• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
HU Yaoyao, WANG Haozheng, HOU Yuyang, SONG Haoran. A Method for Estimating Micro-area Composition of Quartz-diorite Based on Quantitative Mapping of Electron Probe Microanalysis[J]. Rock and Mineral Analysis, 2022, 41(2): 260-271. DOI: 10.15898/j.cnki.11-2131/td.202109280132
Citation: HU Yaoyao, WANG Haozheng, HOU Yuyang, SONG Haoran. A Method for Estimating Micro-area Composition of Quartz-diorite Based on Quantitative Mapping of Electron Probe Microanalysis[J]. Rock and Mineral Analysis, 2022, 41(2): 260-271. DOI: 10.15898/j.cnki.11-2131/td.202109280132

A Method for Estimating Micro-area Composition of Quartz-diorite Based on Quantitative Mapping of Electron Probe Microanalysis

More Information
  • Received Date: September 27, 2021
  • Revised Date: November 02, 2021
  • Accepted Date: November 26, 2021
  • Published Date: March 27, 2022
  • HIGHLIGHTS
    (1) The mapping results of electron probe microanalysis establish a good relationship with the quantitative analysis results.
    (2) The quantitative data processing uses the relationship between the mapping and point analyses.
    (3) The quantitative mapping results of the micro-area of homogeneous rock was consistent with the results of bulk rock measured by X-ray fluorescence spectrometry (XRF).
    BACKGROUNDThe estimation of bulk composition of the micro-area of a rock is an important basis of tracing rock evolution. The conventional electron probe microanalysis (EPMA) mapping method cannot provide quantitative analysis results of the surface scanning area.
    OBJECTIVESIn order to estimate the composition of the micro-area by quantitative mapping of EPMA.
    METHODSThe mapping and point analyses were carried out to determine the composition of the micro-area of a homogeneous quartz-diorite. By performing image correction of the pixels of the mapping of the major elements, and using the point analysis data after ZAF correction and the gray value of the surface scan image to perform the least square curve fitting method, the X-ray intensity and concentration were converted.
    RESULTSBy comparing to X-ray fluorescence spectrometry (XRF), the relative errors of SiO2, CaO, FeO, Al2O3 and TiO2 of EPMA method were within 10%, and the relative standard deviation was less than 10%. The relative error and standard deviation of MgO and Na2O were slightly larger, which can be improved by multiple measurements. The K2O content were not accurate due to lack of K-rich silicate minerals' point analysis.
    CONCLUSIONSThe results show that the estimation of micro-area composition of a rock with relatively homogeneous mineral distributions can be carried out by using point analyses of EPMA to correct the mapping under good instrument conditions, and the influence of mineral morphology, particle size, and distribution can be reduced by multiple measurements on different sections.

  • Wang H Z, Zhang H F, Zhai M G, et al. Granulite facies metamorphism and crust melting in the Huai'an terrane at~1.95Ga, North China Craton: New constraints from geology, zircon U-Pb, Lu-Hf isotope and metamorphic conditions of granulites[J]. Precambrian Research, 2016, 286: 126-151. doi: 10.1016/j.precamres.2016.09.012
    孙春青, 游海涛, 刘嘉麒, 等. 火山灰全岩与原位分析差异: 以四海龙湾记录的1600年前金龙顶子火山喷发为例[J]. 地球科学, 2016, 41(1): 97-104. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201601008.htm

    Sun C Q, You H T, Liu J L, et al. Differences between whole rock and in situ analysis on Tephra: Evidence from the 1600a cal. BP eruption of Jinlongingzi Volcano[J]. Earth Science, 2016, 41(1): 97-104. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201601008.htm
    Wang H Z, Laurent O, Zhang H F, et al. Recognition and significance of c. 800Ma upper amphibolite to granulite facies metamorphism in metasedimentary rocks from the NW margin of the Yangtze Block[J]. Journal of the Geological Society, 2020, 177(2): 424-441. doi: 10.1144/jgs2019-035
    许乃岑, 沈加林, 张静. X射线衍射-X射线荧光光谱-电子探针等分析测试技术在玄武岩矿物鉴定中的应用[J]. 岩矿测试, 2015, 34(1): 75-81. doi: 10.15898/j.cnki.11-2131/td.2015.01.010

