• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
MIN Hong, LIU Qian, ZHANG Jin-yang, ZHOU Hai-ming, YAN De-tian, XING Yan-jun, LI Chen, LIU Shu. Study on the Mineralogical Characteristics of 12 Copper Concentrates by X-ray Fluorescence Spectrometry, X-ray Powder Diffraction and Polarization Microscope[J]. Rock and Mineral Analysis, 2021, 40(1): 74-84. DOI: 10.15898/j.cnki.11-2131/td.202004020038
Citation: MIN Hong, LIU Qian, ZHANG Jin-yang, ZHOU Hai-ming, YAN De-tian, XING Yan-jun, LI Chen, LIU Shu. Study on the Mineralogical Characteristics of 12 Copper Concentrates by X-ray Fluorescence Spectrometry, X-ray Powder Diffraction and Polarization Microscope[J]. Rock and Mineral Analysis, 2021, 40(1): 74-84. DOI: 10.15898/j.cnki.11-2131/td.202004020038

Study on the Mineralogical Characteristics of 12 Copper Concentrates by X-ray Fluorescence Spectrometry, X-ray Powder Diffraction and Polarization Microscope

More Information
  • Received Date: April 01, 2020
  • Revised Date: May 30, 2020
  • Accepted Date: November 01, 2020
  • Published Date: January 27, 2021
  • HIGHLIGHTS
    (1) The main elements of 12 copper concentrates were Cu, Fe, S, O with minor elements of Zn, Si, Al, Mg, Ca, Pb.
    (2) The main phases of 12 copper concentrates were chalcopyrite, associated with pyrite and sphalerite.
    (3) Different types of copper concentrates have different mineralogical characteristics, which can be used for source discrimination.
    BACKGROUNDChina is the largest importer of copper concentrate in the world. Studying the mineralogical characteristics of copper concentrates imported from different origins can be used to support the origin analysis and solid waste identification of copper concentrates.
    OBJECTIVESTo investigate the elemental composition and mineral assemblage characteristics of imported copper concentrates from different mining areas, and to discuss the mineralogical differences of copper concentrates of different genetic types.
    METHODSThe copper concentrates imported from different mining areas were comprehensively analyzed by X-ray fluorescence spectrometry (XRF), X-ray powder diffraction (XRD) and polarized microscopy (PM).
    RESULTSX-ray fluorescence spectroscopy analysis showed that the main elements of the copper concentrates were Cu, Fe, S, O with minor Zn, Si, Al, Mg, Ca, Pb. X-ray powder diffraction phase analysis showed that the main phase of the copper concentrate sample was chalcopyrite, followed by pyrite and sphalerite. Polarization microscope showed that the content of chalcopyrite in copper concentrates was between 88% and 98%, and it was found that chalcopyrite was associated with sphalerite, pyrite and pyrrhotite, and that sphalerite was associated with bornite, arsenotetrahedrite. Chalcopyrite, arsenotetrahedrite and bornite form intergrowths. Combining the analysis of different genetic types of copper concentrates, samples of porphyry, skarn and VMS deposits were composed of chalcopyrite, pyrite and sphalerite with respective special minerals of biotite, weddellite and lead anglesite. The main minerals of the IOCG deposit samples were chalcopyrite, pyrrhotite and talc.
    CONCLUSIONSThrough the combination of XRF, XRD and PM, the elemental content and phase composition of copper concentrate samples were characterized. The mineralogical characteristics of copper concentrate samples from different origins have been more comprehensively analyzed, which is of great significance for risk identification and control of imported copper concentrates.

