• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
ZHU Li, YANG Yong-qiong, GU Han-nian, WEN Han-jie, DU Sheng-jiang, LUO Chong-guang. Mineralogical Characteristics of Two Clay-type Lithium Resources in Yuxi, China, and Nevada, the United States of America[J]. Rock and Mineral Analysis, 2021, 40(4): 532-541. DOI: 10.15898/j.cnki.11-2131/td.202008130112
Citation: ZHU Li, YANG Yong-qiong, GU Han-nian, WEN Han-jie, DU Sheng-jiang, LUO Chong-guang. Mineralogical Characteristics of Two Clay-type Lithium Resources in Yuxi, China, and Nevada, the United States of America[J]. Rock and Mineral Analysis, 2021, 40(4): 532-541. DOI: 10.15898/j.cnki.11-2131/td.202008130112

Mineralogical Characteristics of Two Clay-type Lithium Resources in Yuxi, China, and Nevada, the United States of America

More Information
  • Received Date: August 12, 2020
  • Revised Date: December 14, 2020
  • Accepted Date: May 27, 2021
  • Published Date: July 27, 2021
  • HIGHLIGHTS
    (1) A comparative study on the mineralogy and chemistry of two types of clay-type lithium resources in Yuxi and Nevada was conducted.
    (2) Differences in the occurrences of lithium in the two types of clay-type lithium resources in Yuxi and Nevada were investigated.
    (3) Yuxi-based clay-type lithium resources had the advantage of easy exploitation.
    BACKGROUNDSufficient mineralogical research on clay-type lithium resources is an important prerequisite for lithium extraction and leaching. Numerous clay-type lithium resources have been discovered in both Yuxi City of Yunnan Province in China and the state of Nevada in the USA; however, existing research on their mineralogical characteristics is relatively insufficient.
    OBJECTIVESTo explore the main chemical composition, phase composition, microscopic morphology, Li occurrence and other characteristics of clay-type lithium resource samples from Yuxi and Nevada and to provide theoretical support for the extraction and leaching of clay-type lithium resources in these two areas.
    METHODSX-ray fluorescence spectroscopy, inductively coupled plasma emission spectroscopy, inductively coupled plasma mass spectrometry, powder crystal X-ray diffraction analysis, and scanning electron microscopy were used to analyze the mineral and chemical differences in the clay-type lithium resources between the two samples (YM-1 and YM-2) collected from Yuxi City, Yunnan Province, and the two samples (Ame-1 and Ame-2) from Nevada, USA.
    RESULTSThe lithium contents of YM-1 and YM-2 and Ame-1 and Ame-2 were higher than 1000μg/g, which exhibited a certain development and utilization value. However, the clay-type lithium resource samples from the two investigated regions showed large differences in chemical composition, mineral composition, microscopic morphology, and lithium occurrences. (1) YM-1 and YM-2 had similar SiO2 and Al2O3 content, with the total amount of silicon and aluminum oxides exceeding 80%, whereas Ame-1 contained 60.39% SiO2 and Ame-2 comprised 42.30% CaO. (2) YM-1 and YM-2 were composed of kaolinite and montmorillonite, whereas Ame-1 and Ame-2 were composed of quartz, nontronite, stevensite, or calcite. (3) YM-1 and YM-2 were stacked in a layered structure with flat surfaces and had round edges and a relatively uniform size, whereas Ame-1 and Ame-2 were mainly represented by massive mineral aggregates of different sizes. (4) Montmorillonite in YM-1 and YM-2 served as the lithium source, whereas lithium in Ame-1 and Ame-2 originated from smectite minerals or illite.
    CONCLUSIONSThis study elucidated the mineralogical characteristics of clay-type lithium resources in Yuxi (Yunnan, China) and Nevada (USA). It provides a scientific basis for future development and utilization of the clay-type lithium resources in these two regions.

