• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
Rong-zhen XU, Fei LIU, Ji-hong JING, Zi-yi AN, Sheng-zhang ZOU. Distribution Characteristics of Polycyclic Aromatic Hydrocarbons in Typical Shallow Pore Water and Karst Water[J]. Rock and Mineral Analysis, 2018, 37(4): 411-418. DOI: 10.15898/j.cnki.11-2131/td.201801120004
Citation: Rong-zhen XU, Fei LIU, Ji-hong JING, Zi-yi AN, Sheng-zhang ZOU. Distribution Characteristics of Polycyclic Aromatic Hydrocarbons in Typical Shallow Pore Water and Karst Water[J]. Rock and Mineral Analysis, 2018, 37(4): 411-418. DOI: 10.15898/j.cnki.11-2131/td.201801120004

Distribution Characteristics of Polycyclic Aromatic Hydrocarbons in Typical Shallow Pore Water and Karst Water

More Information
  • Received Date: January 11, 2018
  • Revised Date: March 19, 2018
  • Accepted Date: May 06, 2018
  • Published Date: June 30, 2018
  • HIGHLIGHTS
    (1) The highest detection frequency of PAHs was chrysene (6.10%) in groundwater.
    (2) In this study, PAHs in groundwater are mainly 2-4 rings.
    (3) The source pollution of PAHs was from combustion in Shijiazhuang; and it was related to industrial layout in Guangzhou; while it was mainly affected by precipitation in Qujing.
    BACKGROUNDIn recent years, reports of the detection of PAHs in groundwater have gradually increased, but research on PAHs in groundwater of major hydrogeological units in China is not being conducted.
    OBJECTIVESTo study and compare the distribution characteristics of PAHs in groundwater under different hydrogeological conditions, using a total of 82 samples of shallow pore water and Karst groundwater samples collected in the Huabei plain, the Pearl River Delta plain, and the Southwestern Karst area.
    METHODSGas Chromatography-Mass Spectrometry (GC-MS) was used to test PAHs in groundwater samples, and statistical methods were used to compare the detection frequency, concentration and composition of PAHs in the three different areas.
    RESULTS16 PAHs were detected and each PAH was detected in at least one sample. The highest detection rate of PAHs was chrysene (6.10%). The PAH with the highest concentration was naphthalene (5.41 μg/L). Only the concentration of benzo(a)pyrene exceeded the Class Ⅲ limit in the standard for groundwater quality, and the over-standard rate was 2.44%. The PAHs in groundwater are mainly 2-4 rings, but the composition of PAHs in the three regions was different. The relative proportion of 4-rings PAHs in the northern pore water was high, accounting for 52.48%, whereas the pore water in the South and the Karst water in the Southwest were dominated by 3-rings (56.60%) and 2-rings (95.66%), respectively.
    CONCLUSIONSThe main cause of contamination of PAHs in Northern pore water was by combustion. The PAHs contamination in the Southern pore water was related to the industrial layout of the Pearl River Delta, whereas the PAHs of Qujing Karst water were mainly affected by atmospheric precipitation. The detection differences of PAHs in different districts were related to their physicochemical properties, hydrogeological conditions, pollution sources, meteorological and hydrological factors. The results provide basic data support for groundwater PAHs pollution monitoring and the formulation of a groundwater related standard in China.

  • Menzie C A, Potoki B B, Santodomato J.Exposure to carcinogenic PAHs in the environment[J].Environmental Science & Technology, 1992, 26(7):1278-1284. doi: 10.1021-es00031a002/
    Harkov R, Greenberg A, Darack F, et al.Summer time variations in polycyclic aromatic hydro-carbons at four sites in New Jersey[J].Environmental Science & Technology, 1984, 18(4):287-291. http://europepmc.org/abstract/med/22263771
    Krupadam R J, Khan M S, Wate S R.Removal of probable human carcinogenic polycyclic aromatic hydrocarbons from contaminated water using molecularly imprinted polymer[J].Water Research, 2010, 44(3):681-688. doi: 10.1016/j.watres.2009.09.044
    曹云者, 柳晓娟, 谢云峰, 等.我国主要地区表层土壤中多环芳烃组成及含量特征分析[J].环境科学学报, 2012, 32(1):197-203. http://d.old.wanfangdata.com.cn/Periodical/hjkxxb201201026

