• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
MENG Qing-guo, LIU Chang-ling, LI Cheng-feng, HAO Xi-luo. Characterization of Binary Hydrates Containing Methane by X-ray Diffraction and Microscopic Laser Raman Spectroscopy[J]. Rock and Mineral Analysis, 2021, 40(1): 85-94. DOI: 10.15898/j.cnki.11-2131/td.202005290077
Citation: MENG Qing-guo, LIU Chang-ling, LI Cheng-feng, HAO Xi-luo. Characterization of Binary Hydrates Containing Methane by X-ray Diffraction and Microscopic Laser Raman Spectroscopy[J]. Rock and Mineral Analysis, 2021, 40(1): 85-94. DOI: 10.15898/j.cnki.11-2131/td.202005290077

Characterization of Binary Hydrates Containing Methane by X-ray Diffraction and Microscopic Laser Raman Spectroscopy

More Information
  • Received Date: May 28, 2020
  • Revised Date: August 17, 2020
  • Accepted Date: September 18, 2020
  • Published Date: January 27, 2021
  • HIGHLIGHTS
    (1) The structures of binary hydrates containing methane were characterized by X-ray powder diffraction and microscopic laser Raman spectroscopy.
    (2) The larger molecules played a dominant role in the crystal structure of binary hydrates containing methane.
    (3) The Raman characteristics of methane molecules in the binary hydrates were significantly affected by the large molecules.
    BACKGROUND The crystal structure of natural gas hydrate mainly depends on the species and composition of guest molecules. At present, the structure and spectral characteristics of single-component hydrate are relatively clear, but the studies of multi-component hydrates are relatively scarce.
    OBJECTIVES To solve the problem of structure identification of multi-component hydrate, and understand its spectral characteristics.
    METHODS Methane-propane (CH4-C3H8) and methane-tetrahydrofuran (CH4-THF) binary hydrates, as well as CH4, C3H8 and THF (molar ratio 1:17) single-component hydrate samples were synthesized and characterized by low-temperature X-ray powder diffraction (PXRD) and Raman spectroscopy.
    RESULTS Both of the binary hydrates were typical structure Ⅱ hydrates, which were the same as those of C3H8 and THF hydrate. The crystal cell parameters a for CH4-C3H8 and CH4-THF binary hydrates were 17.2312×10-10 m and 17.2241×10-10 m, respectively. For CH4-C3H8 hydrate, CH4 was distributed in both large and small cages, showing two characteristic Raman peaks (2900cm-1 and 2911cm-1); C3H8 was only distributed in the large cage. Compared with C3H8 hydrate, the C-H stretching vibration peak was almost unchanged while the C-C stretching vibration peak (873cm-1) shifted by 3cm-1 to low frequency. For CH4-THF hydrate, the large cage was occupied by THF and CH4 was only filled in the small cage (2910cm-1). The peak positions of C-C and C-H stretching vibrations of THF in CH4-THF hydrate were consistent with those of THF hydrate.
    CONCLUSIONS The structure types of binary hydrates are consistent with those of single component hydrates. Molecules with larger sizes play a key role in the crystal structure of binary hydrates containing CH4. Moreover, the distribution of CH4 molecules in the cages are also influenced by larger molecules, and the Raman spectral characteristics of binary hydrates are significantly different. The conclusion of this study has important guiding significance for identifying the microstructure of multi-component hydrate based on spectral characteristics.

  • Li J, Ye J, Qin X, et al. The first offshore natural gas hydrate production test in South China Sea[J]. China Geology, 2018, 1(1): 5-16. doi: 10.31035/cg2018003
    叶建良, 秦绪文, 谢文卫, 等. 中国南海天然气水合物第二次试采主要进展[J]. 中国地质, 2020, 47(3): 557-568. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202003002.htm

    Ye J L, Qin X W, Xie W W, et al. Main progress of the second gas hydrate trial production in the South China Sea[J]. Geology in China, 2020, 47(3): 557-568. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202003002.htm
    Sloan E D. Fundamental principles and applications of natural gas hydrates[J]. Nature, 2003, 426(6964): 353-359. doi: 10.1038/nature02135
    Liu C, Meng Q, He X, et al. Characterization of natural gas hydrate recovered from Pearl River Mouth Basin in South China Sea[J]. Marine and Petroleum Geology, 2015, 61: 14-21. doi: 10.1016/j.marpetgeo.2014.11.006
    Liu C, Meng Q, Hu G, et al. Characterization of hydrate-bearing sediments recovered from the Shenhu area of the South China Sea[J]. Interpretation, 2017, 5(3): SM13-SM23. doi: 10.1190/INT-2016-0211.1
    孟庆国, 刘昌岭, 李承峰, 等. 青海聚乎更钻探区天然气水合物拉曼光谱特征[J]. 现代地质, 2015, 29(5): 200-208. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201505023.htm