  • 焦距, 杨啸涛, 袁继海, 等. 便携式Li-K分析仪的研制及其在锂辉石中锂的分析应用[J]. 岩矿测试, 2016, 35(4): 366-372. doi: 10.15898/j.cnki.11-2131/td.2016.04.005

    Jiao J, Yang X T, Yuan J H, et al. Development of a portable Li-K analyzer and its application in the determination of lithium in spodumene[J]. Rock and Mineral Analysis, 2016, 35(4): 366-372. doi: 10.15898/j.cnki.11-2131/td.2016.04.005
    Xing P, Wang C Y, Zeng L, et al. Lithium extraction and hydroxysodalite zeolite synthesis by hydrothermal conversion of α-spodumene[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(10): 9498-9505. http://www.researchgate.net/publication/332885942_Lithium_Extraction_and_Hydroxysodalite_Zeolite_Synthesis_by_Hydrothermal_Conversion_of_a-Spodumene
    Gao L, Wang H Y, Li J L, et al. Recovery of lithium from lepidolite by sulfuric acid and separation of Al/Li by nanofiltration[J]. Minerals, 2020, 10(11): 981. doi: 10.3390/min10110981
    于沨, 王登红, 于扬, 等. 国内外主要沉积型锂矿分布及勘查开发现状[J]. 岩矿测试, 2019, 38(3): 354-364. doi: 10.15898/j.cnki.11-2131/td.201901180013

    Yu F, Wang D H, Yu Y, et al. The distribution and exploration status of domestic and foreign sedimentary-type lithium deposits[J]. Rock and Mineral Analysis, 2019, 38(3): 354-364. doi: 10.15898/j.cnki.11-2131/td.201901180013
    Kesler S E, Gruber P W, Medina P A, et al. Global lithium resources: Relative importance of pegmatite, brine and other deposits[J]. Ore Geology Reviews, 2012, 48: 55-69. doi: 10.1016/j.oregeorev.2012.05.006
    Benson T R, Coble M A, Rytuba J J, et al. Lithium enrichment in intracontinental rhyolite magmas leads to Li deposits in Caldera basins[J]. Nature Communications, 2017, 8: 270. doi: 10.1038/s41467-017-00234-y
    An J W, Kang D J, Tran K T, et al. Recovery of lithium from Uyuni salar brine[J]. Hydrometallurgy, 2012, 117-118: 64-70. doi: 10.1016/j.hydromet.2012.02.008
    刘卓, 周云峰, 柴登鹏, 等. 从盐湖卤水中提取锂的技术研究进展与展望[J]. 材料导报, 2015, 29(增刊2): 133-137. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2015S2033.htm

    Liu Z, Zhou Y F, Chai D P, et al. Progress and prospects of lithium extraction technology from salt lake brine[J]. Materials Review, 2015, 29(Supplement 2): 133-137. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2015S2033.htm
    Song Y F, Zhao T Y, He L H, et al. A promising approach for directly extracting lithium from α-spodumene by alkaline digestion and precipitation as phosphate[J]. Hydrometallurgy, 2019, 189: 105141. doi: 10.1016/j.hydromet.2019.105141
    Rosales G D, Resentera A C J, Gonzalez J A, et al. Efficient extraction of lithium from β-spodumene by direct roasting with NaF and leaching[J]. Chemical Engineering Research and Design, 2019, 150: 320-326. doi: 10.1016/j.cherd.2019.08.009
    苏慧, 朱兆武, 王丽娜, 等. 矿石资源中锂的提取与回收研究进展[J]. 化工学报, 2019, 70(1): 10-23. https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201901002.htm

    Su H, Zhu Z W, Wang L N, et al. Research progress in extraction and recovery of lithium from hard-rock ores[J]. Journal of Chemical Industry and Engineering, 2019, 70(1): 10-23. https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201901002.htm
    Guo H, Yu H Z, Zhou A A, et al. Kinetics of leaching lithium from α-spodumene in enhanced acid treatment using HF/H2SO4 as medium[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(2): 407-415. doi: 10.1016/S1003-6326(19)64950-2
    温汉捷, 罗重光, 杜胜江, 等. 碳酸盐黏土型锂资源的发现及意义[J]. 科学通报, 2020, 65(1): 53-59. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202001009.htm