    Xu N C, Shen J L, Zhang J. Application of X-ray diffraction, X-ray fluorescence spectrometry and electron microprobe in the identification of basalt[J]. Rock and Mineral Analysis, 2015, 34(1): 75-81. doi: 10.15898/j.cnki.11-2131/td.2015.01.010
    周伟, 曾梦, 王健, 等. 熔融制样-X射线荧光光谱法测定稀土矿石中的主量元素和稀土元素[J]. 岩矿测试, 2018, 37(3): 298-305. doi: 10.15898/j.cnki.11-2131/td.201706280113

    Zhou W, Zeng M, Wang J, et al. Determination of major and rare earth elements in rare earth ores by X-ray fluorescence spectrometry with fusion sample preparation[J]. Rock and Mineral Analysis, 2018, 37(3): 298-305. doi: 10.15898/j.cnki.11-2131/td.201706280113
    李小莉, 吴良英, 王力强, 等. X射线荧光光谱法分析碳酸盐时两种制样方法的比较[J]. 理化检验(化学分册), 2016, 52(6): 664-668. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201606012.htm

    Li X L, Wu L Y, Wang L Q, et al. Comparative study on the 2 methods for preparation of sample discs in XRFs analysis of carbonates[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2016, 52(6): 664-668. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201606012.htm
    汪方跃, 葛粲, 宁思远, 等. 一个新的矿物面扫描分析方法开发和地质学应用[J]. 岩石学报, 2017, 33(11): 3422-3436. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201711006.htm

    Wang F Y, Ge C, Ning S Y, et al. A new approach to LA-ICP-MS mapping and application in geology[J]. Acta Petrologica Sinica, 2017, 33(11): 3422-3436. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201711006.htm
    Spear F S, Wolfe O M. Evaluation of the effective bulk composition (EBC) during growth of garnet[J]. Chemical Geology, 2018, 491: 39-47. doi: 10.1016/j.chemgeo.2018.05.019
    田作林, 张泽明, 董昕. 有效全岩成分的计算方法及其在变质相平衡模拟中的应用[J]. 岩石学报, 2020, 36(9): 2616-2630. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202009003.htm

    Tian Z L, Zhang Z M, Dong X. Calculation of effective bulk composition and its application in metamorphic phase equilibria modeling[J]. Acta Petrologica Sinica, 2020, 36(9): 2616-2630. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202009003.htm
    聂潇, 王宗起, 陈雷, 等. 蚀变粗面岩中再平衡结构黑云母的电子探针分析[J]. 岩矿测试, 2019, 38(5): 565-574. doi: 10.15898/j.cnki.11-2131/td.201807100081

    Nie X, Wang Z Q, Chen L, et al. Electron microprobe analysis of biotite with reequilibration texture in altered trachyte[J]. Rock and Mineral Analysis, 2019, 38(5): 565-574. doi: 10.15898/j.cnki.11-2131/td.201807100081
    秦玉娟, 余朝丰, 徐洋, 等. 应用电子探针原位微区分析技术测试硅硼钠石矿物[J]. 电子显微学报, 2016, 35(3): 217-222. doi: 10.3969/j.issn.1000-6281.2016.03.006

