814/j.issn.1674-764x.2019.02.008
|
[3] |
朱瑕, 张立亭, 靳焕焕. 基于因素法和SVM模型的耕地质量评价方法研究[J]. 土壤通报, 2020, 51(3): 561-567. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB202003008.htm
Zhu X, Zhang L T, Jin H H. Cultivated land quality assessment methodology based on factor method and SVM model[J]. Chinese Journal of Soil Science, 2020, 51(3): 561-567. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB202003008.htm
|
[4] |
向梦杰, 胡晓亮. 溧阳市耕地质量空间分布特征与保护分区研究[J]. 土壤通报, 2020, 51(1): 18-25. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB202001004.htm
Xiang M J, Hu X L. Spatial distribution and protection zoning of cultivated land in Liyang[J]. Chinese Journal of Soil Science, 2020, 51(1): 18-25. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB202001004.htm
|
[5] |
侯磊, 段建南, 李萍, 等. 国内耕地质量研究知识图谱分析[J]. 湖北农业科学, 2019, 58(11): 135-140. https://www.cnki.com.cn/Article/CJFDTOTAL-HBNY201911034.htm
Hou L, Duan J N, Li P, et al. Analysis of knowledge graph of cultivated land quality research in China[J]. Hubei Agricultural Sciences, 2019, 58(11): 135-140. https://www.cnki.com.cn/Article/CJFDTOTAL-HBNY201911034.htm
|
[6] |
陈文轩, 李茜, 王珍, 等. 中国农田土壤重金属空间分布特征及污染评价[J]. 环境科学, 2020, 41(6): 2822-2833. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202006041.htm
Chen W X, Li Q, Wang Z, et al. Spatial distribution characteristics and pollution evaluation of heavy metals in arable land soil of China[J]. Environmental Science, 2020, 41(6): 2822-2833. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202006041.htm
|
[7] |
成杭新, 彭敏, 赵传冬, 等. 表生地球化学动力学与中国西南土壤中化学元素分布模式的驱动机制[J]. 地学前缘, 2019, 26(6): 159-191. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201906021.htm
Chen H X, Peng M, Zhao C D, et al. Epigenetic geochemical dynamics and driving mechanisms of distribution patterns of chemical elements in soil, southwest China[J]. Earth Science Frontiers, 2019, 26(6): 159-191. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201906021.htm
|
[8] |
唐瑞玲, 王惠艳, 吕许朋, 等. 西南重金属高背景区农田系统土壤重金属生态风险评价[J]. 现代地质, 2020, 34(5): 917-927. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202005005.htm
Tang R L, Wang H Y, Lv X P, et al. Ecological risk assessment of heavy metals in farmland system from an area with high background of heavy metals, southwestern China[J]. Geoscience, 2020, 34(5): 917-927. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202005005.htm
|
[9] |
李括, 彭敏, 赵传冬, 等. 全国土地质量地球化学调查二十年[J]. 地学前缘, 2019, 26(6): 128-158. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201906020.htm
Li K, Peng M, Zhao C D, et al. Vicennial implementation of geochemical survey of land quality in China[J]. Earth Science Frontiers, 2019, 26(6): 128-158. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201906020.htm
|
[10] |
陈满怀. 环境土壤学[M]. 北京: 科学出版社, 2005.
Chen M H. Environmental pedology[M]. Beijing: Science Press, 2005.
|
[11] |
Jiao W T, Chen W P, Chang A C, et al. Environmental risks of trace elements associated with long-term phosphate fertilizers applications: A review[J]. Environmental Pollution, 2012, 168: 44-53. doi: 10.1016/j.envpol.2012.03.052
|
[12] |
罗慧, 刘秀明, 王世杰, 等. 中国南方喀斯特集中分布区土壤Cd污染特征及来源[J]. 生态学杂志, 2018, 37(5): 1538-1544. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201805032.htm
Luo H, Liu X M, Wang S J, et al. Pollution characteristics and sources of cadmium in soils of the Karst Area in South China[J]. Chinese Journal of Ecology, 2018, 37(5): 1538-1544. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201805032.htm
|
[13] |
和淑娟, 李丽娜, 杨牧青, 等. 云南某冰川侵蚀区域土壤高背景值成因及农作物重金属累积规律探究[J]. 环境科学导刊, 2020, 40(2): 68-75.