    Wen H J, Luo C G, Du S J, et al. Carbonate-hosted clay-type lithium deposit and its prospecting significance[J]. Chinese Science Bulletin, 2020, 65(1): 53-59. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202001009.htm
    宋云华, 沈丽璞, 张乃娴, 等. 河南某黏土矿(岩)中黏土矿物及其稀土、锂等元素的初步研究[J]. 中国科学(化学), 1987(2): 204-213. http://www.cnki.com.cn/Article/CJFDTotal-JBXK198702011.htm

    Song Y H, Shen L P, Zhang N X, et al. Preliminary study on clay minerals, rare earth, lithium and other elements in a clay ore (rock) in Henan[J]. Scientia Sinica (Chimica), 1987(2): 204-213. http://www.cnki.com.cn/Article/CJFDTotal-JBXK198702011.htm
    Amer A M. The hydrometallurgical extraction of lithium from Egyptian montmorillonite-type clay[J]. JOM, 2008, 60(10): 55-57. doi: 10.1007/s11837-008-0137-5
    李荣改, 宋翔宇, 高志, 等. 河南某地低品位含锂黏土矿提锂新工艺研究[J]. 矿冶工程, 2014, 34(6): 81-84. doi: 10.3969/j.issn.0253-6099.2014.06.020

    Li R G, Song X Y, Gao Z, et al. New technology for extracting Li from low-grade lithium-bearing clay[J]. Mining and Metallurgical Engineering, 2014, 34(6): 81-84. doi: 10.3969/j.issn.0253-6099.2014.06.020
    Swain B. Recovery and recycling of lithium-A review[J]. Separation and Purification Technology, 2017, 172: 388-403. doi: 10.1016/j.seppur.2016.08.031
    Gu H N, Guo T F, Wen H J, et al. Leaching efficiency of sulfuric acid on selective lithium leachability from bauxitic claystone[J]. Minerals Engineering, 2020, 145: 106076. doi: 10.1016/j.mineng.2019.106076
    朱丽, 杨永琼, 顾汉念, 等. 黏土型锂资源中锂的浸出试验[J]. 有色金属(冶炼部分), 2020(11): 35-40. doi: 10.3969/j.issn.1007-7545.2020.11.007

    Zhu L, Yang Y Q, Gu H N, et al. Study on leaching of lithium from clay-type lithium deposit[J]. Nonferrous Metals (Extractive Metallurgy), 2020(11): 35-40. doi: 10.3969/j.issn.1007-7545.2020.11.007
    Edmunnd V E. Lime-gypsum processing of McDermitt clay for lithium recovery[R]. US: Bureau of Mines, 1983.
    Crocker L, Lien R H. Lithium and its recovery from low-grade Nevada clays[R]. US: Bureau of Mines, Department of Interior, 1987.
    Swain B. Separation and purification of lithium by solvent extraction and supported liquid membrane, analysis of their mechanism: A review[J]. Journal of Chemical Technology and Biotechnology, 2016, 91(10): 2549-2562. doi: 10.1002/jctb.4976
    Castor S B, Henry C D. Lithium-rich claystone in the McDermitt Caldera, Nevada, USA: Geologic, mineralogical, and geochemical characteristics and possible origin[J]. Minerals, 2020, 10(1): 68. doi: 10.3390/min10010068
    Glanzman R K, Mccarthy J H, Rytuba J J. Lithium in the McDermitt Caldera, Nevada and Oregon[J]. Energy, 1978, 3(3): 347-353. doi: 10.1016/0360-5442(78)90031-2
    贾玉衡, 钱建平. 电子探针-电感耦合等离子体质谱法研究不同种类石榴石的稀土元素配分和矿物学特征[J]. 岩矿测试, 2020, 39(6): 886-895. doi: 10.15898/j.cnki.11-2131/td.202005060007

    Jia Y H, Qian J P. Study on REE distribution and mineralogical characteristics of different garnets by electron probe and inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2020, 39(6): 886-895. doi: 10.15898/j.cnki.11-2131/td.202005060007
    洪汉烈, 方谦, 王朝文, 等. 岩浆母质对蚀变黏土矿物的约束: 以贵州新民剖面P-T界线附近火山灰层为例[J]. 地球科学, 2017, 42(2): 161-172. doi: 10.3969/j.issn.1672-6561.2017.02.003

