• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
Wei ZHOU, Meng ZENG, Jian WANG, Lei ZHANG, Ying-chun LI. Determination of Major and Rare Earth Elements in Rare Earth Ores by X-ray Fluorescence Spectrometry with Fusion Sample Preparation[J]. Rock and Mineral Analysis, 2018, 37(3): 298-305. DOI: 10.15898/j.cnki.11-2131/td.201706280113
Citation: Wei ZHOU, Meng ZENG, Jian WANG, Lei ZHANG, Ying-chun LI. Determination of Major and Rare Earth Elements in Rare Earth Ores by X-ray Fluorescence Spectrometry with Fusion Sample Preparation[J]. Rock and Mineral Analysis, 2018, 37(3): 298-305. DOI: 10.15898/j.cnki.11-2131/td.201706280113

Determination of Major and Rare Earth Elements in Rare Earth Ores by X-ray Fluorescence Spectrometry with Fusion Sample Preparation

More Information
  • Received Date: April 09, 2017
  • Revised Date: January 08, 2018
  • Accepted Date: May 06, 2018
  • Published Date: April 30, 2018
  • HIGHLIGHTS
    (1) The technical advantages of X-ray Fluorescence Spectrometry applied in determination of major and minor elements in geological samples solves the problem regarding quantitative analysis of complex rare earth ore samples.
    (2) High-purity rare earth oxides and standard materials were used to prepare artificial standard samples, expanding the application range of quantitative methods and optimizing the instrument conditions to make the measurements more accurate and reliable.
    (3) The detection limit of rare earth elements is lower than 60 μg/g, meeting the requirements of quantitative analysis of ores with high-content rare earth elements.
    BACKGROUND The analysis of ore samples by X-ray Fluorescence Spectrometry (XRF) has the advantages of quantitative accuracy, less reagent and good reproducibility. However, due to the lack of rare earth standard materials at present, the accurate quantitative requirements for complex rare earth ore samples cannot be met.
    BAOBJECTIVES To establish the analysis method for XRF determination of 25 major elements and rare earth elements in rare earth ores and mineralized samples.
    METHODS The use of artificial standard samples solved the problem of lack of standard materials. The linear ranges of La, Ce and Y were extended by adding high purity rare earth oxides La2O3, CeO2 and Y2O3. A calibration line was produced using artificial standard samples, existing standard materials of rare earth and carbonate. The major elements were calibrated by a theoretical alpha coefficient method, whereas the rare earth elements were calibrated by an empirical coefficient method. Interference correction was used for elements with overlapping spectral lines.
    RESULTS The relative standard deviations (RSD, n=13) of most major elements were less than 1.5%, whereas the RSDs of rare earth elements were 0.69%-6.94% when their concentrations were above 300 μg/g.
    CONCLUSIONS The method was evaluated by unknown samples and the sums of major elements, rare earth elements and loss of ignition were 99.41%-100.63%. The method satisfies the first criterion of Geology and Minerals Laboratory Testing Quality Management Standards.

  • Simandl G J.Geology and market-dependent significance of rare earth element resources[J].Mineralium Deposita, 2014, 49(8):889-904. doi: 10.1007/s00126-014-0546-z
    Jordens A, Cheng Y P, Waters K E.A review of the beneficiation of rare earth element bearing minerals[J].Minerals Engineering, 2013, 41(1):97-114. http://www.sciencedirect.com/science/article/pii/S0892687512003597
    Simandl G J, Fajber R, Paradis S.Portable X-ray fluore-scence in the assessment of rare earth element-enriched sedimentary phosphate deposits[J].Geochemistry Exploration Environment Analysis, 2014, 14(2):161-169. doi: 10.1144/geochem2012-180
    Xie F, Zhang T A, Dreisinger D, et al.A critical review on solvent extraction of rare earths from aqueous solutions[J].Minerals Engineering, 2014, 56(2):10-28. http://www.sciencedirect.com/science/article/pii/S0892687513003452
    李小莉, 张勤.粉末压片-X射线荧光光谱法测定土壤、水系沉积物和岩石样品中15种稀土元素[J].冶金分析, 2013, 33(7):35-40. http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_yjfx201307007

    Li X L, Zhang Q.Determination of fifteen rare earth elements in soil, stream sediment and rock samples by X-ray fluorescence spectrometry with pressed powder pellet[J].Metallurgical Analysis, 2013, 33(7):35-40. http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_yjfx201307007
    张文娟, 谢玲君, 刘鸿.ICP-AES法测定氟碳铈矿中低含量稀土总量[J].有色金属科学与工程, 2016, 7(6):141-146. http://www.cnki.com.cn/Article/CJFDTOTAL-WYJK201304025.htm