He S J, Li L N, Yang M Q, et al. Research on the causes of high soil background value and the accumulation of heavy metals in crops in a glacier eroded area in Yunnan[J]. Environmental Science Survey, 2020, 40(2): 68-75.
|
[14] |
张富贵, 彭敏, 王惠艳, 等. 基于乡镇尺度的西南重金属高背景区土壤重金属生态风险评价[J]. 环境科学, 2020, 41(9): 4197-4209. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202009038.htm
Zhang F G, Peng M, Wang H Y, et al. Ecological risk assessment of heavy metals at township scale in the high background of heavy metals, southwestern, China[J]. Environmental Science, 2020, 41(9): 4197-4209. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202009038.htm
|
[15] |
刘意章, 肖唐付, 熊燕, 等. 西南高镉地质背景区农田土壤与农作物的重金属富集特征[J]. 环境科学, 2019, 40(6): 2877-2884. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201906045.htm
Liu Y Z, Xiao T F, Xiong Y, et al. Accumulation of heavy metals in agricultural soils and crops from an area with a high geochemical background of cadmium, southwestern China[J]. Environmental Science, 2019, 40(6): 2877-2884. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201906045.htm
|
[16] |
韩伟, 王成文, 彭敏, 等. 川南山区土壤与农作物重金属特征及成因[J]. 环境科学, https://doi.org/10.13227/j.hjkx.202008257.
Han W, Wang C W, Peng M, et al. Characteristics and origin of heavy metals in soil and crops in mountain area of southern Sichuan[J]. Environmental Science. https://doi.org/10.13227/j.hjkx.202008257.
|
[17] |
Thompson G M, Ali J R, Song X Y, et al. Emeishan basalts, SW China: Reappraisal of the formation's type area stratigraphy and a discussion of its significance as a large igneous province[J]. Journal of the Geological Society, 2001, 158: 593-599. doi: 10.1144/jgs.158.4.593
|
[18] |
Courtillot V E, Renne P R. On the ages of flood basalt events Surlȃge des trapps basaltiques[J]. Comptes Rendus-Geoscience, 2003, 335: 113-140.
|
[19] |
Hanski E, Richard J, Walker H H, et al. Origin of the Permian-Triassic komatiites, northwestern Vietnam[J]. Contributions to Mineralogy and Petrology, 2004, 147: 453-469. doi: 10.1007/s00410-004-0567-1
|
[20] |
Xu Y G, He B. Thick, high-velocity crust in the Emeishan large igneous province, southwestern China: Evidence for crustal growth by magmatic underplating or intraplating[J]. Article in Special Paper of the Geological Society of America, 2007, DOI: 10.1130/2007.2430(39).
|
[21] |
刘成英, 朱日祥. 试论峨眉山玄武岩的地球动力学意义[J]. 地学前缘, 2009, 16(2): 52-69. doi: 10.3321/j.issn:1005-2321.2009.02.003
Liu C Y, Zhu R X. Discussion on geodynamic significance of the Emeishan basalts[J]. Earth Science Frontiers, 2009, 16(2): 52-69. doi: 10.3321/j.issn:1005-2321.2009.02.003
|
[22] |
李一蒙, 马建华, 刘德新, 等. 开封城市土壤重金属污染及潜在生态风险评价[J]. 环境科学, 2015, 36(3): 1037-1044. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201503043.htm
Li Y M, Ma J H, Liu D X, et al. Assessment of heavy metal pollution and potential ecological risk of urban soil in Kaifeng City, China[J]. Environmental Science, 2015, 36(3): 1037-1044. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201503043.htm
|
[23] |
陈佳林, 李仁英, 谢晓金, 等. 南京市绿地土壤重金属分布特征及其污染评价[J]. 环境科学, 2021, 42(2): 909-916.
Chen J L, Li R Y, Xie X J, et al. Distribution characteristics and pollution evaluation of heavy metals in greenbelt soils of Nanjing City[J]. Environmental Science, 2021, 42(2): 909-916.
|
[24] |
胡月琪, 郭建辉, 张超, 等. 北京市道路扬尘重金属污染特征及潜在生态风险[J]. 环境科学, 2019, 40(9): 3924-3934. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201909009.htm
Hu Y Q, Guo J H, Zhang C, et al. Pollution characteristics and potential ecological risks of heavy metals in road dust in Beijing[J]. Environmental Science, 2019, 40(9): 3924-3934. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201909009.htm
|
[25] |
顾涛, 赵信文, 胡雪原, 等. 珠海市新马墩村农业园区土壤重金属分布特征及风险评价[J]. 岩矿测试, 2018, 37(4): 419-430. doi: 10.15898/j.cnki.11-2131/td.201712100190
Gu T, Zhao X W, Hu X Y, et al. Distribution on characteristics and risk assessment of heavy metals in soil from an agricultural park of Xinma Dun Village, Zhuhai City[J]. Rock and Mineral Analysis, 2018, 37(4): 419-430. doi: 10.15898/j.cnki.11-2131/td.201712100190
|
[26] |
Müller G. Index of geoaccumulation in sediments of the Rhine River[J]. Geology Journal, 1969, 2(3): 109-118. http://ci.nii.ac.jp/naid/10030367619
|
[27] |
Hakanson L. An ecological risk index for aquatic pollution control-A sedimentological approach[J]. Water Research, 1980, 14(8): 975-1001. doi: 10.1016/0043-1354(80)90143-8
|
[28] |
Loska K, Wiechulła D, Korus I. Metal contamination of farming soils affected by industry[J]. Environment International, 2004, 30: 159-165.