    Hong H L, Fang Q, Wang C W, et al. Constraints of parent magma on altered clay minerals: A case study on the ashes near the Permin-Triassic boundary in Xinmin Section, Guizhou Province[J]. Earth Science, 2017, 42(2): 161-172. doi: 10.3969/j.issn.1672-6561.2017.02.003
    孙海平, 蒋婷, 李祉贤. 关于高岭土矿物的岩石学特征研究[J]. 科学技术创新, 2016(4): 80-82. doi: 10.3969/j.issn.1673-1328.2016.04.073

    Sun H P, Jiang T, Li Z X. Research on petrological characteristics of kaolin minerals[J]. Scientific and Technological Innovation, 2016(4): 80-82. doi: 10.3969/j.issn.1673-1328.2016.04.073
    Shi D, Zhang L C, Peng X W, et al. Extraction of lithium from salt lake brine containing boron using multistage centrifuge extractors[J]. Desalination, 2018, 441: 44-51. doi: 10.1016/j.desal.2018.04.029
    徐萍, 钱晓明, 郭昌盛, 等. 用于盐湖卤水镁锂分离的纳滤技术研究进展[J]. 材料导报, 2019, 33(3): 410-417. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201903007.htm

    Xu P, Qian X M, Guo C S, et al. Nanofiltration technology used for separation of magnesium and lithium from salt lake brine: A survey[J]. Materials Reports, 2019, 33(3): 410-417. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201903007.htm
    Ashraf M A, Li X C, Wang J F, et al. DiaNanofiltration-based process for effective separation of Li+ from the high Mg2+/Li+ ratio aqueous solution[J]. Separation and Purification Technology, 2020, 247: 116965. doi: 10.1016/j.seppur.2020.116965
    Li Z, Binnemans K. Selective removal of magnesium from lithium-rich brine for lithium purification by synergic solvent extraction using beta-diketones and Cyanex 923[J]. Aiche Journal, 2020, 66(7): e16246. http://www.researchgate.net/publication/340606601_Selective_removal_of_magnesium_from_lithium-rich_brine_for_lithium_purification_by_synergic_solvent_extraction_using_-diketones_and_Cyanex_923
    戴江洪, 王宏岩, 李平. 高纯碳酸锂制备研究进展[J]. 中国有色冶金, 2020, 49(1): 49-53. doi: 10.3969/j.issn.1672-6103.2020.01.013

    Dai J H, Wang H Y, Li P. Research development of preparation of high purity lithium carbonate[J]. China Nonferrous Metallurgy, 2020, 49(1): 49-53. doi: 10.3969/j.issn.1672-6103.2020.01.013
    Choubey P K, Kim M S, Srivastava R R, et al. Advance review on the exploitation of the prominent energy-storage element: Lithium. Part Ⅰ: From mineral and brine resources[J]. Minerals Engineering, 2016, 89: 119-137. doi: 10.1016/j.mineng.2016.01.010
    Reig M, Casas S, Gibert O, et al. Integration of nanofiltration and bipolar electrodialysis for valorization of seawater desalination brines: Production of drinking and waste water treatment chemicals[J]. Desalination, 2016, 382: 13-20. doi: 10.1016/j.desal.2015.12.013
    Bi Q, Zhang Z, Zhao C, et al. Study on the recovery of lithium from high Mg2+/Li+ ratio brine by nanofiltration[J]. Water Science and Technology, 2014, 70(10): 1690-1694. doi: 10.2166/wst.2014.426
    崔燚, 罗重光, 徐林, 等. 黔中九架炉组富锂黏土岩系的风化成因及锂的富集规律[J]. 矿物岩石地球化学通报, 2018, 37(4): 696-704. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201804014.htm