    Zhang W J, Xie L J, Liu H.Determination of low content total rare earth in bastnaesite by ICP-AES[J].Nonferrous Metals Science and Engineering, 2016, 7(6):141-146. http://www.cnki.com.cn/Article/CJFDTOTAL-WYJK201304025.htm
    罗立强, 詹秀春, 李国会.X射线荧光光谱仪[M].北京:化学工业出版社, 2008.

    Luo L Q, Zhan X C, Li G H.X-ray Fluorescence Spectrometer[M].Beijing:Chemical Industry Press, 2008.
    Claisse F, Blanchette J S B(著). 卓尚军(译). 硼酸盐熔融的物理与化学[M]. 上海: 华东理工大学出版社, 2006.

    Claisse F, Blanchette J S B (Authors). Zhuo S J (Translator). Physics and Chemistry of Borate Melting[M]. Shanghai: East China University of Science and Technology Press, 2006.
    Parra L M M, Greaves E D, Paz J L, et al.Simultaneous determination of rare earths by X-ray fluorescence spectrometry using a fundamental parameters method[J].X-Ray Spectrometry, 1993, 22(5):362-367. doi: 10.1002/(ISSN)1097-4539
    黄肇敏, 周素莲.X射线荧光光谱法测定混合稀土氧化物中稀土分量[J].光谱学与光谱分析, 2007, 27(9):1873-1877. http://www.cqvip.com/QK/92500X/199501/1728536.html

    Huang Z M, Zhou S L.Method for determination of RE2O3 by X-ray fluorescence spectrometry[J].Spectroscopy and Spectral Analysis, 2007, 27(9):1873-1877. http://www.cqvip.com/QK/92500X/199501/1728536.html
    李可及, 肖颖.熔融制样-X射线荧光光谱法测定氟碳铈矿流程样品[J].稀土, 2016, 37(2):144-148. http://www.cnki.com.cn/Article/CJFDTOTAL-JSKX902.009.htm

    Li K J, Xiao Y.Determination of bastnaesite process samples by fusion X-ray fluorescence spectrometry[J].Chinese Rare Earths, 2016, 37(2):144-148. http://www.cnki.com.cn/Article/CJFDTOTAL-JSKX902.009.htm
    Legkodymov A A, Kuper K E, Nazmov V P, et al.Applying hard X-rays to determination of the minimum detection levels of rare earth element by the XRFA-SR method[J].Bulletin of the Russian Academy of Sciences Physics, 2015, 79(1):103-108. doi: 10.3103/S1062873815010207
    于丽丽, 汤玉河, 肖飞燕, 等.X射线荧光光谱无标定量测定稀土矿石中五氧化二磷[J].冶金分析, 2017, 37(1):57-60. http://mall.cnki.net/magazine/Article/YKCS200301008.htm

    Yu L L, Tang Y H, Xiao F Y, et al.Determination of phosphorus pentoxide in rare earth ore by X-ray fluorescence spectrometry coupled with standard-less quantitative analysis[J].Metallurgical Analysis, 2017, 37(1):57-60. http://mall.cnki.net/magazine/Article/YKCS200301008.htm
    冯丽丽, 张庆建, 丁仕兵, 等.X射线荧光光谱法测定锆矿中10种主次成分[J].冶金分析, 2014, 34(7):51-55. http://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201309010.htm

    Feng L L, Zhang Q J, Ding S B, et al.Determination of ten major and minor components in zirconium ore by X-ray fluorescence spectrometry[J].Metallurgical Analysis, 2014, 34(7):51-55. http://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201309010.htm
    罗学辉, 苏建芝, 汤宇磊, 等.高倍稀释熔融制样-X射线荧光光谱法测定镍矿石中主次成分[J].冶金分析, 2017, 37(9):52-56. http://mall.cnki.net/magazine/Article/YKCS201306013.htm

    Luo X H, Su J Z, Tang Y L, et al.Determination of major and minor components in nickel ore by X-ray fluorescence spectrometry with fusion sample preparation of high dilution[J].Metallurgical Analysis, 2017, 37(9):52-56. http://mall.cnki.net/magazine/Article/YKCS201306013.htm
    李迎春, 周伟, 王健, 等.X射线荧光光谱法测定高锶高钡的硅酸盐样品中主量元素[J].岩矿测试, 2013, 32(2):249-253. http://www.ykcs.ac.cn/article/id/f412011b-a4d7-44cf-9fbd-966d4bfe8191

