• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
GAO Juan-qin, YU Yang, WANG Deng-hong, WANG Wei, DAI Hong-zhang, YU Feng, QIN Yan. Composition and Spatial Distribution Characteristics of Hydrogen and Oxygen Isotopes of Surface Water in Altay, Xinjiang Province[J]. Rock and Mineral Analysis, 2021, 40(3): 397-407. DOI: 10.15898/j.cnki.11-2131/td.202101140007
Citation: GAO Juan-qin, YU Yang, WANG Deng-hong, WANG Wei, DAI Hong-zhang, YU Feng, QIN Yan. Composition and Spatial Distribution Characteristics of Hydrogen and Oxygen Isotopes of Surface Water in Altay, Xinjiang Province[J]. Rock and Mineral Analysis, 2021, 40(3): 397-407. DOI: 10.15898/j.cnki.11-2131/td.202101140007

Composition and Spatial Distribution Characteristics of Hydrogen and Oxygen Isotopes of Surface Water in Altay, Xinjiang Province

More Information
  • Received Date: January 13, 2021
  • Revised Date: April 07, 2021
  • Accepted Date: May 02, 2021
  • Published Date: May 27, 2021
  • HIGHLIGHTS
    (1) The differences in hydrogen and oxygen isotope composition and deuterium excess parameters of major surface rivers and lakes inthe Altay region were investigated.
    (2) δD and δ18O of waters showed positive correlation with temperature (T), total dissolved solids (TDS) and the molar concentrations of Na+, K+, Ca2+, Cl- and SO42-.
    (3) The hydrogen and oxygen isotopic composition of river water was quite different from the global and Urumqi's atmospheric precipitation line, indicating that, apart from atmospheric precipitation, there was a certain proportion of glacier meltwater supply. Moreover, hydrogen and oxygen isotopes experienced evaporative fractionation during the water cycle, to some extent.
    BACKGROUNDHydrogen and oxygen isotopes can be used to identify water sources and trace water cycles and have been used in hydrogeochemistry since the 1950s. Studies have been carried out on stable isotopes of atmospheric precipitation, rivers and lakes in Xinjiang.However, the research on hydrogen and oxygen isotopes of waters in Altay is scarce, except for atmospheric precipitation. Researchers found that the rainfall in the Altai Mountains during the warm season (April-October) increased significantly from 1959 to 2014. Due to this background of climate condition changes, it is meaningful to study the hydrogen and oxygen isotope compositions of various types of water bodies in the Altay region, at the southern foot of the Altai Mountains.
    OBJECTIVESTo obtain the basic data of hydrogen and oxygen isotopic composition of water in Altay and reveal their spatial distribution characteristics.
    METHODSHydrogen and oxygen isotope compositions of river water, lake water, spring water, snow water, and water from a mine pit in the Altay region of Xinjiang were determined by liquid water laser isotope analyzer (LGR DT100, America). The dissolved oxygen (DO), TDS, T, and pH of the water samples were measured using the German WTW3430 multi-parameter water quality analyzer. The concentrations of Na+, K+, Ca2+, and Mg2+ were analyzed by inductively coupled plasma-optical emission spectrometry (PE8300, PerkinElmer, USA). The concentrations of HCO3- and CO32- were determined by alkali titration method. Cl- and SO42- concentrations were analyzed by ion chromatography method.
    RESULTSThe results showed that the ranges of δ18O and δD of the waters in the Altay area were from -15.4‰ to -5‰ and from -121‰ to -49‰, respectively. The hydrogen and oxygen isotope content of various types of water in the Altay region were significantly different. The δ18O and δD values of river waters varied from -15.4‰ to -11.5‰ and from -114‰ to -100‰, respectively, and the deuterium excess parameter varied from -12.4‰ to 12.4‰. The δ18O and δD of Ulungur Lake were much higher than those of surface rivers, with an average value of -5.95‰ and -78.5‰, respectively. The deuterium excess parameter of Ulungur Lake was much lower than those of surface rivers, with an average value of -30.9‰. The δ18O value (-14.9‰ and -11.8‰) of groundwater was similar to that of surface rivers, but δD (-114‰ and -121‰) was slightly higher than that of surface rivers, indicating that groundwater was supplied by surface rivers but may be affected by water-rock reactions. The δ18O and δD values of snow water and the water from a mine pit were -11.8‰ and -90‰, -11.6‰ and -106‰, respectively. The fitting lines for hydrogen and oxygen isotopes of the Irtysh River and Ulungur River were δD=1.7297δ18O-83.879 and δD=1.986δ18O-76.5, respectively. Surface rivers were remarkably different from the global and Urumqi atmospheric precipitation lines, indicating that apart from atmospheric precipitation, surface rivers were also recharged by glacier meltwater, and underwent evaporation and isotope fractionation during the water cycle.Due to the temperature and latitude effect of hydrogen and oxygen isotopes, the δD and δ18O showed significant positive correlation relationships with T, TDS, and the molar concentration of major ions such as Na+, K+, Ca2+, Cl-, and SO42-, also showing a significant negative correlation with the latitude of the sampling sites and DO (P < 0.05, n=32).
    CONCLUSIONSThe hydrogen and oxygen isotope composition characteristics obtained in this study provide basic data for the stable isotope research of various types of water bodies in the Altay area.The precipitation in Altay has increased significantly in recent decades. Due to this background, it is indeed necessary to continue to conduct long-term and in-depth systematic research on the composition of hydrogen and oxygen isotopes in Altay's atmospheric precipitation and other types of water bodies.