    Meng Q G, Liu C L, Li C F, et al. Raman spectroscopic characteristics of natural gas hydrates from Juhugeng drilling area, Qinghai[J]. Geoscience, 2015, 29(5): 200-208. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201505023.htm
    Wei J, Fang Y, Lu H, et al. Distribution and characteristics of natural gas hydrates in the Shenhu Sea Area, South China Sea[J]. Marine and Petroleum Geology, 2018, 98: 622-628. doi: 10.1016/j.marpetgeo.2018.07.028
    Yu Y S, Zhang Q Z, Li X S, et al. Kinetics, compositions and structures of carbon dioxide/hydrogen hydrate formation in the presence of cyclopentane[J]. Applied Energy, 2020, 265: 114808. doi: 10.1016/j.apenergy.2020.114808
    夏宁, 刘昌岭, 业渝光, 等. 显微激光拉曼光谱测定天然气水合物的方法研究[J]. 岩矿测试, 2011, 30(4): 416-422. doi: 10.15898/j.cnki.11-2131/td.201809090102

    Xia N, Liu C L, Ye Y G, et al. Study on determination method of natural gas hydrates by micro-laser Raman spectroscopy[J]. Rock and Mineral Analysis, 2011, 30(4): 416-422. doi: 10.15898/j.cnki.11-2131/td.201809090102
    Cho S J, Hai T L S, Lee J D. In-situ Raman and kinetic study on the methane hydrate formation and decomposition[J]. Energy Procedia, 2019, 158: 5615-5621. doi: 10.1016/j.egypro.2019.01.578
    孟庆国, 刘昌岭, 业渝光, 等. 甲烷水合物分解过程原位激光拉曼光谱观测[J]. 天然气工业, 2010, 30(6): 117-120. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201006038.htm

    Meng Q G, Liu C L, Ye Y G, et al. In situ Raman spectroscopic observation on methane hydrate dissociation[J]. Natural Gas Industry, 2010, 30(6): 117-120. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201006038.htm
    张保勇, 周泓吉, 吴强, 等. 不同驱动力下瓦斯水合物生长过程Raman光谱特征[J]. 光谱学与光谱分析, 2017, 37(9): 118-123. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201709023.htm

    Zhang B Y, Zhou H J, Wu Q, et al. Raman spectra characteristics of gas hydrate growth with different driving forces[J]. Spectroscopy and Spectral Analysis, 2017, 37(9): 118-123. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201709023.htm
    Guo D, Ou W, Ning F, et al. The effects of hydrate formation and dissociation on the water-oil interface: Insight into the stability of an emulsion[J]. Fuel, 2020, 266: 116980. doi: 10.1016/j.fuel.2019.116980
    Li Z, Holzammer C C, Braeuer A S. Analysis of the dis-solution of CH4/CO2 mixtures into liquid water and the subsequent hydrate formation via in situ Raman spectroscopy[J]. Energies, 2020, 13(4): 793. doi: 10.3390/en13040793
    Lee Y, Choi W, Seo Y J, et al. Structural transition induced by cage-dependent guest exchange in CH4+C3H8 hydrates with CO2 injection for energy recovery and CO2 sequestration[J]. Applied Energy, 2018, 228: 229-239. doi: 10.1016/j.apenergy.2018.06.088
    Tang C, Zhou X, Li D, et al. In situ Raman investigation on mixed CH4-C3H8 hydrate dissociation in the presence of polyvinylpyrrolidone[J]. Fuel, 2018, 214: 505-511. doi: 10.1016/j.fuel.2017.11.063
    Fang B, Ning F, Cao P, et al. Modeling thermodynamic properties of propane or tetrahydrofuran mixed with carbon dioxide or methane in structure-Ⅱ clathrate hydrates[J]. The Journal of Physical Chemistry C, 2017, 121(43): 23911-23925. doi: 10.1021/acs.jpcc.7b06623
    Shi L, Ding J, Liang D. Enhanced CH4 storage in hydrates with the presence of sucrose stearate[J]. Energy, 2019, 180: 978-988. doi: 10.1016/j.energy.2019.05.151
    Kumar A, Veluswamy H P, Kumar R, et al. Direct use of seawater for rapid methane storage via clathrate (sⅡ) hydrates[J]. Applied Energy, 2019, 235: 21-30. doi: 10.1016/j.apenergy.2018.10.085
    Khurana M, Veluswamy H P, Daraboina N, et al. Therm odynamic and kinetic modelling of mixed CH4-THF hydrate for methane storage application[J]. Chemical Engineering Journal, 2019, 370: 760-771. doi: 10.1016/j.cej.2019.03.172
    Kumar A, Veluswamy H P, Linga P, et al. Molecular level investigations and stability analysis of mixed methane-tetrahydrofuran hydrates: Implications to energy storage[J]. Fuel, 2019, 236: 1505-1511. doi: 10.1016/j.fuel.2018.09.126
    Castillo-Borja F, Bravo-Sánchez U I, Vázquez-Román R, et al. Biogas purification via sⅡ hydrates in the presence of THF and DMSO solutions using MD simulations[J]. Journal of Molecular Liquids, 2020, 297: 111904. doi: 10.1016/j.molliq.2019.111904
    Dong Q B, Su W, Liu X W, et al. Separation of the N2/CH4 mixture through hydrate formation in ordered mesoporous carbon[J]. Adsorption Science & Technology, 2014, 32(10): 821-832. http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=100517248&site=ehost-live
    孟庆国. 多组分气体水合物结构特征及生成分解过程研究[D]. 北京: 中国地质科学院, 2019.