    Li Y C, Zhou W, Wang J, et al.Determination of major elements in silicate samples with high content strontium and barium by X-ray fluorescence spectrometry[J].Rock and Mineral Analysis, 2013, 32(2):249-253. http://www.ykcs.ac.cn/article/id/f412011b-a4d7-44cf-9fbd-966d4bfe8191
    沈亚婷, 李迎春, 孙梦荷, 等.波长与能量色散复合式X射线荧光光谱仪特性研究及矿区土壤分析[J].光谱学与光谱分析, 2017, 37(7):2216-2224. http://manu13.magtech.com.cn/gpx/CN/abstract/abstract9888.shtml

    Shen Y T, Li Y C, Sun M H, et al.Studies on characteristics on a combined wavelength and energy dispersion X-ray fluorescence spectrometer and determinations of major, minor and trace elements in soils around a mining area[J].Spectroscopy and Spectral Analysis, 2017, 37(7):2216-2224. http://manu13.magtech.com.cn/gpx/CN/abstract/abstract9888.shtml
    李国会, 李小莉.X射线荧光光谱分析熔融法制样的系统研究[J].冶金分析, 2015, 35(7):1-9. http://www.cqvip.com/QK/90283X/201507

    Li G H, Li X L.Systematic study on the fusion sample preparation in X-ray fluorescence spectrometric analysis[J].Metallurgical Analysis, 2015, 35(7):1-9. http://www.cqvip.com/QK/90283X/201507
    詹秀春, 陈永君, 郑妙子, 等.地质样品X射线荧光分析中的背景相关曲线及其应用[J].岩矿测试, 2003, 22(3):161-164. http://www.ykcs.ac.cn/article/id/ykcs_20030342

    Zhan X C, Chen Y J, Zheng M Z, et al.Background-related curve in the X-ray fluorescence spectrometric analysis of geological materials and its application[J].Rock and Mineral Analysis, 2003, 22(3):161-164. http://www.ykcs.ac.cn/article/id/ykcs_20030342
  • Cited by

    Periodical cited type(31)