    Cao Y Z, Liu X J, Xie Y F, et al.Patterns of PAHs concentrations and components in surface soils of main areas in China[J].Acta Scientiae Circumstantiae, 2012, 32(1):197-203. http://d.old.wanfangdata.com.cn/Periodical/hjkxxb201201026
    Page D S, Boehm P D, Douglas G S, et al.Pyrogenic polycyclic aromatic hydrocarbons in sediments record past human activity:A case study in Prince William Sound, Alaska[J]. Marine Pollution Bulletin, 1999, 38(4):247-260. doi: 10.1016/S0025-326X(98)00142-8
    Argiriadis E, Rada E C, Vecchiato M, et al.Assessing the influence of local sources on POPs in atmospheric depositions and sediments near Trento (Italy)[J].Atmospheric Environment, 2014, 98:32-40. doi: 10.1016/j.atmosenv.2014.08.035
    Luo X, Zheng Y, Lin Z, et al.Evaluating potential non-point source loading of PAHs from contaminated soils:A fugacity-based modeling approach[J].Environmental Pollution, 2015, 196:1-11. doi: 10.1016/j.envpol.2014.09.011
    Mielke H W, Wang G D, Gonzales C R, et al.PAHs and metals in the soils of inner-city and suburban New Orleans, Louisiana, USA[J].Environmental Toxicology and Pharmacology, 2004, 18:243-247. doi: 10.1016/j.etap.2003.11.011
    Ma L L, Chu S G, Wang X T, et al.Polycyclic aromatic hydrocarbons in the surface soils from outskirts of Beijing, China[J].Chemosphere, 2005, 58:1355-1363. doi: 10.1016/j.chemosphere.2004.09.083
    Wang X C, Sun S, Ma H Q, et al.Sources and distri-bution of aliphatic and polycyclic aromatic hydrocarbons in sediments of Jiaozhou Bay, Qingdao, China[J].Marine Pollution Bulletin, 2006, 52(2):129-138. doi: 10.1016/j.marpolbul.2005.08.010
    Shi Z, Tao S, Pan B, et al.Partitioning and source diagnostics of polycyclic aromatic hydrocarbons in rivers in Tianjin, China[J].Environmental Pollution, 2007, 146:492-500. doi: 10.1016/j.envpol.2006.07.009
    Liu M, Cheng S B, Ou D N, et al.Characterization, identification of road dust PAHs in central Shanghai areas, China[J].Atmospheric Environment, 2007, 41:8785-8795. doi: 10.1016/j.atmosenv.2007.07.059
    Jiang Y, Yves U J, Sun H, et al.Distribution, composi-tional pattern and sources of polycyclic aromatic hydrocarbons in urban soils of an industrial city, Lanzhou, China[J].Ecotoxicology & Environmental Safety, 2016, 126(7):154-162.
    Velaa N, Martínez-Menchónb M, Navarrob G, et al.Removal of polycyclic aromatic hydrocarbons (PAHs) from groundwater by heterogeneous photocatalysis under natural sunlight[J].Journal of Photochemistry and Photobiology A-Chemistry, 2012, 232(5):32-40. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0225786108
    崔虎群, 康卫东, 李文鹏, 等.定靖油气田区地下水有机污染特征初步分析[J].环境化学, 2016, 35(6):1212-1218. http://d.old.wanfangdata.com.cn/Periodical/hjhx201606014

    Cui H Q, Kang W D, Li W P, et al.Preliminary analysis on the organic contamination in groundwater of Dingjing oil-gas field region[J].Environmental Chemistry, 2016, 35(6):1212-1218. http://d.old.wanfangdata.com.cn/Periodical/hjhx201606014
    苗迎, 孔祥胜.南宁市多环境介质中多环芳烃分布特征[J].环境科学, 2016, 37(11):4333-4340. http://d.old.wanfangdata.com.cn/Periodical/hjkx201611039

    Miao Y, Kong X S.Distribution characteristics of polycyclic aromatic hydrocarbons in environmental media in Nanning city[J].Environmental Science, 2016, 37(11):4333-4340. http://d.old.wanfangdata.com.cn/Periodical/hjkx201611039
    昌盛, 耿梦娇, 刘琰, 等.滹沱河冲洪积扇地下水中多环芳烃的污染特征[J].中国环境科学, 2016, 36(7):2058-2066. doi: 10.3969/j.issn.1000-6923.2016.07.022