    Meng Q G.Research on the multi-component gas hydrates: Structure characteristics, formation and dissociation process[D].Beijing: Chinese Academy of Geological Sciences, 2019.
    刘昌岭, 孟庆国. X射线衍射法在天然气水合物研究中的应用[J]. 岩矿测试, 2014, 33(4): 468-479. doi: 10.15898/j.cnki.11-2131/td.201809090102

    Liu C L, Meng Q G. Applications of X-ray diffraction in natural gas hydrate research[J]. Rock and Mineral Analysis, 2014, 33(4): 468-479. doi: 10.15898/j.cnki.11-2131/td.201809090102
    孟庆国, 刘昌岭, 李承峰, 等. 常见客体分子对笼型水合物晶格常数的影响[J]. 物理化学学报, 2020, 36. doi: 10.3866/PKU.WHXB201910010.

    Meng Q G, Liu C L, Li C F, et al. Effect of common guest molecules on the lattice constants of clathrate hydrates[J]. Acta Physico-Chimica Sinica, 2020, 36. doi: 10.3866/PKU.WHXB201910010.
    田苗, 孟庆国, 刘昌岭, 等. 天然气水合物粉晶X射线衍射测试参数优化及分析方法[J]. 岩矿测试, 2017, 36(5): 481-488. doi: 10.15898/j.cnki.11-2131/td.201809090102

    Tian M, Meng Q G, Liu C L, et al. Parameter optimization and analysis method for determination of natural gas hydrate by powder X-ray diffraction[J]. Rock and Mineral Analysis, 2017, 36(5): 481-488. doi: 10.15898/j.cnki.11-2131/td.201809090102
    Kim E, Seo Y. A novel discovery of a gaseous sH clath-rate hydrate former[J]. Chemical Engineering Journal, 2019, 359: 775-778. doi: 10.1016/j.cej.2018.11.170
    Xu C G, Yan R, Fu J, et al. Insight into micro-mechanism of hydrate-based methane recovery and carbon dioxide capture from methane-carbon dioxide gas mixtures with thermal characterization[J]. Applied Energy, 2019, 239: 57-69. doi: 10.1016/j.apenergy.2019.01.087
    Takeya S, Kamata Y, Uchida T, et al. Coexistence of structureⅠand Ⅱ hydrates formed from a mixture of methane and ethane gases[J]. Canadian Journal of Physics, 2003, 81(1-2): 479-484. doi: 10.1139/p03-038
    Menezes D E S D, Sum A K, Desmedt A, et al. Coexi-stence of sⅠ and sⅡ in methane-propane hydrate former systems at high pressures[J]. Chemical Engineering Science, 2019, 208: 115149. doi: 10.1016/j.ces.2019.08.007
    Yu C, Chen L, Sun B. Experimental characterization of guest molecular occupancy in clathrate hydrate cages: A review[J]. Chinese Journal of Chemical Engineering, 2019, 27: 2189-2206. doi: 10.1016/j.cjche.2019.03.026
    Hiraga Y, Sasagawa T, Yamamoto S, et al. A precise deconvolution method to derive methane hydrate cage occupancy ratios using Raman spectroscopy[J]. Chemical Engineering Science, 2019, 214: 115361. http://www.sciencedirect.com/science/article/pii/S0009250919308516
    Prasad P S R, Sowjanya Y, Prasad K S. Micro-Raman investigations of mixed gas hydrates[J]. Vibrational Spectroscopy, 2009, 50(2): 319-323. doi: 10.1016/j.vibspec.2009.02.003
    孟庆国, 刘昌岭, 贺行良, 等. 祁连山冻土区天然气水合物激光拉曼光谱特征[J]. 地质通报, 2011, 30(12): 1863-1867. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201112009.htm

