Citation: | Chuan-bo XIA, Xue-hai CHENG, Hui-tang ZHANG, Wei ZHAO, Qing WANG. Determination of Twelve Major and Minor Elements in Tourmaline by X-ray Fluorescence Spectrometry with Fusion Sample Preparation[J]. Rock and Mineral Analysis, 2018, 37(1): 36-42. DOI: 10.15898/j.cnki.11-2131/td.201610260197 |
胡应模, 陈旭波, 汤明茹.电气石功能复合材料研究进展及前景展望[J].地学前缘, 2014, 21(5):331-337. http://d.wanfangdata.com.cn/Periodical_dxqy201405028.aspx
Hu Y M, Chen X B, Tang M R.Research development and prospects of functional tourmaline composites[J].Earth Science Frontiers, 2014, 21(5):331-337. http://d.wanfangdata.com.cn/Periodical_dxqy201405028.aspx
|
黄雪飞, 张宝林, 李晓利, 等.电气石研究进展及其找矿意义[J].黄金科学技术, 2012, 20(3):56-65. http://www.oalib.com/paper/4763805
Huang X F, Zhang B L, Li X L, et al.Research progress of tourmaline and its prospecting significance[J].Gold Science & Technology, 2012, 20(3):56-65. http://www.oalib.com/paper/4763805
|
Hinsberg V J V, Henry D J, Marschall H R.Tourmaline:An ideal indicator of its host environment[J].Canadian Mineralogist, 2011, 49(1):1-16. doi: 10.3749/canmin.49.1.1
|
岩石矿物分析编委会.岩石矿物分析(第四版第二分册)[M].北京:地质出版社, 2011:390-396.
The Editorial Committee of Rock and Mineral Analysis.Rock and Mineral Analysis (Fourth Edition:Volume Ⅱ)[M].Beijing:Geological Publishing House, 2011:390-396.
|
King R W, Kerrich R W, Daddar R.REE distributions in tourmaline:An INAA technique involving pretreatment by B volatilization[J].American Mineralogist, 1988, 73:424-431. https://pubs.geoscienceworld.org/msa/ammin/article-abstract/73/3-4/424/42164/ree-distributions-in-tourmaline-an-inaa-technique?redirectedFrom=fulltext
|
de Oliveira E F, Lacerda M A S, Amaral A M, et al. Chemical Composition of Tourmaline by Instrumental Neutron Activation Analysis[C]//Proceedings of International Nuclear Atlantic Conference-INAC 2005 Santos. Brazil, 2005. https://www.researchgate.net/publication/228450779_CHEMICAL_COMPOSITION_OF_TOURMALINES_BY_INSTRUMENTAL_NEUTRON_ACTIVATION_ANALYSIS
|
Aigbe S O, Ewa I O B, Ogunleye P O, et al.Elemental characterization of some Nigerian gemstones:Tourmaline, fluorite and topaz by instrumental neutron activation analysis[J].Journal of Radioanalytical & Nuclear Chemistry, 2013, 295(1):801-805. doi: 10.1007/s10967-012-1954-0
|
成学海, 夏传波, 郑建业, 等.封闭压力酸溶-电感耦合等离子体质谱法同时测定电气石中29种元素[J].岩矿测试, 2017, 36(3):231-238. doi: 10.15898/j.cnki.11-2131/td.201609220143
Cheng X H, Xia C B, Zheng J Y, et al.Simultaneous determination of 29 trace elements in tourmaline samples by inductively coupled plasma mass spectrometry with pressurized acid decomposition[J].Rock and Mineral Analysis, 2017, 36(3):231-238. doi: 10.15898/j.cnki.11-2131/td.201609220143
|
Lihareva N, Kosturkova P, Vakarelska T.Application of sodium carbonate-zinc oxide decomposition mixture on ICP-AES determination of boron in tourmaline[J].Fresenius Journal of Analytical Chemistry, 2000, 367(1):84. doi: 10.1007/s002160051603
|
Tamer K, Yusuf K, Shao Y J.Determination of tourma-line composition in pegmatite from Buldan, Denizli (Western Anatolia, Turkey) using XRD, XRF, and confocal Raman spectroscopy[J].Spectroscopy Letters, 2013, 46(7):499-506. doi: 10.1080/00387010.2012.760102
|
Gullu B, Kadioglu Y K.Use of tourmaline as a potential petrogenetic indicator in the determination of host magma:CRS, XRD and PED-XRF methods[J].Spectrochimica Acta Part A:Molecular & Biomolecular Spectroscopy, 2017, 183:68. https://www.sciencedirect.com/science/article/pii/S1386142517303001