  • Mitchell A H G.Mineral deposits and global tectonic settings[M].London: Academic Press Inc.Ltd, 1981.
    Hutchison C S. Economic deposits and their tectonic setting[M]. New York: Macmillan, 1983.
    Jankovic S. The copper deposits and geotectonic setting of the Thethyan Eurasian metallogenic belt[J]. Mineralium Deposita, 1977, 12(1): 37-47. doi: 10.1007/BF00204503
    Bradley D, Cand Leach D L. Tectonic controls of Mississippi Valley-type lead-zinc mineralization in orogenic forelands[J]. Mineralium Deposita, 2003, 38(6): 652-667. doi: 10.1007/s00126-003-0355-2
    Brzovic A, Villaescusa E. Rock mass characterization and assessment of block-forming geological discontinuities during caving of primary copper ore at the El Teniente mine, Chile[J]. International Journal of Rock Mechanics & Mining Sciences, 2007, 44(4): 565-583. http://www.sciencedirect.com/science/article/pii/S1365160906001493
    Lena V S, Emerson R, Craig A, et al. Spatial and temporal zoning of hydrothermal alteration and mineralization in the Sossego iron oxide copper gold deposit, Carajás Mineral Province, Brazil: Paragenesis and stable isotope constraints[J]. Mineralium Deposita, 2008, 43: 129-159. doi: 10.1007/s00126-006-0121-3
    Machault J, Barbanson L, Augé T, et al. Mineralogical and microtextural parameters in metals ores traceability studies[J]. Ore Geology Reviews, 2014, 63: 307-327. doi: 10.1016/j.oregeorev.2014.05.019
    Rozendaal A, Horn R. Textural, mineralogical and chemical characteristics of copper reverb furnace smelter slag of the Okiep Copper District, South Africa[J]. Minerals Engineering, 2013, 52: 184-190. doi: 10.1016/j.mineng.2013.06.020
    Soysouvanh V, Ariffin K S, Wantanabe K. Ore mineralogy and geochemistry of the Phu Kham Porphyry copper-gold deposit, Hosted within N-E Fault Zone, Lao PDR[J]. Procedia Chemistry, 2016, 19: 961-968. doi: 10.1016/j.proche.2016.03.142
    Velasco F, Herrero J M, Suárez S, et al. Supergene features and evolution of gossans capping massive sulphide deposits in the Iberian Pyrite Belt[J]. Ore Geology Reviews, 2013, 53: 181-203. doi: 10.1016/j.oregeorev.2013.01.008
    梅燕雄, 裴荣富, 杨德凤, 等. 全球成矿域和成矿区带[J]. 矿床地质, 2009, 28(4): 383-389. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200904000.htm

    Mei Y X, Pei R F, Yang D F, et al. Global metallogenic domains and districts[J]. Mineral Deposits, 2009, 28(4): 383-389. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200904000.htm
    张强, 钟琼, 贾振宏, 等. 世界铜矿资源与矿山铜生产状况分析[J]. 矿产与地质, 2014, 28(2): 196-201. https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD201402012.htm

    Zhang Q, Zhong Q, Jia Z H, et al. An analysis on global copper ore resource and copper production of mines[J]. Mineral Resources and Geology, 2014, 28(2): 196-201. https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD201402012.htm
    刘喜锋, 贾玉衡, 刘琰. 新疆若羌-且末戈壁料软玉的地球化学特征及成因类型研究[J]. 岩矿测试, 2019, 38(3): 316-325. doi: 10.15898/j.cnki.11-2131/td.2015.05.003

    Liu X F, Jia Y H, Liu Y. Geochemical characteristics and genetic types of Gobi nephrite in Ruoqiang-Qiemo, Xinjiang[J]. Rock and Mineral Analysis, 2019, 38(3): 316-325. doi: 10.15898/j.cnki.11-2131/td.2015.05.003
    Seetha D, Velraj G. FT-IR, XRD, SEM-EDS, EDXRF and chemometric analyses of archaeological artifacts recently excavated from Chandravalli in Karnataka State, South India[J]. Radiation Physics and Chemistry, 2019, 162: 114-120. doi: 10.1016/j.radphyschem.2019.03.017
    Murat H, Necdet T. A combined polarizing microscope, XRD, SEM, and specific gravity study of the petrified woods of volcanic origin from the Camlidere-Celtikci-Gudul fossil forest, in Ankara, Turkey[J]. Journal of African Earth Sciences, 2009, 53: 141-157. doi: 10.1016/j.jafrearsci.2009.01.001
    孟长峰, 薛俊辉. X射线荧光光谱-X射线衍射研究宁夏贺兰石岩石矿物学特征[J]. 岩矿测试, 2018, 37(1): 50-55. doi: 10.15898/j.cnki.11-2131/td.2015.05.003