    Meng Q G, Liu C L, He X L, et al. Laser-Raman spectroscopy characteristics of natural gas hydrates from Qilian Mountain permafrost[J]. Geological Bulletin of China, 2011, 30(12): 1863-1867. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201112009.htm
    Prasad P S R, Chari V D. Preservation of methane gas in the form of hydrates: Use of mixed hydrates[J]. Journal of Natural Gas Science & Engineering, 2015, 25: 10-14. http://www.sciencedirect.com/science/article/pii/S1875510015001778
    Truong-Lam H S, Seo S D, Kim S, et al. In situ Raman study of the formation and dissociation kinetics of methane and methane/propane hydrates[J]. Energy & Fuels, 2020, 34(5): 6288-6297. doi: 10.1021/acs.energyfuels.0c00813
    孟庆国, 刘昌岭, 业渝光, 等. 13C固体核磁共振法测定CH4-THF二元水合物的微观结构特征[J]. 天然气工业, 2015, 35(3): 135-140. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201503028.htm

    Meng Q G, Liu C L, Ye Y G, et al. Measurement of micro-structure features of binary CH4-THF clathrate hydrate based on the 13C solid state NMR[J]. Natural Gas Industry, 2015, 35(3): 135-140. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201503028.htm
    Tulk C A, Klug D D, Ripmeester J A. Raman spectro-scopic studies of THF clathrate hydrate[J]. Journal of Physical Chemistry A, 1998, 102(45): 8734-8739. doi: 10.1021/jp981497q
  • Related Articles

    [1]JI Ang. Development of X-ray Fluorescence Spectrometry in the 30 Years[J]. Rock and Mineral Analysis, 2012, 31(3): 383-398.
    [2]MA Tian-fang, LI Xiao-li, CHEN Yong-jun, DENG Zhen-pin, LI Guo-hui. Interchangeable Analysis of Method on the X-ray Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2011, 30(4): 486-490.
    [3]LI Xiaoli, AN Shuqing, XU Tiemin, YANG Lifeng, LI Guohui, ZHU Jianfeng. Determination of Major and Minor Components in Coal Ash Samples by X-ray Fluorescence Spectrometry with Fused Bead Sample Preparation[J]. Rock and Mineral Analysis, 2009, 28(4): 385-387.
    [4]ZHANG Jian-bo, LIN Li, LIU Zai-mei. Determinations of Major and Minor Components in Titanium Concentrates by X-ray Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2009, 28(2): 188-190.
    [5]Determination of 31 Components in Soil Samples by X-ray Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2007, 26(6): 490-492.
    [6]Determination of Calcium Fluoride in Fluorspar by X-ray Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2007, 26(5): 419-420.
    [7]X-ray Fluorescence Spectrometric Analysis of Wollastonite[J]. Rock and Mineral Analysis, 2007, 26(3): 245-247.
    [8]Analysis of ZL205A Alloy by X-Ray Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2003, (4): 303-306.
    [9]Composition Analysis by X ray EDS and Magnetic Susceptibility Test of Gems and Jades[J]. Rock and Mineral Analysis, 1996, (3): 226-228.
    [10]X-Ray Fluorescence Spectrometry Integrated Analysis System[J]. Rock and Mineral Analysis, 1995, (1): 61-65.
  • Cited by

    Periodical cited type(7)

    1. 王玥,程然然,孟信刚. 气相色谱法测定新烟碱类农药研究进展. 现代农业科技. 2022(08): 89-94 .
    2. 李鸿,吕丽兰,杜国冬,甘志勇,李乾坤,陆覃昱,秦玉燕,吴静娜,时鹏涛,梁宏合. 水生蔬菜重金属污染及农药残留状况调查. 广西农学报. 2022(02): 18-24 .
    3. 秦佳琪,王焱,周同宁,张亚红,朱美霖. 不同地区枸杞中农药残留及膳食风险评估. 宁夏农林科技. 2022(03): 43-49+58 .
    4. 王彦祖,李白. 农药污染对我国生态环境的影响及对策分析. 皮革制作与环保科技. 2022(15): 77-79 .
    5. 陈永艳,吕佳,张岚,叶必雄,金宁. 在线固相萃取-超高效液相色谱-三重四极杆质谱法测定水源水和饮用水中107种典型农药及代谢产物. 色谱. 2022(12): 1064-1075 .
    6. 马健生,王卓,张泽宇,刘强,李丽君. 哈尔滨市地下水中29种抗生素分布特征研究. 岩矿测试. 2021(06): 944-953 . 本站查看
    7. 高冉,饶竹,郭晓辰. 地下水中91种农药多残留气相色谱-质谱分析方法研究及应用. 岩矿测试. 2021(06): 973-986 . 本站查看

    Other cited types(7)

Catalog

    Article views (3971) PDF downloads (34) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return