• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
TANG Xiao-yong, NI Xiao-fang, SHANG Zhao-cong. Effect and Correction of Iron in Soil on Accuracy of Chromium Determination by Portable X-ray Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2020, 39(3): 467-474. DOI: 10.15898/j.cnki.11-2131/td.201911200161
Citation: TANG Xiao-yong, NI Xiao-fang, SHANG Zhao-cong. Effect and Correction of Iron in Soil on Accuracy of Chromium Determination by Portable X-ray Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2020, 39(3): 467-474. DOI: 10.15898/j.cnki.11-2131/td.201911200161

Effect and Correction of Iron in Soil on Accuracy of Chromium Determination by Portable X-ray Fluorescence Spectrometry

More Information
  • Received Date: November 19, 2019
  • Revised Date: February 16, 2020
  • Accepted Date: May 11, 2020
  • Published Date: April 30, 2020
  • HIGHLIGHTS
    (1) Iron has an enhanced effect on the fluorescence intensity of chromium in the soil measured by p-XRF.
    (2) The growth rate of the fluorescence intensity of chromium increased with the increasing iron content in the soil.
    (3) An optimized correction model for the effect of iron on p-XRF determination of chromium was established.
    (4) The correlation coefficient of the model increased to 0.9986, and the average relative error reduced to 5.21% for actual soil samples.
    BACKGROUNDThe portable X-ray fluorescence spectrometer (p-XRF) can detect chromium in soil rapidly, but its detection accuracy is low because of the complexity of soil composition and the unknown matrix effect. As the main element in soil matrix, iron content varies widely in different types of soil, which is one of the main elements affecting the accuracy of p-XRF determination of chromium.
    OBJECTIVESTo improve the accuracy of p-XRF in the determination of chromium in soil.
    METHODSThe relationship between the fluorescence intensity of chromium and the content of chromium and iron was studied by using artificial soil samples with added chromium and iron. A calibration model was established based on research results.
    RESULTSWhen the content of iron in the soil sample was fixed, the content of chromium changed linearly with its corresponding characteristic X-ray fluorescence intensity, and the correlation coefficients were all above 0.9990. Moreover, the growth rate of the fluorescence intensity of chromium increased with the increase of iron content in the soil. In addition, through the study of soil samples with the same chromium content and different iron content, the fluorescence enhancement effect of iron on chromium was verified, and it was found that the enhancement effect was also related to the interaction of iron and chromium.
    CONCLUSIONSCombining the research results of matrix effects of chromium and iron, the correction equation of effect of iron on p-XRF determination of chromium has been established. Compared with ordinary linear regression, the correlation coefficient of this method increased from 0.9011 to 0.9986. The average relative error for p-XRF analysis of diatomite samples decreased from 21.94% to 2.52%, and the average relative error of p-XRF analysis of actual soil samples decreased from 51.02% to 5.21%.
  • 王晶晶, 范纯.X射线荧光光谱法测定锌铁合金镀层铁含量的影响因素探讨[J].冶金分析, 2019, 39(10):49-54. http://d.old.wanfangdata.com.cn/Periodical/yjfx201910009

    Wang J J, Fan C.Discussion on influencing factors during the determination of iron content in galvanized coating of zinc-iron alloy by X-ray fluorescence spectrometry[J]. Metallurgical Analysis, 2019, 39(10):49-54. http://d.old.wanfangdata.com.cn/Periodical/yjfx201910009
    Byers H L, Mchenry L J, Grundl T J.XRF techniques to quantify heavy metals in vegetables at low detection limits[J]. Food Chemistry:X, 2019, 1:100001.
    Sugiyama T, Uo M, Wada T, et al.Detection of trace metallic elements in oral lichenoid contact lesions using SR-XRF, PIXE, and XAFS[J]. Scientific Reports, 2015, 5:10672.
    Moreno-Suarez A I, Ager F J, Rodriquez-Segovia C, et al.Feasibility of different cleaning methods for silver-copper alloys by X-ray fluorescence:Application to ancient Greek silver coins[J]. Spectrochimica Acta Part B:Atomic Spectroscopy, 2016, 116:85-91.
    Guerra M B B, de Almeida E, Carvalho G G A, et al.Comparison of analytical performance of benchtop and handheld energy dispersive X-ray fluorescence systems for the direct analysis of plant materials[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(9):1667-1674. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f2fcea79d3470eeef0012dd11864f3bc
    徐聪, 赵婷, 池海涛, 等.微波消解-ICP-MS法测定土壤及耕作物小麦中的8种重金属元素[J].中国测试, 2019, 45(5):85-92. http://d.old.wanfangdata.com.cn/Periodical/zgcsjs201905014