|
[29] |
中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990.
China National Environmental Monitoring Center. Background value of soil elements in China[M]. Beijing: China Environmental Science Press, 1990.
|
[30] |
Wilding L P. Spatial variability: Its documentation, accommodation and implication to soil surveys[J]. Spatial Variations, 1985: 166-194. http://www.researchgate.net/publication/284417458_Spatial_variability_Its_documentation_accommodation_and_implication_to_soil_survey
|
[31] |
吴月照, 潘懋. 中国东部玄武岩地区母岩及土壤元素含量变化规律研究[J]. 环境科学进展, 1993(5): 26-36. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ199305002.htm
Wu Y Z, Pan M. Study on the regularity of changes of contents of the parent rock and soil elements in the basalt regions, eastern China[J]. Advances in Environmental Science, 1993(5): 26-36. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ199305002.htm
|
[32] |
陈静生, 洪松, 邓宝山, 等. 中国东部花岗岩、玄武岩及石灰岩上土壤微量元素含量的纬向分异[J]. 土壤与环境, 1999, 8(3): 161-167. doi: 10.3969/j.issn.1674-5906.1999.03.001
Chen J S, Hong S, Deng B S, et al. Geographical tendencies of trace element contents in soils derived from granite, basalt and limestone of eastern China[J]. Soil and Environmental Sciences, 1999, 8(3): 161-167. doi: 10.3969/j.issn.1674-5906.1999.03.001
|
[33] |
洪涛, 孔祥胜, 岳祥飞. 滇东南峰丛洼地土壤重金属含量、来源及潜在生态风险评价[J]. 环境科学, 2019, 40(10): 4620-4627. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201910036.htm
Hong T, Kong X S, Yue X F. Concentration characteristics, source analysis, and potential ecological risk assessment of heavy metals in a peak-cluster depression area, southeast of Yunnan Province[J]. Environmental Science, 2019, 40(10): 4620-4627. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201910036.htm
|
[34] |
宋波, 王佛鹏, 周浪, 等. 广西高镉异常区水田土壤Cd含量特征及生态风险评价[J]. 环境科学, 2019, 40(5): 2443-2452. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201905053.htm
Song B, Wang F P, Zhou L, et al. Cd content characteristics and ecological risk assessment of paddy soil in high cadmium anomaly area of Guangxi[J]. Environmental Science, 2019, 40(5): 2443-2452. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201905053.htm
|
[35] |
Xu Y G, Chung S L, Jahn B M, et al. Petrologic and geochemical constraints on the petrogenesis of Permian-Triassic Emeishan flood basalts in southwestern China[J]. Lithos, 2001, 58: 145-168. http://www.sciencedirect.com/science/article/pii/S002449370100055X
|
[36] |
胡瑞忠, 陶琰, 钟宏, 等. 地幔柱成矿系统: 以峨眉山地幔柱为例[J]. 地学前缘, 2005, 12(1): 42-54. doi: 10.3321/j.issn:1005-2321.2005.01.007
Hu R Z, Tao Y, Zhong H, et al. Mineralization systems of a mantle plume: A case study from the Emeishan igneous province, southwest China[J]. Earth Science Frontiers, 2005, 12(1): 42-54. doi: 10.3321/j.issn:1005-2321.2005.01.007
|
[37] |
叶德宪, 李昆. 四川土壤养分及酸碱性变化趋势分析[J]. 西南农业学报, 2003, 16(增刊): 101-107. https://www.cnki.com.cn/Article/CJFDTOTAL-XNYX2003S1024.htm
Ye D X, Li K. Analysis of the variation of soil nutrient contents and soil pH in Sichuan Province[J]. Southwest China Journal of Agricultural Sciences, 2003, 16(Supplement): 101-107. https://www.cnki.com.cn/Article/CJFDTOTAL-XNYX2003S1024.htm
|
[38] |
李珊, 肖怡, 李启权, 等. 近30年川中丘陵县域表层土壤pH值时空变化分析——以四川仁寿县为例[J]. 四川农业大学学报, 2015, 33(4): 377-384. https://www.cnki.com.cn/Article/CJFDTOTAL-SCND201504005.htm