    Qin Y J, Yu C F, Xu Y, et al. A microarea analysis technique of EPMA to probe reedmergnerite[J]. Journal of Chinese Electron Microscopy Society, 2016, 35(3): 217-222. doi: 10.3969/j.issn.1000-6281.2016.03.006
    Reed S J B. Electron microprobe analysis and scanning electron microscopy in geology[M]. Cambridge: Cambridge University Press, 2005: 164.
    Batanova V G, Sobolev A V, Magnin V. Trace element analysis by EPMA in geosciences: Detection limit, precision and accuracy[C]//IOP Conference Series: Materials Science and Engineering, 2018, 304.
    Ritchie N. Embracing uncertainty: Modeling the standard uncertainty in electron probe microanalysis—Part Ⅰ[J]. Microscopy and Microanalysis, 2020, 26(3): 469-483. doi: 10.1017/S1431927620001555
    Lanari P, Alice V, Thomas B, et al. Quantitative compositional mapping of mineral phases by electron probe micro-analyser[R]. London: Geological Society (Special Publications), 2019: 39-63.
    Donovan J, Allaz J, Handt A, et al. Quantitative WDS com-positional mapping using the electron microprobe[J]. The American Mineralogist, 2021, 106: 1717-1735. doi: 10.2138/am-2021-7739
    Yasumoto A, Yoshida K, Kuwatani T, et al. A rapid and precise quantitative electron probe chemical mapping technique and its application to an ultrahigh-pressure eclogite from the Moldanubian Zone of the Bohemian Massif (Nové Dvory, Czech Republic)[J]. American Mineralogist, 2018, 103(10): 1690-1698. doi: 10.2138/am-2018-6323CCBY
    Ortolano G, Visalli R, Godard G, et al. Quantitative X-ray map analyser (Q-XRMA): A new GIS-based statistical approach to mineral image analysis[J]. Computers and Geosciences, 2018, 115: 56-65. doi: 10.1016/j.cageo.2018.03.001
    周剑雄, 毛水和, 陈克樵, 等. 电子探针分析[M]. 北京: 地质出版社, 1988: 499.

    Zhou J X, Mao S H, Chen K Q, et al. Electron probe micro-analysis[M]. Beijing: Geological Publishing, 1998: 499.
    梁细荣, 姚立, 田地. 电子探针背景扣除和谱线干扰修正方法的进展[J]. 岩矿测试, 2008, 27(1): 49-54. doi: 10.3969/j.issn.0254-5357.2008.01.013

    Liang X R, Yao L, Tian D. Progress in background subtraction and spectral interference correction in electron probe microanalysis[J]. Rock and Mineral Analysis, 2008, 27(1): 49-54. doi: 10.3969/j.issn.0254-5357.2008.01.013
    Newbury D E, Marinenko R B, Myklebust R L, et al. Quantitative compositional mapping with the electron probe microanalyzer[M]. Springer Press, 1991: 335-369.
    毕秀丽, 邱雨檬, 肖斌, 等. 基于统计特征的图像直方图均衡化检测方法[J]. 计算机学报, 2021, 44(2): 292-303. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX202102003.htm

    Bi X L, Qiu Y M, Xiao B, et al. Histogram equalization detection based on statistical features in digital image[J]. Chinese Journal of Computers, 2021, 44(2): 292-303. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX202102003.htm
    Anupama S, Prajwalasimha S N, Swapna H. Image de-noising algorithm based on filtering and histogram equalizationl[C]//Proceedings of the Second International Conference on I-SMAC, 2019: 325-328.
    李明辉, 郜鲜辉, 吴金金, 等. 电子探针波谱仪和能谱仪在材料分析中的应用及对比[J]. 电子显微学报, 2020, 39(2): 218-223. doi: 10.3969/j.issn.1000-6281.2020.02.018

    Li M H, Gao X H, Wu J J, et al. The application and comparison of EPMA WDS and EDS in material analysis[J]. Journal of Chinese Electron Microscopy Society, 2020, 39(2): 218-223. doi: 10.3969/j.issn.1000-6281.2020.02.018
    Joseph D G, Charles H. High count rate electron probe microanalysis[J]. Journal of Research of the National Institute of Standards and Technology, 2002, 107(6): 503-508. doi: 10.6028/jres.107.043
    Chen B H, Tseng Y, Yin J L. Gaussian-adaptive bilateral filter[J]. IEEE Signal Processing Letters, 2020, 27: 1670-1674. doi: 10.1109/LSP.2020.3024990
    杨赞伟, 郑亮亮, 曲宏松, 等. 联合均值滤波与泊松核双边滤波降噪算法研究[J]. 计算机仿真, 2020, 37(9): 460-463, 468. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJZ202009097.htm