    Xu C, Zhao T, Chi H T, et al.Determination of eight kinds of heavy metals elements in cultivated soil and the wheat by microwave digestion-ICP-MS method[J]. China Measurement and Test, 2019, 45(5):85-92. http://d.old.wanfangdata.com.cn/Periodical/zgcsjs201905014
    周宝宣, 袁琦.土壤重金属检测技术研究现状及发展趋势[J].应用化工, 2015, 44(1):131-138. http://d.old.wanfangdata.com.cn/Periodical/sxhg201501036

    Zhou B X, Yuan Q.Current situation and development trend of soil heavy metals detection[J]. Applied Chemical Industry, 2015, 44(1):131-138. http://d.old.wanfangdata.com.cn/Periodical/sxhg201501036
    朱锋, 胡星云, 郭照冰, 等.快速消解测定土壤中金属元素[J].分析试验室, 2019, 38(8):906-911. http://d.old.wanfangdata.com.cn/Periodical/qgsj201719056

    Zhu F, Hu X Y, Guo Z B, et al.Determination of heavy metals in soil by rapid digestion[J]. Chinese Journal of Analysis Laboratory, 2019, 38(8):906-911. http://d.old.wanfangdata.com.cn/Periodical/qgsj201719056
    田志仁, 封雪, 姜晓旭, 等.生态环境监测工作中应用AAS/AFS和XRF法测定土壤重金属数据质量评价[J].岩矿测试, 2019, 38(5):479-488. doi: 10.15898/j.cnki.11-2131/td.201811080119

    Tian Z R, Feng X, Jiang X X, et al.Evaluation of data quality on the detection of heavy metals in soils by atomic absorption spectrometry or atomic fluorescence spectrometry and X-ray fluorescence spectrometry in ecological environment monitoring[J]. Rock and Mineral Analysis, 2019, 38(5):479-488. doi: 10.15898/j.cnki.11-2131/td.201811080119
    朱梦杰.便携式XRF测定仪在土壤检测中的应用及其影响因素[J].中国环境监测, 2019, 35(6):129-137. http://d.old.wanfangdata.com.cn/Periodical/zghjjc201906018

    Zhu M J.Application of portable XRF analyzer in soil detection and its influencing factors[J]. Environmental Monitoring in China, 2019, 35(6):129-137. http://d.old.wanfangdata.com.cn/Periodical/zghjjc201906018
    邝荣禧, 胡文友, 何跃, 等.便携式X射线荧光光谱法(PXRF)在矿区农田土壤重金属快速检测中的应用研究[J].土壤, 2015, 47(3):589-595. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tr201503025

    Kuang R X, Hu W Y, He Y, et al.Application of portable X-ray fluorescence (PXRF) for rapid analysis of heavy metals in agricultural soils around mining area[J]. Soils, 2015, 47(3):589-595. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tr201503025
    王世芳, 韩平, 王纪华, 等.X射线荧光光谱分析法在土壤重金属检测中的应用研究进展[J].食品安全质量检测学报, 2016, 7(11):4394-4400. http://d.old.wanfangdata.com.cn/Periodical/spaqzljcjs201611024

    Wang S F, Han P, Wang J H, et al.Application of X-ray fluorescence spectrometry on the detection of heavy metals in soil[J]. Journal of Food Safety and Quality, 2016, 7(11):4394-4400. http://d.old.wanfangdata.com.cn/Periodical/spaqzljcjs201611024
    徐英岚.基于CNKI的X射线荧光光谱研究文献计量学分析[J].冶金分析, 2019, 39(10):1-7. http://d.old.wanfangdata.com.cn/Periodical/yjfx201910001

    Xu Y L.Bibliometric analysis on research trend of X-ray fluorescence spectrometry based on CNKI[J]. Metallurgical Analysis, 2019, 39(10):1-7. http://d.old.wanfangdata.com.cn/Periodical/yjfx201910001
    于兆水, 张勤, 李小莉, 等.高压粉末制样波长色散X射线荧光光谱法测定生物样品中23种元素[J].岩矿测试, 2014, 33(6):844-848. http://www.ykcs.ac.cn/article/id/a3e0ee94-c290-48ad-ae4e-1f3b21dfcb30

