• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
Zhao-shui YU, Qin ZHANG, Xiao-li LI, Shou-zhong FAN, Yan-shan PAN, Guo-hui LI. Determination of 23 Elements in Biological Samples by Wavelength Dispersion X-ray Fluorescence Spectrometry with High Pressure Pressed Powder Pellet Preparation[J]. Rock and Mineral Analysis, 2014, 33(6): 844-848.
Citation: Zhao-shui YU, Qin ZHANG, Xiao-li LI, Shou-zhong FAN, Yan-shan PAN, Guo-hui LI. Determination of 23 Elements in Biological Samples by Wavelength Dispersion X-ray Fluorescence Spectrometry with High Pressure Pressed Powder Pellet Preparation[J]. Rock and Mineral Analysis, 2014, 33(6): 844-848.

Determination of 23 Elements in Biological Samples by Wavelength Dispersion X-ray Fluorescence Spectrometry with High Pressure Pressed Powder Pellet Preparation

More Information
  • Received Date: August 10, 2013
  • Revised Date: October 27, 2014
  • Accepted Date: November 11, 2014
  • Published Date: June 24, 2014
  • In the determination of biological samples by X-ray Fluorescence Spectrometry, sample powder pellets pressed by traditional sample preparation technique at 220-440 MPa are not compact and smooth, so the sample room of X-ray Fluorescence Spectrometry becomes contaminated by dropped sample powder, which can then influence long term stability. Biological sample powder can be pressed into smooth and compact pellets using high pressure at 1760 MPa, therefore the sample preparation reproducibility is improved to 0.1%-2.6% (RSD, n=5). A method for direct determination of 23 major and minor elements (Al, Ca, Cl, K, Mg, Na, P, S, Si, Ba, Br, Co, Cr, Cu, Fe, Mn, Ni, Pb, Rb, Sr, Ti, V and Zn) in biological samples by Wavelength Dispersion X-ray Fluorescence Spectrometry was established on this sample preparation basis. The matrix effects can be corrected by using Rh-Kα(from the X-ray tube target) Compton-scattered radiation and by using the background as the internal standard. The precision of the method is 0.1%-11.3% (RSD) for most elements and the detection limits is 0.08-140.96 μg/g. The feasibility of the proposed method was tested by analyzing several national biological standard materials; the results obtained were consistent with the certified values.
  • Related Articles

    [1]CHEN Kai, LIU Fei, YANG Zihan, XIANG Xin. Review on the Determination of Oxidant Demand for in-situ Chemical Oxidation Application[J]. Rock and Mineral Analysis, 2023, 42(2): 271-281. DOI: 10.15898/j.cnki.11-2131/td.202202170023
    [2]ZHANG Xiaorui, WU Bailin, LEI Angui, YANG Songlin, YAO Luhang, PANG Kang, BAO Zhian, WANG Miao, HAO Xin, LIU Mingyi, LI Qi, LIN Zhouyang. In-situ Micro-scale Pb Isotope Identification Characteristics of Metallogenic and Non-metallogenic Pyrites in Sandstone-type Uranium Deposits[J]. Rock and Mineral Analysis, 2022, 41(5): 717-732. DOI: 10.15898/j.cnki.11-2131/td.202111300192
    [3]XIAO Zhi-bin, GENG Jian-zhen, TU Jia-run, ZHANG Ran, YE Li-juan, BI Jun-hui, ZHOU Hong-ying. In situ U-Pb Isotope Dating Techniques for Sandstone-type Uranium Deposits[J]. Rock and Mineral Analysis, 2020, 39(2): 262-273. DOI: 10.15898/j.cnki.11-2131/td.201908120129
    [4]Wei-meng ZHANG, Jie YAN, Fu-jun ZHONG, Jia-yong PAN, Wen-quan LIU, Jing LAI, Tang-bo ZHOU. In situ LA-ICP-MS U-Pb Dating of Uraninite from the Shijiaowei Granite-type Uranium Deposit, Northern Guangdong Province[J]. Rock and Mineral Analysis, 2019, 38(4): 449-460. DOI: 10.15898/j.cnki.11-2131/td.201901160007
    [5]Miao TIAN, Qing-guo MENG, Chang-ling LIU, Cheng-feng LI, Gao-wei HU, Juan FENG, Quan-sheng ZHAO. Parameter Optimization and Analysis Method for Determination of Natural Gas Hydrate by Powder X-ray Diffraction[J]. Rock and Mineral Analysis, 2017, 36(5): 481-488. DOI: 10.15898/j.cnki.11-2131/td.201703160033
    [6]Shan-ling FU, Cheng-hai ZHAO. Progress of in situ U-Th/He Isotopic Dating Technique and Its Application to Low Temperature Deposits[J]. Rock and Mineral Analysis, 2017, 36(1): 1-13. DOI: 10.15898/j.cnki.11-2131/td.2017.01.002
    [7]Zhi-xiong LI, Yi-tong HAN, Yong-qiang XU, Yang YANG, Jia-wei CHEN. In Situ Measurement of Aggregation Effect of Nanoscale Zero-valent Iron in the Presence of Natural Organic Matter Based on the Dynamic Light Scattering Technique[J]. Rock and Mineral Analysis, 2016, 35(6): 634-641. DOI: 10.15898/j.cnki.11-2131/td.2016.06.010
    [8]Sheng-xuan HUANG, Xiang WU, Shan QIN. Research Progress on in situ Experimental and Theoretical Simulations of Element Partitioning under High Temperature and High Pressure[J]. Rock and Mineral Analysis, 2016, 35(2): 117-126. DOI: 10.15898/j.cnki.11-2131/td.2016.02.002
    [9]Jiao-hua ZHOU, Jian-yu WANG, Ming-xin GU, Zhen WANG. The Main Mineral Typomorphic Characteristics of the Henan Tangjiaping Molybdenum District Using X-ray Diffraction and Rock Mineral Identification Technology[J]. Rock and Mineral Analysis, 2015, 34(1): 82-90. DOI: 10.15898/j.cnki.11-2131/td.2015.01.011
    [10]Development of a Portable Extinction Photometer and Its Application to in situ Rapid Detection of Adulterated Milk[J]. Rock and Mineral Analysis, 2008, 27(3): 169-173.

Catalog

    Article views (1316) PDF downloads (21) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return