    Chang S, Geng M J, Liu Y, et al.Pollution characteristic of polycyclic aromatic hydrocarbons in the groundwater of Hutuo River Pluvial Fan[J].China Environmental Science, 2016, 36(7):2058-2066. doi: 10.3969/j.issn.1000-6923.2016.07.022
    龚香宜, 何炎志, 孙云雷.江汉平原四湖流域上区地下水中多环芳烃分布特征与源解析[J].环境科学学报, 2015, 35(3):789-796. http://d.old.wanfangdata.com.cn/Periodical/hjkxxb201503024

    Gong X Y, He Y Z, Sun Y L.Distribution and source of polycyclic aromatic hydrocarbons in groundwater in the upper region of Sihu Lake Basin from Jianghan Plain[J].Acta Scientiae Circumstantiae, 2015, 35(3):789-796. http://d.old.wanfangdata.com.cn/Periodical/hjkxxb201503024
    赵红梅, 赵华, 毛洪亮, 等.华北平原滹沱河冲洪积扇第四纪地层划分[J].地层学杂志, 2014, 38(2):137-146. http://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201402002.htm

    Zhao H M, Zhao H, Mao H L, et al.Quaternary stratigraphy division of Hutuohe alluvial fan deposits in the North China Plain[J].Journal of Stratigraphy, 2014, 38(2):137-146. http://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201402002.htm
    李亚松, 张兆吉, 费宇红, 等.河北省滹沱河冲积平原地下水质量及污染特征研究[J].地球学报, 2014, 35(2):169-176. http://d.old.wanfangdata.com.cn/Conference/8307619

    Li Y S, Zhang Z J, Fei Y H, et al.Groundwater quality and contamination characteristics in the Hutuo River Plain area, Hebei Province[J].Acta Geoscientica Sinica, 2014, 35(2):169-176. http://d.old.wanfangdata.com.cn/Conference/8307619
    郭秀红. 珠江三角洲地区浅层地下水有机污染研究[D]. 北京: 中国地质大学(北京), 2006.

    Guo X H. Research on Characteristics of Shallow Groundwater Organic Contamination in Pearl River Delta[D]. Beijing: China University of Geosciences (Beijing), 2006.
    杨艳华, 朱培秋, 和怀忠, 等. 云南省地下水水资源评价[R]. 2002.

    Yang Y H, Zhu P Q, He H Z, et al. Water Resource Assessment on Groundwater in Yunnan Province[R]. 2002.
    Suman S, Sinha A, Tarafdar A.Polycyclic aromatic hydrocarbons (PAHs) concentration levels, pattern, source identification and soil toxicity assessment in urban traffic soil of Dhanbad, India[J].Science of the Total Environment, 2016, 545-546:353-360. doi: 10.1016/j.scitotenv.2015.12.061
    于国光, 王铁冠, 吴大鹏.薪柴燃烧源和燃煤源中多环芳烃的成分谱研究[J].生态环境, 2007, 16(2):285-289. doi: 10.3969/j.issn.1674-5906.2007.02.004

    Yu G G, Wang T G, Wu D P.Study on fingerprints of PAHs from the combustion of bavin and coal[J].Ecology and Environment, 2007, 16(2):285-289. doi: 10.3969/j.issn.1674-5906.2007.02.004
    王丽娟.多环芳烃类污染物在部分水体中的分布及其降解途径[J].渔业研究, 2017, 39(4):325-330. http://d.old.wanfangdata.com.cn/Periodical/fjsc201704011

    Wang L J.Distribution of polycyclic aromatic hydrocarbons in some water bodies and degradation pathways[J].Journal of Fisheries Research, 2017, 39(4):325-330. http://d.old.wanfangdata.com.cn/Periodical/fjsc201704011
    Ford D C, Williams P.Karst Hydrogeology and Geo-morphology[M].Chichester:John Wiley & Sons, 2007.
    蓝家程, 孙玉川, 师阳, 等.岩溶地下河流域表层土壤多环芳烃污染特征及来源分析[J].环境科学, 2014, 35(8):2937-2943. http://d.old.wanfangdata.com.cn/Periodical/hjkx201408017

    Lan J C, Sun Y C, Shi Y, et al.Source and contamination of polycyclic aromatic hydrocarbons in surface soil in Karst underground river basin[J].Environmental Science, 2014, 35(8):2937-2943. http://d.old.wanfangdata.com.cn/Periodical/hjkx201408017
  • Related Articles