Li S, Xiao Y, Li Q Q, et al. Temporal and spatial variation of top soil pH value in hilly area of middle Sichuan Basin during 1981-2012: A case study in Renshou County, Sichuan[J]. Journal of Sichuan Agricultural University, 2015, 33(4): 377-384. https://www.cnki.com.cn/Article/CJFDTOTAL-SCND201504005.htm
|
[39] |
王珊, 廖桂堂, 熊鸿焰, 等. 川南地区耕地土壤pH时空变化分析——以宜宾市南溪区长兴镇为例[J]. 内江师范学院学报, 2013, 28(2): 52-55. https://www.cnki.com.cn/Article/CJFDTOTAL-NJSG201302014.htm
Wang S, Liao G T, Xiong H Y, et al. Analysis of spatial and temporal change of the farmland soil pH in southern Sichuan Province-A case study of Changxi, Nanxi District of Yibin[J]. Journal of Neijiang Normal University, 2013, 28(2): 52-55. https://www.cnki.com.cn/Article/CJFDTOTAL-NJSG201302014.htm
|
[40] |
周国华. 土壤重金属生物有效性研究进展[J]. 物探与化探, 2014, 38(6): 1097-1106. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201406001.htm
Zhou G H. Recent progress in the study of heavy metal bioavailability in soil[J]. Geophysical and Geochemical Exploration, 2014, 38(6): 1097-1106. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201406001.htm
|
[41] |
Jin C W, Zheng S J, He Y F, et al. Lead contamination in tea garden soils and factors affecting its bioavailability[J]. Chemosphere, 2005, 59: 1151-1159.
|
[42] |
Mcbride M, Sauvea S, Hendershot W. Solubility control of Cu, Zn, Cd and Pb in contaminated soils[J]. European Journal of Soil Science, 1997, 48: 337-346.
|
[43] |
Nordberg G F. Cadmium and health in the 21st Century -Historical remarks and trends for the future[J]. BioMetals, 2004, 17: 485-489.
|
[44] |
Bjørklund G, Chirumbolo S, Dadar M, et al. Mercury exposure and its effects on fertility and pregnancy outcome[J]. Basic Clinical Pharmacology Toxicology, 2019, 125: 317-327. http://d.wanfangdata.com.cn/periodical/ChlQZXJpb2RpY2FsRW5nTmV3UzIwMjEwMzAyEiA4MjM5MzlkZjAzOGU2MDg2OGM4Nzg4NDcxNTJkZTJkMBoIeWJzeGs4aGY%3D
|
[45] |
李平, 陈敏, 王波. 中国居民甲基汞暴露的来源和健康风险[J]. 矿物岩石地球化学通报, 2019, 38(4): 725-728. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201904007.htm
Li P, Chen M, Wang B. Sources and health risks of methylmercury exposure in Chinese residents[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2019, 38(4): 725-728. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201904007.htm
|
[46] |
Bhattacharya P T, Misra S R, Hussain M. Nutritional aspects of essential trace elements in oral health and disease: An extensive review[J]. Scientifica, 2016: 1-12. http://europepmc.org/articles/PMC4940574/
|
[47] |
Ameh T, Sayes C M. The potential exposure and hazards of copper nanoparticles: A review[J]. Environmental Toxicology and Pharmacology, 2019, 71: 1-8. http://www.sciencedirect.com/science/article/pii/S1382668919300912
|
[48] |
贺灵, 孙彬彬, 吴超, 等. 浙江省江山市猕猴桃果园土壤环境质量与生态风险评价[J]. 岩矿测试, 2019, 38(5): 524-533. doi: 10.15898/j.cnki.11-2131/td.201901080003
He L, Sun B B, Wu C, et al. Assessment of soil environment quality and ecological risk for kiwifruit orchard in Jiangshan City, Zhejiang Province[J]. Rock and Mineral Analysis, 2019, 38(5): 524-533. doi: 10.15898/j.cnki.11-2131/td.201901080003
|
[49] |
王立婷, 刘仁志. 土壤污染的健康风险评价研究进展[J]. 中国环境管理, 2020(2): 62-68. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201210009.htm
Wang L T, Liu R Z. Research progress on soil pollution risk assessment[J]. Chinese Journal of Environmental Management, 2020(2): 62-68. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201210009.htm
|