  • 丁悌平. 氢氧同位素地球化学[M]. 北京: 地质出版社, 1980: 116.

    Ding T P. Hydrogen and oxygen isotope geochemistry[M]. Beijing: Geological Publishing House, 1980: 116.
    Yi P, Wan C, Jin H, et al. Hydrological insights from hydrogen and oxygen isotopes in source area of the Yellow River, east-northern part of Qinghai-Tibet Plateau[J]. Journal of Radioanalytical and Nuclear Chemistry, 2018, 317(1): 131-144. doi: 10.1007/s10967-018-5864-7
    Jeelani G, Deshpande R D, Galkowski M, et al. Isotopic composition of daily precipitation along the southern foothills of the Himalayas: Impact of marine and continental sources of atmospheric moisture[J]. Atmospheric Chemistry & Physics, 2018, 18(12): 8789-8805. http://smartsearch.nstl.gov.cn/paper_detail.html?id=eb412d31c674140116d6f480b70f88f0
    刘广山, 黄奕普, 金德秋, 等. 南极雪的氢氧同位素组成[J]. 厦门大学学报(自然科学版), 2001, 40(3): 664-668. https://www.cnki.com.cn/Article/CJFDTOTAL-XDZK200103003.htm

    Liu G S, Huang Y P, Jin D Q, et al. Deuterium and 18O contents and distributions in Antarctic snow[J]. Journal of Xiamen University (Natural Science), 2002, 40(3): 664-668. https://www.cnki.com.cn/Article/CJFDTOTAL-XDZK200103003.htm
    Dansgaard W. The abundance of O18 in atmospheric water and water vapor[J]. Tellus, 1953, 5(4): 461-469. doi: 10.3402/tellusa.v5i4.8697
    章申, 于维新, 张青莲, 等. 我国西藏南部珠穆朗玛峰地区冰雪水中氘和重氧的分布[J]. 中国科学: 数学, 1973(4): 430-433. https://www.cnki.com.cn/Article/CJFDTOTAL-JAXK197304006.htm

    Zhang S, Yu W X, Zhang Q L, et al. Distribution of deuterium and heavy oxygen in ice and snow waters in the Everest Region of southern Tibet in China[J]. Science China: Mathematics, 1973(4): 430-433. https://www.cnki.com.cn/Article/CJFDTOTAL-JAXK197304006.htm
    柳鉴容, 宋献方, 袁国富, 等. 中国东部季风区大气降水δ18O的特征及水汽来源[J]. 科学通报, 2009, 54(22): 3521-3531. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200922015.htm