    Cui Y, Luo C G, Xu L, et al. Weathering origin and enrichment of lithium in clay rocks of the Jiujialu Formation, central Guizhou Province, southwest China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2018, 37(4): 696-704. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201804014.htm
    赵艺森, 王海芳, 魏阳. 赤泥的综合利用研究进展[J]. 现代化工, 2019, 39(3): 55-58. https://www.cnki.com.cn/Article/CJFDTOTAL-XDHG201903012.htm

    Zhao Y S, Wang H F, Wang Y. Advances in comprehensive utilization of red mud[J]. Modern Chemical Industry, 2019, 39(3): 55-58. https://www.cnki.com.cn/Article/CJFDTOTAL-XDHG201903012.htm
    宁树正, 黄少青, 朱士飞, 等. 中国煤中金属元素成矿区带[J]. 科学通报, 2019, 64(4): 45-57. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201924006.htm

    Ning S Z, Huang S Q, Zhu S F, et al. Mineralization zoning of coal-metal deposits in China[J]. Chinese Science Bulletin, 2019, 64(4): 45-57. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201924006.htm
    何涌, 雷新荣. 结晶化学[M]. 北京: 化学工业出版社, 2008.

    He Y, Lei X R. Crystal chemistry[M]. Beijing: Chemical Industry Press, 2008.
    赵晨, 印万忠, 朱一民, 等. 方解石与硅灰石可浮性差异的机理研究[J]. 矿产保护与利用, 2020(4): 82-88. https://www.cnki.com.cn/Article/CJFDTOTAL-KCBH202004015.htm

    Zhao C, Yin W Z, Zhu Y M, et al. Study on the mechanism of floatability differences between calcite and wollastonite[J]. Conservation and Utilization of Mineral Resources, 2020(4): 82-88. https://www.cnki.com.cn/Article/CJFDTOTAL-KCBH202004015.htm
    Song X W, Cao Y W, Bu X Z, et al. Porous vaterite and cubic calcite aggregated calcium carbonate obtained from steamed ammonia liquid waste for Cu2+ heavy metal ions removal by adsorption process[J]. Applied Surface Science, 2021, 536: 147958. doi: 10.1016/j.apsusc.2020.147958
    卢龙飞, 蔡进功, 刘文汇, 等. 泥岩与沉积物中黏土矿物吸附有机质的三种赋存状态及其热稳定性[J]. 石油与天然气地质, 2013(1): 16-26. https://d.wanfangdata.com.cn/periodical/syytrqdz201301003

    Lu L F, Cai J G, Liu W H, et al. Occurrence and thermostability of absorbed organic matter on clay minerals in mudstones and muddy sediments[J]. Oil & Gas Geology, 2013(1): 16-26. https://d.wanfangdata.com.cn/periodical/syytrqdz201301003
    牛庆合. 超临界CO2注入无烟煤力学响应机理与可注性试验研究[D]. 徐州: 中国矿业大学, 2019.

    Niu Q H. Experimental study on the mechanical response mechanism and injectivity with supercritical CO2 injection in anthracite[D]. Xuzhou: China University Mining and Technology, 2019.
    李荣改, 宋翔宇, 徐靖, 等. 河南某含锂黏土矿工艺矿物学研究[J]. 矿产保护与利用, 2014(6): 38-41.

    Li R G, Song X Y, Xu J, et al. Process mineralogy research on a lithium clay in Henan[J]. Conservation and Utilization of Mineral Resources, 2014(6): 38-41.
    张俊文. 花岗岩风化过程锂同位素行为及其环境指示意义[D]. 武汉: 中国地质大学(武汉), 2018.

    Zhang J W. Behavior of lithium isotopes and environmental indications during granite weathering[D]. Wuhan: China University of Geosciences (Wuhan), 2018.
    钟海仁, 孙艳, 杨岳清, 等. 铝土矿(岩)型锂资源及其开发利用潜力[J]. 矿床地质, 2019, 38(4): 898-916. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201904014.htm

    Zhong H R, Sun Y, Yang Y Q, et al. Bauxite (aluminum)-type lithium resources and analysis of its development and utilization potential[J]. Mineral Deposits, 2019, 38(4): 898-916. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201904014.htm

Catalog

    Article views (2215) PDF downloads (60) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return