    Yu Z S, Zhang Q, Li X L, et al.Determination of 23 elements in biological samples by wavelength dispersion X-ray fluorescence spectrometry with high pressure powder pelleting preparation[J]. Rock and Mineral Analysis, 2014, 33(6):844-848. http://www.ykcs.ac.cn/article/id/a3e0ee94-c290-48ad-ae4e-1f3b21dfcb30
    李可及.熔融制样X射线荧光光谱法测定岩盐中的主量成分[J].岩矿测试, 2016, 35(3):290-294. doi: 10.15898/j.cnki.11-2131/td.2016.03.012

    Li K J.Determination of major components in rock salt by X-ray fluorescence spectrometry with sample fusion[J]. Rock and Mineral Analysis, 2016, 35(3):290-294. doi: 10.15898/j.cnki.11-2131/td.2016.03.012
    李强, 张学华.粉末压片-X射线荧光光谱法快速分析多金属结核和富钴结壳中22种组分[J].冶金分析, 2014, 34(1):28-33. http://d.old.wanfangdata.com.cn/Periodical/yjfx201401005

    Li Q, Zhang X H.Rapid determination of twenty-two components in polymetallic nodule and cobalt-rich crusts by X-ray fluorescence spectrometry with pressed powder pellet[J]. Metallurgical Analysis, 2014, 34(1):28-33. http://d.old.wanfangdata.com.cn/Periodical/yjfx201401005
    杨桂兰, 倪晓芳, 张长波.基于便携式X射线荧光光谱法的土壤重金属快速检测[J].浙江农业学报, 2019, 31(11):1903-1908. http://d.old.wanfangdata.com.cn/Periodical/zjnyxb201911017

    Yang G L, Ni X F, Zhang C B.Rapid determination of heavy metals in soils based on portable X-ray fluorescence spectroscopy[J]. Acta Agriculturae Zhejiangensis, 2019, 31(11):1903-1908. http://d.old.wanfangdata.com.cn/Periodical/zjnyxb201911017
    吉昂.X射线荧光光谱三十年[J].岩矿测试, 2012, 31(3):383-398. http://www.ykcs.ac.cn/article/id/ykcs_20120302

    Ji A.Development of X-ray fluorescence spectrometry in the 30 years[J]. Rock and Mineral Analysis, 2012, 31(3):383-398. http://www.ykcs.ac.cn/article/id/ykcs_20120302
    杨桂兰, 商照聪, 李良君, 等.便携式X射线荧光光谱法在土壤重金属快速检测中的应用[J].应用化工, 2016, 45(8):1586-1591. http://d.old.wanfangdata.com.cn/Periodical/sxhg201608049

    Yang G L, Shang Z C, Li L J, et al.Application of portable-XRF spectrometry for rapid determination of common heavy metals in soil[J]. Applied Chemical Industry, 2016, 45(8):1586-1591. http://d.old.wanfangdata.com.cn/Periodical/sxhg201608049
    殷惠民, 杜祯宇, 李玉武, 等.能量色散X射线荧光光谱仪和简化的基体效应校正模型测定土壤、沉积物中重金属元素[J].冶金分析, 2018, 38(4):1-10. http://d.old.wanfangdata.com.cn/Periodical/yjfx201804001

    Yin H M, Du Z Y, Li Y W, et al.Determination of heavy metal elements in soil and sediment by energy dispersive X-ray fluorescence spectrometer with simplified matrix effect correction model[J]. Metallurgical Analysis, 2018, 38(4):1-10. http://d.old.wanfangdata.com.cn/Periodical/yjfx201804001
    倪子月, 陈吉文, 刘明博, 等.能量色散X射线荧光光谱法测定土壤中铬和锰的干扰校正[J].冶金分析, 2016, 36(10):10-14. http://d.old.wanfangdata.com.cn/Periodical/yjfx201610003

    Ni Z Y, Chen J W, Liu M B, et al.Interference correction of energy dispersive X-ray fluorescence spectrometric determination of chromium and manganese in soil[J]. Metallurgical Analysis, 2016, 36(10):10-14. http://d.old.wanfangdata.com.cn/Periodical/yjfx201610003
    杨桂兰, 商照聪, 李良君, 等.基于均匀设计的土壤重金属PXRF检测方法优化研究[J].浙江农业学报, 2016, 28(12):2123-2129. http://d.old.wanfangdata.com.cn/Periodical/zjnyxb201612023

    Yang G L, Shang Z C, Li L J, et al.Application of uniform design method in optimizing PXRF determination methods of heavy metals in soil[J]. Acta Agriculturae Zhejiangensis, 2016, 28(12):2123-2129. http://d.old.wanfangdata.com.cn/Periodical/zjnyxb201612023
    冉景, 王德建, 王灿, 等.便携式X射线荧光光谱法与原子吸收/原子荧光法测定土壤重金属的对比研究[J].光谱学与光谱分析, 2014, 34(11):3113-3118.