    Liu J R, Song X F, Yuan G F, et al. Characteristics of δ18O in precipitation over eastern monsoon China and the water vapor sources[J]. Chinese Science Bulletin, 2009, 54(22): 3521-3531. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200922015.htm
    高建飞, 丁悌平, 罗续荣, 等. 黄河水氢、氧同位素组成的空间变化特征及其环境意义[J]. 地质学报, 2011, 85(4): 596-602. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201104016.htm

    Gao J F, Ding T P, Luo X R, et al. δD and δ18O variations of water in the Yellow River and its environmental significance[J]. Acta Geologica Sinica, 2011, 85(4): 596-602. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201104016.htm
    丁悌平, 高建飞, 石国钰, 等. 长江水氢、氧同位素组成的时空变化及其环境意义[J]. 地质学报, 2013, 87(5): 661-676. doi: 10.3969/j.issn.0001-5717.2013.05.005

    Ding T P, Gao J F, Shi G Y, et al. Spatial and temporal variations of H and O isotope compositions of the Yangtze River water and their environmental implications[J]. Acta Geologica Sinica, 2013, 87(5): 661-676. doi: 10.3969/j.issn.0001-5717.2013.05.005
    孙芳强, 尹立河, 马洪云, 等. 新疆三工河流域土壤水δD和δ18O特征及其补给来源[J]. 干旱区地理, 2016, 39(6): 1298-1304. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL201606022.htm

    Sun F Q, Yin L H, Ma H Y, et al. Features of δD and δ18O and origin of soil water in Sangong River Basin, Xinjiang[J]. Arid Land Geography, 2016, 39(6): 1298-1304. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL201606022.htm
    吴秀杰. 氢氧同位素指示沙漠地下水来源研究——以巴丹吉林沙漠为例[D]. 北京: 中国地质大学(北京), 2018.

    Wu X J. An investigation on groundwater origination in deserts indicated by hydrogen and oxygen isotopes, taking the Badain Jaran Desert as an example[D]. Beijing: China University of Geosciences (Beijing), 2018.
    李晖, 周宏飞. 乌鲁木齐地区大气降水中δD和δ18O的变化特征[J]. 干旱区资源与环境, 2007, 21(9): 46-50. doi: 10.3969/j.issn.1003-7578.2007.09.010

    Li H, Zhou H F. Variation characteristics of δD and δ18O stable isotopes in the precipitation of Urumqi[J]. Journal of Arid Land Resources and Environment, 2007, 21(9): 46-50. doi: 10.3969/j.issn.1003-7578.2007.09.010
    李晖, 蒋忠诚, 王月, 等. 新疆地区大气降水中稳定同位素的变化特征[J]. 水土保持研究, 2009, 16(5): 157-161. https://www.cnki.com.cn/Article/CJFDTOTAL-STBY200905033.htm

    Li H, Jiang Z C, Wang Y, et al. Variation characteristics of stable isotopes in the precipitation of Xinjiang[J]. Research of Soil and Water Conservation, 2009, 16(5): 157-161. https://www.cnki.com.cn/Article/CJFDTOTAL-STBY200905033.htm
    王文祥, 王瑞久, 李文鹏, 等. 塔里木盆地河水氢氧同位素与水化学特征分析[J]. 水文地质工程地质, 2013, 40(4): 29-35. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201304008.htm

    Wang W X, Wang R J, Li W P, et al. Analysis of stable isotopes and hydrochemistry of rivers in Tarim Basin[J]. Hydrogeology & Engineering Geology, 2013, 40(4): 29-35. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201304008.htm
    努尔阿米乃姆·阿木克, 麦麦提吐尔逊·艾则孜, 海米提·依米提. 博斯腾湖流域氢氧同位素特征研究[J]. 安徽农业科学, 2016, 44(8): 11-13, 77. doi: 10.3969/j.issn.0517-6611.2016.08.005