    Meng C F, Xue J H. Study on petrological and mineralogical characteristics of the Ningxia Helan stone by X-ray fluorescence spectrometry and X-ray diffraction[J]. Rock and Mineral Analysis, 2018, 37(1): 50-55. doi: 10.15898/j.cnki.11-2131/td.2015.05.003
    刘倩, 秦晔琼, 刘曙, 等. X射线荧光光谱结合BP神经网络识别进口铜精矿产地[J]. 光谱学与光谱分析, 2020, 40(9): 2884-2890. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202009043.htm

    Liu Q, Qin Y Q, Liu S, et al. X-ray fluorescence spectroscopy combined with BP neural network to identify imported copper concentrate origin[J]. Spectroscopy and Spectral Analysis, 2020, 40(9): 2884-2890. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202009043.htm
    刘喜锋, 张红清, 刘琰, 等. 世界范围内代表性碧玉的矿物特征和成因研究[J]. 岩矿测试, 2018, 37(5): 479-489. doi: 10.15898/j.cnki.11-2131/td.201712010187

    Liu X F, Zhang H Q, Liu Y, et al. Mineralogical characteristics and genesis of green nephrite from the world[J]. Rock and Mineral Analysis, 2018, 37(5): 497-489. doi: 10.15898/j.cnki.11-2131/td.201712010187
    李欣桐, 先怡衡, 樊静怡, 等. 应用扫描电镜-X射线衍射-电子探针技术研究河南淅川绿松石矿物学特征[J]. 岩矿测试, 2019, 38(4): 373-381. doi: 10.15898/j.cnki.11-2131/td.201809090102

    Li X T, Xian Y H, Fan J Y, et al. Application of XRD-SEM-XRD-EMPA to study the mineralogical characteristics of turquoise from Xichuan, Henan Province[J]. Rock and Mineral Analysis, 2019, 38(4): 373-381. doi: 10.15898/j.cnki.11-2131/td.201809090102
    Hupp N, Donovan J. Quantitative mineralogy for facies definition in the Marcellus shale (Appalachian Basin, USA) using XRD-XRF integration[J]. Sedimentary Geology, 2018, 371: 16-31. doi: 10.1016/j.sedgeo.2018.04.007
    吕新明, 田延河, 宁海龙, 等. 波长色散X射线荧光光谱仪和多晶X射线衍射仪联用技术鉴定进口铜矿和含铜物料[J]. 中国无机分析化学, 2018, 8(4): 21-25. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX201804006.htm

    Lv X M, Tian Y H, Ning H L, et al. Indentification of imports of copper materials by wavelength dispersive X-ray fluorescence (XRF) spectrometer and polycrystalline X-ray diffraction (XRD) spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2018, 8(4): 21-25. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX201804006.htm
    宋义, 古松海, 孙鑫, 等. 铜精矿与铜冶炼渣的物相鉴别[J]. 冶金分析, 2015, 35(3): 25-31. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201503006.htm

    Song Y, Gu S H, Sun X, et al. Phase identification of copper concentrate and copper smelting slag[J]. Metallurgical Analysis, 2015, 35(3): 25-31. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201503006.htm
    咸洋, 闵红, 朱之秀, 等. 多技术联用鉴别含铜物料固体废物属性[J]. 机械工程材料, 2018, 12(42): 18-26. https://www.cnki.com.cn/Article/CJFDTOTAL-GXGC201812005.htm

    Xian Y, Min H, Zhu Z X, et al. Solid waste characteristic identification of copper-containing materials with a variety of techniques[J]. Materials for Mechanical Engineering, 2018, 12(42): 18-26. https://www.cnki.com.cn/Article/CJFDTOTAL-GXGC201812005.htm
    Deckart K, Silva W, Sprohnle C, et al. Timing and dur-ation of hydrothermal activity at the Los Bronces porphyry cluster: An update[J]. Mineralium Deposita, 2014, 49: 535-546. doi: 10.1007/s00126-014-0512-9
    Seedorff E, Dilles H, Proffett M, et al. Porphyry deposits: Characteristics and origin of hypogene features[J]. Society of Economic Geologists, 2005, 100: 251-298. http://ci.nii.ac.jp/naid/10030173981
    毛景文, 罗茂澄, 谢桂青, 等. 斑岩铜矿床的基本特征和研究勘查新进展[J]. 地质学报, 2014, 88(12): 2153-2175. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201412002.htm