    Ran J, Wang D J, Wang C, et al.Comparison of soil heavy metals determined by AAS/AFS and portable X-ray fluorescence analysis[J]. Spectroscopy and Spectral Analysis, 2014, 34(11):3113-3118.
    Ribeiro B T, Silva S H G, Silva E A, et al.Portable X-ray fluorescence(pXRF) applications in tropical Soil Science[J]. Ciência E Agrotecnologia, 2017, 41(3):245-254. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=708d0acdad7992fbfcdd033d20bc5f07
    李哲, 庹先国, 穆克亮, 等.矿样中钛铁EDXRF分析的基体效应和神经网络校正研究[J].核技术, 2009, 32(1):35-40. http://d.old.wanfangdata.com.cn/Periodical/hjs200901009

    Li Z, Yu X G, Mu K L, et al.Matrix effect and ANN correcting technique in EDXRF analysis of Ti and Fe in core samples[J]. Nuclear Techniques, 2009, 32(1):35-40. http://d.old.wanfangdata.com.cn/Periodical/hjs200901009
    齐海君, 王建英, 张雪峰, 等.白云鄂博矿中铈铁钙EDXRF分析的基体效应研究[J].光谱学与光谱分析, 2015, 35(12):3510-3513.

    Qi H J, Wang J Y, Zhang X F, et al.Matrix effect of Fe and Ca on EDXRF analysis of Ce concentration in bayan obo ores[J]. Spectroscopy and Spectral Analysis, 2015, 35(12):3510-3513.
    董天宇, 王海江, Yunger A J, 等.便携式X射线荧光光谱仪实验室异位检测法的实用性研究[J].土壤, 2017, 49(4):853-857. http://d.old.wanfangdata.com.cn/Periodical/tr201704030

    Dong T Y, Wang H J, Yunger A J, et al.Practicality validation of portable X-ray fluorescence for ex-situ measuring soil heavy metals in laboratory[J]. Soils, 2017, 49(4):853-857. http://d.old.wanfangdata.com.cn/Periodical/tr201704030
    李自强, 李小英, 钟琦, 等.电感耦合等离子体质谱法测定土壤重金属普查样品中铬铜镉铅的关键环节研究[J].岩矿测试, 2016, 35(1):37-41. doi: 10.15898/j.cnki.11-2131/td.2016.01.007

    Li Z Q, Li X Y, Zhong Q, et al.Determination of Cr, Cu, Cd and Pb in soil samples by inductively coupled plasma-mass spectrometry for an investigation of heavy metal pollution[J]. Rock and Mineral Analysis, 2016, 35(1):37-41. doi: 10.15898/j.cnki.11-2131/td.2016.01.007
    邓述培, 范鹏飞, 唐玉霜, 等.X射线荧光光谱(XRF)法测定土壤污染样品中9种重金属元素[J].中国无机分析化学, 2019, 9(4):12-15. http://d.old.wanfangdata.com.cn/Periodical/zgwjfxhxwz201904003

    Deng S P, Fan P F, Tang Y S, et al.Determination of 9 kinds of soil pollution of heavy metals elements in samples by X-ray fluorescence spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2019, 9(4):12-15. http://d.old.wanfangdata.com.cn/Periodical/zgwjfxhxwz201904003
    张环月, 季守华, 李春艳. X射线荧光光谱法测定铬、钒、钛共存的钛合金中12种元素[J].冶金分析, 2014, 34(5):30-34. http://d.old.wanfangdata.com.cn/Periodical/yjfx201405006

    Zhang H Y, Ji S H, Li C Y.Determination of twelve elements coexisting with chromium, vanadium and titanium in titanium alloys by X-ray fluorescence spectrometry[J]. Metallurgical Analysis, 2014, 34(5):30-34. http://d.old.wanfangdata.com.cn/Periodical/yjfx201405006
  • Cited by

    Periodical cited type(2)

    1. 李朝英,郑路,郑之卓,李华,王亚南,明安刚. 自动滴定仪测定土壤有机碳及其组分的方法优化. 岩矿测试. 2024(04): 632-640 . 本站查看
    2. 李文忠,李芳,任慧玲,何娟. 红外碳硫仪测定固体废物中有机质含量. 云南冶金. 2024(04): 133-136 .

    Other cited types(0)

Catalog

    Article views (2678) PDF downloads (31) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return