    Hamuk N, Eziz M, Yimit H. Study on characteristics of hydrogen and oxygen isotope in Bosten Lake Basin[J]. Journal of Anhui Agricultural Sciences, 2016, 44(8): 11-13, 77. doi: 10.3969/j.issn.0517-6611.2016.08.005
    姚俊强, 刘志辉, 郭小云, 等. 呼图壁河流域水体氢氧稳定同位素特征及转化关系[J]. 中国沙漠, 2016, 36(5): 1443-1450. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSS201605032.htm

    Yao J Q, Liu Z H, Guo X Y, et al. Characteristics of water stable isotopes (18O and 2H) in the Hutubi River Basin, northwestern China[J]. Journal of Desert Research, 2016, 36(5): 1443-1450. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSS201605032.htm
    郭小云. 呼图壁河流域不同水体的水化学和稳定同位素特征分析[D]. 乌鲁木齐: 新疆大学, 2016.

    Guo X Y. Water chemistry and stable isotope characteristics analysis of different water bodies in the Hutubi River Basin[D]. Urumqi: Xinjiang University, 2016.
    曾海鳌, 吴敬禄, 刘文, 等. 哈萨克斯坦东部水体氢, 氧同位素和水化学特征[J]. 干旱区地理, 2013, 36(4): 662-668. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL201304019.htm

    Zeng H A, Wu J L, Liu W, et al. Characteristics on hydrochemistry and hydrogen, oxygen isotopes of waters in Kazakhstan[J]. Arid Land Geography, 2013, 36(4): 662-668. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL201304019.htm
    Natalia M, Tatiana P, Nina K, et al. Influence of atmospheric circulation on precipitation in Altai mountains[J]. Journal of Mountain Science, 2017, 14(1): 46-59. doi: 10.1007/s11629-016-4162-5
    李帅, 李祥余, 何清, 等. 阿勒泰地区近40年的气候变化研究[J]. 干旱区研究, 2006, 23(4): 637-643. https://www.cnki.com.cn/Article/CJFDTOTAL-GHQJ200604021.htm

    Li S, Li X Y, He Q, et al. Study on climate change in Altay Prefecture since recent 40 years[J]. Arid Zone Research, 2006, 23(4): 637-643. https://www.cnki.com.cn/Article/CJFDTOTAL-GHQJ200604021.htm
    贺斌. 新疆阿勒泰区域水资源总量评价及其预测分析[J]. 能源与节能, 2017(10): 103-104. doi: 10.3969/j.issn.2095-0802.2017.10.051

    He B. Total evaluation and predictive analysis of water resources in Altay Region of Xinjiang[J]. Energy and Energy Conservation, 2017(10): 103-104. doi: 10.3969/j.issn.2095-0802.2017.10.051
    雷雨, 龙爱华, 邓铭江, 等. 1926-2009年额尔齐斯河流域中游地区气候变化及其对水资源的影响分析[J]. 冰川冻土, 2012, 34(4): 912-919. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201204020.htm

    Lei Y, Long A H, Deng M J, et al. Analyses of the climate change and its impact on water resources in the middle reaches of Irtysh River during 1926-2009[J]. Journal of Glaciology and Geocryology, 2012, 34(4): 912-919. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201204020.htm
    王振升, 蒋惠敏. 乌伦古河流域水资源及其特征[J]. 干旱区地理, 2000, 23(2): 123-128. doi: 10.3321/j.issn:1000-6060.2000.02.006

    Wang Z S, Jiang H M. Water resources and its features in Ulungur River watershed, Xinjiang[J]. Arid Land Geography, 2000, 23(2): 123-128. doi: 10.3321/j.issn:1000-6060.2000.02.006
    王苏民, 窦鸿身. 中国湖泊志[M]. 北京: 科学出版社, 1998.