    Yang Z W, Zheng L L, Qu H S, et al. Image denoising research of combining mean filtering with Poisson Kernel improved bilateral filtering[J]. Computer Simulation, 2020, 37(2): 460-463, 468. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJZ202009097.htm
    Kikongi P, Salvas J, Gosselin R. Curve-fitting regression: Improving light element quantification with XRF[J]. X-Ray Spectrometry, 2017, 46(5): 347-355. doi: 10.1002/xrs.2760
    Willis K V, Srogi L A, Lutz T, et al. Phase composition maps integrate mineral compositions with rock textures from the micro-meter to the thin section scale[J]. Computers and Geosciences, 2017, 109: 162-177. doi: 10.1016/j.cageo.2017.08.009
    张迪, 陈意, 毛骞, 等. 电子探针分析技术进展及面临的挑战[J]. 岩石学报, 2019, 35(1): 261-274. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201901022.htm

    Zhang D, Chen Y, Mao Q, et al. Progress and challenge of electron probe microanalysis technique[J]. Acta Petrologica Sinica, 2019, 35(1): 261-274. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201901022.htm
    李德忍. 电子探针分析过程中钠不稳定机理的新解释初探[J]. 岩矿测试, 1995, 14(3): 224-226. http://www.ykcs.ac.cn/article/id/ykcs_19950350

    Li D R. An explanation for the unstability of sodium determination in the electron microprobe analysis of Albite[J]. Rock and Mineral Analysis, 1995, 14(3): 224-226. http://www.ykcs.ac.cn/article/id/ykcs_19950350
    张文兰, 胡欢, 谢磊, 等. Na元素的EPMA定量分析: 矿物晶体结构对Na行为的制约[J]. 高校地质学报, 2021, 27(3): 327-339. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX202103009.htm

    Zhang W L, Hu H, Xie L, et al. Quantitative analysis of Na by EPMA: Constraints for the behavior of Na by the crystal structure[J]. Geological Journal of China Universities, 2021, 27(3): 327-339. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX202103009.htm
    杨宗锋, 罗照华, 黄丹峰, 等. 花岗质岩石中矿物含量和粒径对代表性样品的约束[J]. 北京大学学报(自然科学版), 2010, 46(6): 951-959. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201006015.htm

    Yang Z F, Luo Z H, Huang D F, et al. Constraints on representative samples from crystal contents and size in granitic rocks[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2010, 46(6): 951-959. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201006015.htm
    杨宗锋, 李解, 姜晓杰, 等. 火成岩结构的二维定量化分析方法[J]. 地学前缘, 2020, 27(5): 23-38. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202005005.htm

    Yang Z F, Li J, Jiang X J, et al. Two dimensional quantitative textural analysis method for igneous rock[J]. Earth Science Frontiers, 2020, 27(5): 23-38. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202005005.htm
    Hezel D C. A model for calculating the errors of 2D bulk analysis relative to the true 3D bulk composition of an object, with application to chondrules[J]. Computers and Geosciences, 2007, 33(9): 1162-1175. doi: 10.1016/j.cageo.2007.01.003
    Richard M P, Owen M W, David J W, et al. Quantifying geological uncertainty in metamorphic phase equilibria modelling; a Monte Carlo assessment and implications for tectonic interpretations[J]. Geoscience Frontiers, 2016, 7(4): 591-607. doi: 10.1016/j.gsf.2015.08.005
    McCanta M C, Dyar M D, Dobosh P A. Extracting bulk rock properties from microscale measurements: Subsampling and analytical guidelines[J]. GSA Today, 2017, 27(7): 4-9.
    Sharma J, Naik A, Pant N, et al. Estimation of effective bulk composition—Critical appraisal and a scanning electron microscope based approach[J]. Geological Journal, 2021, 56(6): 2950-2962. doi: 10.1002/gj.4077
    Hombourger C, Outrequin M. Quantitative analysis and high-resolution X-ray mapping with a field emission electron microprobe[J]. Microscopy Today, 2013, 21(3): 10-15. doi: 10.1017/S1551929513000515
    Takahashi H, Mcswiggen P, Nielsen C. A unique wavelength- dispersive soft X-ray emission spectrometer for electron probe X-ray microanalyzers[J]. Microscopy and Analysis, 2014, 15: 5-8.
    Llovet X, Moy A, Pinard P T, et al. Electron probe microanalysis: A review of recent developments and applications in materials science and engineering[J]. Progress in Materials Science, 2021, 116: 100673.
  • Related Articles