    [1]YUAN Jing, LI Yingchun, TAN Guili, HUANG Haibo, ZHANG Hua, LIU Jiao. Some Difficulties and Status in the Application of X-Ray Spectrometry in Geological Analysis: A Review[J]. Rock and Mineral Analysis, 2025, 44(2): 161-173. DOI: 10.15898/j.ykcs.202403150052
    [2]Jing CHEN, Zhi-jun GAO, Chong-ke CHEN, Yan-xia LIU, Ming-wei ZHANG. Application Skills on Determination of Geological Sample by X-ray Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2015, 34(1): 91-98. DOI: 10.15898/j.cnki.11-2131/td.2015.01.012
    [3]Zhao-shui YU, Qin ZHANG, Xiao-li LI, Shou-zhong FAN, Yan-shan PAN, Guo-hui LI. Determination of 23 Elements in Biological Samples by Wavelength Dispersion X-ray Fluorescence Spectrometry with High Pressure Pressed Powder Pellet Preparation[J]. Rock and Mineral Analysis, 2014, 33(6): 844-848.
    [4]MA Tian-fang, LI Xiao-li, CHEN Yong-jun, DENG Zhen-pin, LI Guo-hui. Interchangeable Analysis of Method on the X-ray Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2011, 30(4): 486-490.
    [5]CHEN Yongjun, WANG Yaping, XU Chunxue, ZHENG Miaozi, WANG Suming. Preparation of Synthetic Standard Reference Materials for X-ray Fluorescence Spectrometric Analysis[J]. Rock and Mineral Analysis, 2009, 28(5): 462-466.
    [6]Determination of Mo,Pb,Fe and Cu in Molybdenum Ores by Energy-dispersive X-ray Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2008, 27(3): 235-236.
    [7]Determination of Multi-elements in Iron Ores by X-ray Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2008, 27(3): 229-231.
    [8]Simultaneous Determination of Major, Minor and Trace Components in Limestone Samples by X-ray Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2008, 27(2): 149-150.
    [9]Determination of Major and Minor Components in Sea Sediment Samples by Fused Bead-X-ray Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2008, 27(1): 74-76.
    [10]A Semi-quantitative Method Improved for Rare-earth Element Analysis by XRF without Standards[J]. Rock and Mineral Analysis, 2003, (1): 37-39.
  • Cited by

    Periodical cited type(31)