    Wang S M, Dou H S. Chinese lakes[M]. Beijing: Science Press, 1998.
    吴敬禄, 曾海鳌, 马龙, 等. 新疆主要湖泊水资源及近期变化分析[J]. 第四纪研究, 2012, 32(1): 142-150. doi: 10.3969/j.issn.1001-7410.2012.01.15

    Wu J L, Zeng H A, Ma L, et al. Recent changes of selected lake water resources in arid Xinjiang, northwestern China[J]. Quaternary Sciences, 2012, 32(1): 142-150. doi: 10.3969/j.issn.1001-7410.2012.01.15
    Tian L D, Yao T, Macclune T, et al. Stable isotopic variations in West China: A consideration of moisture sources[J]. Journal of Geophysical Research, 2007, 112(D10): 1-12. http://adsabs.harvard.edu/abs/2007JGRD..11210112T
    Kong Y L, Wang K, Li J, et al. Stable isotopes of precipitation in China: A consideration of moisture sources[J]. Water, 2019, 11(6): 1239. doi: 10.3390/w11061239
    Aizen V B, Aizen E, Fujita K, et al. Stable-isotope time series and precipitation origin from firn-core and snow samples, Altai glaciers, Siberia[J]. Journal of Glaciology, 2005, 51(175): 637-654. doi: 10.3189/172756505781829034
    Craig H. Isotopic variations in meteoric waters[J]. Science, 1961, 133(3465): 1702-1703. doi: 10.1126/science.133.3465.1702
    Dansgaard W. Stable isotopes in precipitation[J]. Tellus, 1964, 16(4): 436-468. doi: 10.3402/tellusa.v16i4.8993
    尹观, 倪师军. 地下水氘过量参数的演化[J]. 矿物岩石地球化学通报, 2001, 20(4): 409-411. doi: 10.3969/j.issn.1007-2802.2001.04.057

    Yin G, Ni S J. Deuterium excess parameter evolution in ground water[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2001, 20(4): 409-411. doi: 10.3969/j.issn.1007-2802.2001.04.057
    尹观, 倪师军, 张其春. 氘过量参数及其水文地质学意义——以四川九寨沟和冶勒水文地质研究为例[J]. 成都理工学院学报, 2001, 28(3): 251-254. doi: 10.3969/j.issn.1671-9727.2001.03.006

    Yin G, Ni S J, Zhang Q C. Deuterium excess parameter and geohydrology significance-Taking the geohydrology researches in Jiuzaigou and Yele, Sichuan for example[J]. Journal of Chengdu University of Technology, 2001, 28(3): 251-254. doi: 10.3969/j.issn.1671-9727.2001.03.006
    尹观, 倪师军, 范晓, 等. 冰雪溶融的同位素效应及氘过量参数演化——以四川稻城水体同位素为例[J]. 地球学报, 2004, 25(2): 157-160. doi: 10.3321/j.issn:1006-3021.2004.02.011

    Yin G, Ni S J, Fan X, et al. Isotopic effect and the deuterium excess parameter evolution in ice and snow melting process: A case study of isotopes in the water body of Daocheng, Sichuan Province[J]. Acta Geoscientica Sinica, 2004, 25(2): 157-160. doi: 10.3321/j.issn:1006-3021.2004.02.011
    成玉婷, 李鹏, 徐国策, 等. 丹江流域氢氧同位素变化特征[J]. 水土保持学报, 2014, 28(5): 129-133. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201405023.htm

    Cheng Y T, Li P, Xu G C, et al. Characteristics of hydrogen and oxygen isotopes in Danjiang Watershed[J]. Journal of Soil and Water Conservation, 2014, 28(5): 129-133. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201405023.htm
  • Related Articles