    [1]JIN Yi, AN Shuai, LIU Xin, SONG Lihua, ZHAO Enhao, MA Jiansheng, ZHANG Zhibin. Material Evidence Analysis and Regional Classification and Identification of Soil Based on X-ray Fluorescence Spectrometry and X-ray Diffraction[J]. Rock and Mineral Analysis, 2024, 43(5): 744-754. DOI: 10.15898/j.ykcs.202403140047
    [2]ZHU Li, YANG Yong-qiong, GU Han-nian, WEN Han-jie, DU Sheng-jiang, LUO Chong-guang. Mineralogical Characteristics of Two Clay-type Lithium Resources in Yuxi, China, and Nevada, the United States of America[J]. Rock and Mineral Analysis, 2021, 40(4): 532-541. DOI: 10.15898/j.cnki.11-2131/td.202008130112
    [3]MIN Hong, LIU Qian, ZHANG Jin-yang, ZHOU Hai-ming, YAN De-tian, XING Yan-jun, LI Chen, LIU Shu. Study on the Mineralogical Characteristics of 12 Copper Concentrates by X-ray Fluorescence Spectrometry, X-ray Powder Diffraction and Polarization Microscope[J]. Rock and Mineral Analysis, 2021, 40(1): 74-84. DOI: 10.15898/j.cnki.11-2131/td.202004020038
    [4]Chang-feng MENG, Jun-hui XUE. Study on Petrological and Mineralogical Characteristics of the Ningxia Helan Stone by X-ray Fluorescence Spectrometry and X-ray Diffraction[J]. Rock and Mineral Analysis, 2018, 37(1): 50-55. DOI: 10.15898/j.cnki.11-2131/td.201709050141
    [5]Chun-hua WEN, Xiao-ya LUO, Sheng-miao LI, Jian-kang LI. Application of X-ray Fluorescence Spectrometry and Inductively Coupled Plasma-Mass Spectrometry in the Geochemical Study of Rare Metal Deposits in Chuan-ziyuan Area, Hunan Province[J]. Rock and Mineral Analysis, 2015, 34(3): 359-365. DOI: 10.15898/j.cnki.11-2131/td.2015.03.017
    [6]Yan LAN, Tai-jin LU, Wei-ming CHEN, Yang LIU, Rong LIANG, Ying MA, Xiao-hu ZHANG. A Non-destructive Measurement Method of Gem Jadeite Content in Jadeitite Based on Specific Gravity and X-ray Powder Diffraction[J]. Rock and Mineral Analysis, 2015, 34(2): 207-212. DOI: 10.15898/j.cnki.11-2131/td.2015.02.009
    [7]Lin LU, Ting LIANG, Zheng-hui CHEN, Yong WANG, Huan HEI, Xing XIE. Application of X-ray Powder Diffraction and Inductively Coupled Plasma-Mass Spectrometry in Study on Mineralogical Characteristics and Significance of Wolframite from Xihuashan Tungsten Deposit, Jiangxi Province[J]. Rock and Mineral Analysis, 2015, 34(1): 150-160. DOI: 10.15898/j.cnki.11-2131/td.2015.01.019
    [8]Nai-cen XU, Jia-lin SHEN, Jing ZHANG. Application of X-ray Diffraction, X-ray Fluorescence Spectrometry and Electron Microprobe in the Identification of Basalt[J]. Rock and Mineral Analysis, 2015, 34(1): 75-81. DOI: 10.15898/j.cnki.11-2131/td.2015.01.010
    [9]Guo-dong XU, Guan WANG, Jiang CHENG, Sui-liang DONG. Occurrence of Manganese in the Zhaxikang Lead-Zinc Deposit from Tibet Investigated by Energy Scanning Electron Microscope and X-ray Diffraction Methods[J]. Rock and Mineral Analysis, 2014, 33(6): 808-812. DOI: 10.15898/j.cnki.11-2131/td.2014.06.008
    [10]Determination of Calcium Fluoride in Fluorspar by X-ray Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2007, 26(5): 419-420.

Catalog

    Article views (395) PDF downloads (47) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return