    1. 梁亚丽,吴领军,杨珍,孙银生,阿丽莉,贺攀红. 四酸消解-电感耦合等离子体质谱法测定砂岩型铀矿中铀钍及稀土元素. 冶金分析. 2025(01): 68-75 .
    2. 刘维一,熊正烨,郭竞渊,廖小婷,余果. 雷州半岛东部近岸水体溴质量浓度空间分布及其影响因素. 激光与光电子学进展. 2024(05): 89-97 .
    3. 李晓敬,胡艳巧,张金明,冉卓,赵良成,金倩. 微波消解-电感耦合等离子体质谱法测定石墨矿中16种稀土元素. 冶金分析. 2024(08): 18-26 .
    4. 黄平安,王夏青,唐湘玲,王玉堂,李玮,罗增,吕飞亚. X射线荧光光谱岩心扫描影响因素及校正方法的研究进展. 物探与化探. 2023(03): 726-738 .
    5. 李小莉,王毅民,邓赛文,王祎亚,李松,白金峰. 中国X射线荧光光谱分析的地学应用60年. 光谱学与光谱分析. 2023(10): 2989-2998 .
    6. 董龙腾,王生进,刘才云. 电感耦合等离子体质谱标准物质换算法测定地质样品中15种稀土元素. 化学分析计量. 2022(02): 53-57 .
    7. 王晨希. X射线荧光光谱法测定农田底泥中8种元素. 化学分析计量. 2022(02): 40-44 .
    8. 刘闫,姚明星,张丽萍,樊蕾,张宏丽,王甜甜. 电感耦合等离子体质谱法测定锆钛矿中16种稀土元素分量及其总量. 冶金分析. 2022(03): 19-25 .
    9. 胡瑶瑶,王浩铮,侯玉杨,宋皓然. 基于电子探针面扫描定量化的石英闪长岩微区成分分析. 岩矿测试. 2022(02): 260-271 . 本站查看
    10. 秦燕华,刘巍,刘姜瑾,练文柳,罗嘉,韩星,任建新. 基于EDXRF光谱法的滤棒中痕量砷和铅的快速检测. 烟草科技. 2022(07): 40-46 .
    11. 周凯红,张立锋,李佳. 电感耦合等离子体质谱法测定白云鄂博矿石中15种稀土元素总量及其分量. 冶金分析. 2022(08): 87-95 .
    12. 曾江萍,王家松,朱悦,张楠,王娜,吴良英,魏双. 敞开酸溶-电感耦合等离子体质谱法测定铀矿石中15种稀土元素. 岩矿测试. 2022(05): 789-797 . 本站查看
    13. 王娜,王家松,曾江萍,李强,吴磊,陈枫. 重铬酸钾和高锰酸钾电位落差法测定砂岩型铀矿氧化还原电位的探讨. 岩矿测试. 2022(05): 806-814 . 本站查看
    14. 玉永珊. 稀土元素分析测试方法在地质学上的应用. 世界有色金属. 2022(15): 166-168 .
    15. 张玉芹,彭艳,韦时宏,朱健. 高压密闭消解-电感耦合等离子体质谱法测定地质样品中稀土元素. 实验室研究与探索. 2021(03): 29-32 .
    16. 李艳. 熔融制样X射线荧光光谱法测定矿石中五氧化二钒的含量. 福建分析测试. 2021(01): 54-58 .
    17. 刘春,高励珍,张翼明,刘晓杰. 电感耦合等离子体发射光谱法测定镨钕钆合金中稀土杂质量. 金属功能材料. 2021(04): 59-63 .
    18. 苗煦,王礼胜. 湖南临武黑色石英岩质玉矿物组成特征及成因初探. 岩矿测试. 2021(04): 522-531 . 本站查看
    19. 曾江萍,王家松,王娜,郑智慷,王力强,张楠. 敞开酸溶—电感耦合等离子体质谱法测定锑矿石中的稀土元素. 华北地质. 2021(04): 80-84 .
    20. 尹昌慧,袁永海,杨锋. 阳离子交换树脂富集-电感耦合等离子体质谱法测定铜精矿中14种稀土元素. 理化检验(化学分册). 2020(05): 532-535 .
    21. 王毅民,邓赛文,王祎亚,李松. X射线荧光光谱在矿石分析中的应用评介——总论. 冶金分析. 2020(10): 32-49 .
    22. 张绵绵,高晓哲. 塑胶跑道面层中铅、镉、铬、汞的测定X射线荧光光谱法. 中国石油和化工标准与质量. 2020(16): 71-72+76 .
    23. 王祎亚,高新华,王毅民,邓赛文,李松. 地质材料稀土元素的X射线荧光分析文献评介. 光谱学与光谱分析. 2020(11): 3341-3352 .
    24. 袁静,刘建坤,郑荣华,沈加林. 高能偏振能量色散X射线荧光光谱仪特性研究及地质样品中主微量元素分析. 岩矿测试. 2020(06): 816-827 . 本站查看
    25. 李迎春,张磊,周伟,尚文郁. 熔融制样-波长色散和能量色散X射线荧光光谱仪应用于硅酸盐类矿物及疑难样品分析. 岩矿测试. 2020(06): 828-838 . 本站查看
    26. 赵毅华. 熔融制样-X射线荧光光谱法测定镜铁矿中主次成分. 分析测试技术与仪器. 2019(01): 33-38 .
    27. 阿丽莉,张盼盼,贺攀红,杨珍,梁亚丽,杨有泽. X射线荧光光谱法测定地质样品中的硫和氟. 中国无机分析化学. 2019(02): 50-53 .
    28. 王啸,李田义,姜菲. ICP-MS测定高硅矿物中铌、钽及稀土. 稀土. 2019(03): 109-114 .
    29. 阿丽莉,贺攀红,张盼盼. 粉末压片-X射线荧光光谱法测定地质样品中镧铈镨钕钐. 冶金分析. 2019(09): 39-45 .
    30. 田衎,郭伟臣,杨永,岳亚萍,张覃,赵亚娴. 波长色散X射线荧光光谱法测定土壤和水系沉积物中13种重金属元素. 冶金分析. 2019(10): 30-36 .
    31. 董学林,何海洋,储溱,仇秀梅,唐兴敏. 碱熔沉淀分离-电感耦合等离子体质谱法测定伴生重晶石稀土矿中的稀土元素. 岩矿测试. 2019(06): 620-630 . 本站查看

    Other cited types(3)

Catalog

    Article views (12198) PDF downloads (92) Cited by(34)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return