    [1]YUAN Jing, LI Yingchun, TAN Guili, HUANG Haibo, ZHANG Hua, LIU Jiao. Some Difficulties and Status in the Application of X-Ray Spectrometry in Geological Analysis: A Review[J]. Rock and Mineral Analysis, 2025, 44(2): 161-173. DOI: 10.15898/j.ykcs.202403150052
    [2]Jing CHEN, Zhi-jun GAO, Chong-ke CHEN, Yan-xia LIU, Ming-wei ZHANG. Application Skills on Determination of Geological Sample by X-ray Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2015, 34(1): 91-98. DOI: 10.15898/j.cnki.11-2131/td.2015.01.012
    [3]Zhao-shui YU, Qin ZHANG, Xiao-li LI, Shou-zhong FAN, Yan-shan PAN, Guo-hui LI. Determination of 23 Elements in Biological Samples by Wavelength Dispersion X-ray Fluorescence Spectrometry with High Pressure Pressed Powder Pellet Preparation[J]. Rock and Mineral Analysis, 2014, 33(6): 844-848.
    [4]MA Tian-fang, LI Xiao-li, CHEN Yong-jun, DENG Zhen-pin, LI Guo-hui. Interchangeable Analysis of Method on the X-ray Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2011, 30(4): 486-490.
    [5]CHEN Yongjun, WANG Yaping, XU Chunxue, ZHENG Miaozi, WANG Suming. Preparation of Synthetic Standard Reference Materials for X-ray Fluorescence Spectrometric Analysis[J]. Rock and Mineral Analysis, 2009, 28(5): 462-466.
    [6]Determination of Mo,Pb,Fe and Cu in Molybdenum Ores by Energy-dispersive X-ray Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2008, 27(3): 235-236.
    [7]Determination of Multi-elements in Iron Ores by X-ray Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2008, 27(3): 229-231.
    [8]Simultaneous Determination of Major, Minor and Trace Components in Limestone Samples by X-ray Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2008, 27(2): 149-150.
    [9]Determination of Major and Minor Components in Sea Sediment Samples by Fused Bead-X-ray Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2008, 27(1): 74-76.
    [10]A Semi-quantitative Method Improved for Rare-earth Element Analysis by XRF without Standards[J]. Rock and Mineral Analysis, 2003, (1): 37-39.
  • Cited by

    Periodical cited type(31)