    1. 梁亚丽,吴领军,杨珍,孙银生,阿丽莉,贺攀红. 四酸消解-电感耦合等离子体质谱法测定砂岩型铀矿中铀钍及稀土元素. 冶金分析. 2025(01): 68-75 .
    2. 刘维一,熊正烨,郭竞渊,廖小婷,余果. 雷州半岛东部近岸水体溴质量浓度空间分布及其影响因素. 激光与光电子学进展. 2024(05): 89-97 .
    3. 李晓敬,胡艳巧,张金明,冉卓,赵良成,金倩. 微波消解-电感耦合等离子体质谱法测定石墨矿中16种稀土元素. 冶金分析. 2024(08): 18-26 .
    4. 黄平安,王夏青,唐湘玲,王玉堂,李玮,罗增,吕飞亚. X射线荧光光谱岩心扫描影响因素及校正方法的研究进展. 物探与化探. 2023(03): 726-738 .
    5. 李小莉,王毅民,邓赛文,王祎亚,李松,白金峰. 中国X射线荧光光谱分析的地学应用60年. 光谱学与光谱分析. 2023(10): 2989-2998 .
    6. 董龙腾,王生进,刘才云. 电感耦合等离子体质谱标准物质换算法测定地质样品中15种稀土元素. 化学分析计量. 2022(02): 53-57 .
    7. 王晨希. X射线荧光光谱法测定农田底泥中8种元素. 化学分析计量. 2022(02): 40-44 .
    8. 刘闫,姚明星,张丽萍,樊蕾,张宏丽,王甜甜. 电感耦合等离子体质谱法测定锆钛矿中16种稀土元素分量及其总量. 冶金分析. 2022(03): 19-25 .
    9. 胡瑶瑶,王浩铮,侯玉杨,宋皓然. 基于电子探针面扫描定量化的石英闪长岩微区成分分析. 岩矿测试. 2022(02): 260-271 . 本站查看
    10. 秦燕华,刘巍,刘姜瑾,练文柳,罗嘉,韩星,任建新. 基于EDXRF光谱法的滤棒中痕量砷和铅的快速检测. 烟草科技. 2022(07): 40-46 .
    11. 周凯红,张立锋,李佳. 电感耦合等离子体质谱法测定白云鄂博矿石中15种稀土元素总量及其分量. 冶金分析. 2022(08): 87-95 .
    12. 曾江萍,王家松,朱悦,张楠,王娜,吴良英,魏双. 敞开酸溶-电感耦合等离子体质谱法测定铀矿石中15种稀土元素. 岩矿测试. 2022(05): 789-797 . 本站查看
    13. 王娜,王家松,曾江萍,李强,吴磊,陈枫. 重铬酸钾和高锰酸钾电位落差法测定砂岩型铀矿氧化还原电位的探讨. 岩矿测试. 2022(05): 806-814 . 本站查看
    14. 玉永珊. 稀土元素分析测试方法在地质学上的应用. 世界有色金属. 2022(15): 166-168 .
    15. 张玉芹,彭艳,韦时宏,朱健. 高压密闭消解-电感耦合等离子体质谱法测定地质样品中稀土元素. 实验室研究与探索. 2021(03): 29-32 .
    16. 李艳. 熔融制样X射线荧光光谱法测定矿石中五氧化二钒的含量. 福建分析测试. 2021(01): 54-58 .
    17. 刘春,高励珍,张翼明,刘晓杰. 电感耦合等离子体发射光谱法测定镨钕钆合金中稀土杂质量. 金属功能材料. 2021(04): 59-63 .
    18. 苗煦,王礼胜. 湖南临武黑色石英岩质玉矿物组成特征及成因初探. 岩矿测试. 2021(04): 522-531 . 本站查看
    19. 曾江萍,王家松,王娜,郑智慷,王力强,张楠. 敞开酸溶—电感耦合等离子体质谱法测定锑矿石中的稀土元素. 华北地质. 2021(04): 80-84 .
    20. 尹昌慧,袁永海,杨锋. 阳离子交换树脂富集-电感耦合等离子体质谱法测定铜精矿中14种稀土元素. 理化检验(化学分册). 2020(05): 532-535 .
    21. 王毅民,邓赛文,王祎亚,李松. X射线荧光光谱在矿石分析中的应用评介——总论. 冶金分析. 2020(10): 32-49 .
    22. 张绵绵,高晓哲. 塑胶跑道面层中铅、镉、铬、汞的测定X射线荧光光谱法. 中国石油和化工标准与质量. 2020(16): 71-72+76 .
    23. 王祎亚,高新华,王毅民,邓赛文,李松. 地质材料稀土元素的X射线荧光分析文献评介. 光谱学与光谱分析. 2020(11): 3341-3352 .
    24. 袁静,刘建坤,郑荣华,沈加林. 高能偏振能量色散X射线荧光光谱仪特性研究及地质样品中主微量元素分析. 岩矿测试. 2020(06): 816-827 . 本站查看
    25. 李迎春,张磊,周伟,尚文郁. 熔融制样-波长色散和能量色散X射线荧光光谱仪应用于硅酸盐类矿物及疑难样品分析. 岩矿测试. 2020(06): 828-838 . 本站查看
    26. 赵毅华. 熔融制样-X射线荧光光谱法测定镜铁矿中主次成分. 分析测试技术与仪器. 2019(01): 33-38 .
    27. 阿丽莉,张盼盼,贺攀红,杨珍,梁亚丽,杨有泽. X射线荧光光谱法测定地质样品中的硫和氟. 中国无机分析化学. 2019(02): 50-53 .
    28. 王啸,李田义,姜菲. ICP-MS测定高硅矿物中铌、钽及稀土. 稀土. 2019(03): 109-114 .
    29. 阿丽莉,贺攀红,张盼盼. 粉末压片-X射线荧光光谱法测定地质样品中镧铈镨钕钐. 冶金分析. 2019(09): 39-45 .
    30. 田衎,郭伟臣,杨永,岳亚萍,张覃,赵亚娴. 波长色散X射线荧光光谱法测定土壤和水系沉积物中13种重金属元素. 冶金分析. 2019(10): 30-36 .
    31. 董学林,何海洋,储溱,仇秀梅,唐兴敏. 碱熔沉淀分离-电感耦合等离子体质谱法测定伴生重晶石稀土矿中的稀土元素. 岩矿测试. 2019(06): 620-630 . 本站查看

    Other cited types(3)

Catalog

    Article views (1928) PDF downloads (35) Cited by(34)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return