    Mao J W, Luo M C, Xie G Q, et al. Basic characteristics and new advances in research and exploration on porphyry copper deposits[J]. Acta Geologica Sinica, 2014, 88(12): 2153-2175. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201412002.htm
    瞿泓滢, 裴荣富, 梅燕雄, 等. 国外超大型-特大型铜矿床成矿特征[J]. 中国地质, 2013, 40(2): 371-390. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201302003.htm

    Qu H Y, Pei R F, Mei Y X, et al. Metallogenic characteristics of superlarge and exceptional superlarge Cu deposits abroad[J]. Geology in China, 2013, 40(2): 371-390. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201302003.htm
    周平, 唐金荣, 杨宗喜, 等. 铜矿资源战略分析[M]. 北京: 地质出版社, 2012.

    Zhou P, Tang J R, Yang Z X, et al. Strategic analysis of copper resources[M]. Beijing: Geological Publishing House, 2012.
    胡树起, 马生明, 刘崇民. 斑岩型铜矿勘查地球化学研究现状及进展[J]. 物化与化探, 2011, 35(4): 431-437. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201104002.htm

    Hu S Q, Ma S M, Liu C M. The present situation and research advances of exploration geochemistry for porphyry copper deposits[J]. Geophysical & Geochemical Exploration, 2011, 35(4): 431-437. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201104002.htm
    Lee C T A, Tang M. How to make porphyry deposits[J]. Earth and Planetary Science Letters, 2020, 628(11): 58-68.
    翟裕生, 姚书振, 蔡克勤. 矿床学[M]. 北京: 地质出版社, 2011.

    Zhai Y S, Yao S Z, Cai K Q. Deposits[M]. Beijing: Geological Publishing House, 2011.
    Lena V S, Roberto P, Murray W, et al. Mineral chemistry of ore and hydrothermal alteration at the Sossego iron oxide-copper-gold deposit, Carajas mineral province, Brazil[J]. Ore Geology Reviews, 2008, 37: 317-336. http://www.sciencedirect.com/science/article/pii/S0169136808000048
    刘心同, 孙健. 铜矿贸易与质量检测[M]. 青岛: 中国海洋出版社, 2016.

    Liu X T, Sun J. Copper ore trade and quality inspection[M]. Qingdao: China Ocean Press, 2016.
    Chen H Y. External sulphur in IOCG mineralization: Implications on definition and classification of the IOCG clan[J]. Ore Geology Reviews, 2013, 51: 74-78. doi: 10.1016/j.oregeorev.2012.12.002
    Franklin J M, Gibson H L, Jonasson I R, et al. Volcan-ogenic massive sulfide deposits[J]. Economic Geologists, 2005, 100: 523-560.
  • Cited by

    Periodical cited type(5)

    1. 金一,安帅,刘欣,宋丽华,赵恩好,马健生,张志斌. 基于X射线荧光光谱-X射线衍射技术的泥土物证分析与区域分类鉴别研究. 岩矿测试. 2024(05): 744-754 . 本站查看
    2. 冯博,柯珍,阳栩生. 微细粒矿物浮选研究进展:机理、技术、设备及检测方法. 有色金属(选矿部分). 2024(12): 1-18 .
    3. 刘金,王剑,王桂君,张晓刚,尚玲. 利用电子探针和X射线衍射研究准噶尔盆地风城组淡钡钛石矿物学特征. 岩矿测试. 2022(05): 764-773 . 本站查看
    4. 王智超,杨春梅,孟志远,陈小军,范添乐,崔佳佳. 纳米载体中空介孔二氧化硅提高四氯虫酰胺的内吸能力. 农药. 2022(11): 803-807 .
    5. 李春花,张倩,张文龙,舒小华,刘杰. 黄铁矿氧化过程中水的作用再认识. 桂林理工大学学报. 2022(03): 695-703 .

    Other cited types(3)

Catalog

    Article views (3645) PDF downloads (69) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return