    1. 梁亚丽,吴领军,杨珍,孙银生,阿丽莉,贺攀红. 四酸消解-电感耦合等离子体质谱法测定砂岩型铀矿中铀钍及稀土元素. 冶金分析. 2025(01): 68-75 .
    2. 刘维一,熊正烨,郭竞渊,廖小婷,余果. 雷州半岛东部近岸水体溴质量浓度空间分布及其影响因素. 激光与光电子学进展. 2024(05): 89-97 .
    3. 李晓敬,胡艳巧,张金明,冉卓,赵良成,金倩. 微波消解-电感耦合等离子体质谱法测定石墨矿中16种稀土元素. 冶金分析. 2024(08): 18-26 .
    4. 黄平安,王夏青,唐湘玲,王玉堂,李玮,罗增,吕飞亚. X射线荧光光谱岩心扫描影响因素及校正方法的研究进展. 物探与化探. 2023(03): 726-738 .
    5. 李小莉,王毅民,邓赛文,王祎亚,李松,白金峰. 中国X射线荧光光谱分析的地学应用60年. 光谱学与光谱分析. 2023(10): 2989-2998 .
    6. 董龙腾,王生进,刘才云. 电感耦合等离子体质谱标准物质换算法测定地质样品中15种稀土元素. 化学分析计量. 2022(02): 53-57 .
    7. 王晨希. X射线荧光光谱法测定农田底泥中8种元素. 化学分析计量. 2022(02): 40-44 .
    8. 刘闫,姚明星,张丽萍,樊蕾,张宏丽,王甜甜. 电感耦合等离子体质谱法测定锆钛矿中16种稀土元素分量及其总量. 冶金分析. 2022(03): 19-25 .
    9. 胡瑶瑶,王浩铮,侯玉杨,宋皓然. 基于电子探针面扫描定量化的石英闪长岩微区成分分析. 岩矿测试. 2022(02): 260-271 . 本站查看
    10. 秦燕华,刘巍,刘姜瑾,练文柳,罗嘉,韩星,任建新. 基于EDXRF光谱法的滤棒中痕量砷和铅的快速检测. 烟草科技. 2022(07): 40-46 .
    11. 周凯红,张立锋,李佳. 电感耦合等离子体质谱法测定白云鄂博矿石中15种稀土元素总量及其分量. 冶金分析. 2022(08): 87-95 .
    12. 曾江萍,王家松,朱悦,张楠,王娜,吴良英,魏双. 敞开酸溶-电感耦合等离子体质谱法测定铀矿石中15种稀土元素. 岩矿测试. 2022(05): 789-797 . 本站查看
    13. 王娜,王家松,曾江萍,李强,吴磊,陈枫. 重铬酸钾和高锰酸钾电位落差法测定砂岩型铀矿氧化还原电位的探讨. 岩矿测试. 2022(05): 806-814 . 本站查看
    14. 玉永珊. 稀土元素分析测试方法在地质学上的应用. 世界有色金属. 2022(15): 166-168 .
    15. 张玉芹,彭艳,韦时宏,朱健. 高压密闭消解-电感耦合等离子体质谱法测定地质样品中稀土元素. 实验室研究与探索. 2021(03): 29-32 .
    16. 李艳. 熔融制样X射线荧光光谱法测定矿石中五氧化二钒的含量. 福建分析测试. 2021(01): 54-58 .
    17. 刘春,高励珍,张翼明,刘晓杰. 电感耦合等离子体发射光谱法测定镨钕钆合金中稀土杂质量. 金属功能材料. 2021(04): 59-63 .
    18. 苗煦,王礼胜. 湖南临武黑色石英岩质玉矿物组成特征及成因初探. 岩矿测试. 2021(04): 522-531 . 本站查看
    19. 曾江萍,王家松,王娜,郑智慷,王力强,张楠. 敞开酸溶—电感耦合等离子体质谱法测定锑矿石中的稀土元素. 华北地质. 2021(04): 80-84 .
    20. 尹昌慧,袁永海,杨锋. 阳离子交换树脂富集-电感耦合等离子体质谱法测定铜精矿中14种稀土元素. 理化检验(化学分册). 2020(05): 532-535 .
    21. 王毅民,邓赛文,王祎亚,李松. X射线荧光光谱在矿石分析中的应用评介——总论. 冶金分析. 2020(10): 32-49 .
    22. 张绵绵,高晓哲. 塑胶跑道面层中铅、镉、铬、汞的测定X射线荧光光谱法. 中国石油和化工标准与质量. 2020(16): 71-72+76 .
    23. 王祎亚,高新华,王毅民,邓赛文,李松. 地质材料稀土元素的X射线荧光分析文献评介. 光谱学与光谱分析. 2020(11): 3341-3352 .
    24. 袁静,刘建坤,郑荣华,沈加林. 高能偏振能量色散X射线荧光光谱仪特性研究及地质样品中主微量元素分析. 岩矿测试. 2020(06): 816-827 . 本站查看
    25. 李迎春,张磊,周伟,尚文郁. 熔融制样-波长色散和能量色散X射线荧光光谱仪应用于硅酸盐类矿物及疑难样品分析. 岩矿测试. 2020(06): 828-838 . 本站查看
    26. 赵毅华. 熔融制样-X射线荧光光谱法测定镜铁矿中主次成分. 分析测试技术与仪器. 2019(01): 33-38 .
    27. 阿丽莉,张盼盼,贺攀红,杨珍,梁亚丽,杨有泽. X射线荧光光谱法测定地质样品中的硫和氟. 中国无机分析化学. 2019(02): 50-53 .
    28. 王啸,李田义,姜菲. ICP-MS测定高硅矿物中铌、钽及稀土. 稀土. 2019(03): 109-114 .
    29. 阿丽莉,贺攀红,张盼盼. 粉末压片-X射线荧光光谱法测定地质样品中镧铈镨钕钐. 冶金分析. 2019(09): 39-45 .
    30. 田衎,郭伟臣,杨永,岳亚萍,张覃,赵亚娴. 波长色散X射线荧光光谱法测定土壤和水系沉积物中13种重金属元素. 冶金分析. 2019(10): 30-36 .
    31. 董学林,何海洋,储溱,仇秀梅,唐兴敏. 碱熔沉淀分离-电感耦合等离子体质谱法测定伴生重晶石稀土矿中的稀土元素. 岩矿测试. 2019(06): 620-630 . 本站查看

    Other cited types(3)

Catalog

    Article views (2838) PDF downloads (35) Cited by(34)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return