|
李国会, 李小莉.X射线荧光光谱分析熔融法制样的系统研究[J].冶金分析, 2015, 35(7):1-9. http://www.cnki.com.cn/Article/CJFDTotal-YJFX201507001.htm
Li G H, Li X L.Systematic study on the fusion sample preparation in X-ray fluorescence spectrometric analysis[J].Metallurgical Analysis, 2015, 35(7):1-9. http://www.cnki.com.cn/Article/CJFDTotal-YJFX201507001.htm
|
Watanabe M.Sample preparation for X-ray fluorescence analysis Ⅳ.Fusion bead method-Part 1:Basic principles[J].Rigaku Journal, 2015, 32(2):12-17. http://www.rigaku.com/downloads/journal/RJ31-2/Rigaku%20Journal%2031-2_12-17.pdf
|
周建辉, 白金峰.熔融玻璃片制样-X射线荧光光谱测定页岩中主量元素[J].岩矿测试, 2009, 28(2):179-181. http://www.ykcs.ac.cn/article/id/ykcs_20090220
Zhou J H, Bai J F.Determination of major elements in shale samples by X-ray fluorescence spectrometry with fused glass disc sample preparation[J].Rock and Mineral Analysis, 2009, 28(2):179-181. http://www.ykcs.ac.cn/article/id/ykcs_20090220
|
冯晓军.熔融制样-X射线荧光光谱法测定蛇纹石中主次组分[J].冶金分析, 2017, 37(4):27-32. http://d.wanfangdata.com.cn/Periodical_yjfx201309007.aspx
Feng X J.Determination of major and minor components in serpentine by X-ray fluorescence spectrometry with fusion sample preparation[J].Metallurgical Analysis, 2017, 37(4):27-32. http://d.wanfangdata.com.cn/Periodical_yjfx201309007.aspx
|
Berryman E J, Kutzschbach M, Trumbull R B, et al.Tourmaline as a petrogenetic indicator in the Pfitsch Formation, Western Tauern Window, Eastern Alps[J].Lithos, 2017, 284-285:138-155. doi: 10.1016/j.lithos.2017.04.008
|
龚仓, 李高湖, 付桂花, 等.X射线荧光光谱法测定富砷地质样品中的主次痕量元素[J].分析试验室, 2014, 33(10):1220-1224. http://www.cnki.com.cn/Article/CJFDTOTAL-YHYJ201602007.htm
Gong C, Li G H, Fu G H, et al.Determination of major, minor and trace elements in geological samples with arsenic by X-ray fluorescence spectrometry[J].Chinese Journal of Analysis Laboratory, 2014, 33(10):1220-1224. http://www.cnki.com.cn/Article/CJFDTOTAL-YHYJ201602007.htm
|
1. |
梁亚丽,吴领军,杨珍,孙银生,阿丽莉,贺攀红. 四酸消解-电感耦合等离子体质谱法测定砂岩型铀矿中铀钍及稀土元素. 冶金分析. 2025(01): 68-75 .
![]() | |
2. |
刘维一,熊正烨,郭竞渊,廖小婷,余果. 雷州半岛东部近岸水体溴质量浓度空间分布及其影响因素. 激光与光电子学进展. 2024(05): 89-97 .
![]() | |
3. |
李晓敬,胡艳巧,张金明,冉卓,赵良成,金倩. 微波消解-电感耦合等离子体质谱法测定石墨矿中16种稀土元素. 冶金分析. 2024(08): 18-26 .
![]() | |
4. |
黄平安,王夏青,唐湘玲,王玉堂,李玮,罗增,吕飞亚. X射线荧光光谱岩心扫描影响因素及校正方法的研究进展. 物探与化探. 2023(03): 726-738 .
![]() | |
5. |
李小莉,王毅民,邓赛文,王祎亚,李松,白金峰. 中国X射线荧光光谱分析的地学应用60年. 光谱学与光谱分析. 2023(10): 2989-2998 .
![]() | |
6. |
董龙腾,王生进,刘才云. 电感耦合等离子体质谱标准物质换算法测定地质样品中15种稀土元素. 化学分析计量. 2022(02): 53-57 .
![]() | |
7. |
王晨希. X射线荧光光谱法测定农田底泥中8种元素. 化学分析计量. 2022(02): 40-44 .
![]() | |
8. |
刘闫,姚明星,张丽萍,樊蕾,张宏丽,王甜甜. 电感耦合等离子体质谱法测定锆钛矿中16种稀土元素分量及其总量. 冶金分析. 2022(03): 19-25 .
![]() | |
9. |
胡瑶瑶,王浩铮,侯玉杨,宋皓然. 基于电子探针面扫描定量化的石英闪长岩微区成分分析. 岩矿测试. 2022(02): 260-271 .
![]() | |
10. |
秦燕华,刘巍,刘姜瑾,练文柳,罗嘉,韩星,任建新. 基于EDXRF光谱法的滤棒中痕量砷和铅的快速检测. 烟草科技. 2022(07): 40-46 .
![]() | |
11. |
周凯红,张立锋,李佳. 电感耦合等离子体质谱法测定白云鄂博矿石中15种稀土元素总量及其分量. 冶金分析. 2022(08): 87-95 .
![]() | |
12. |
曾江萍,王家松,朱悦,张楠,王娜,吴良英,魏双. 敞开酸溶-电感耦合等离子体质谱法测定铀矿石中15种稀土元素. 岩矿测试. 2022(05): 789-797 .
![]() | |
13. |
王娜,王家松,曾江萍,李强,吴磊,陈枫. 重铬酸钾和高锰酸钾电位落差法测定砂岩型铀矿氧化还原电位的探讨. 岩矿测试. 2022(05): 806-814 .
![]() | |
14. |
玉永珊. 稀土元素分析测试方法在地质学上的应用. 世界有色金属. 2022(15): 166-168 .
![]() | |
15. |
张玉芹,彭艳,韦时宏,朱健. 高压密闭消解-电感耦合等离子体质谱法测定地质样品中稀土元素. 实验室研究与探索. 2021(03): 29-32 .
![]() | |
16. |
李艳. 熔融制样X射线荧光光谱法测定矿石中五氧化二钒的含量. 福建分析测试. 2021(01): 54-58 .
![]() | |
17. |
刘春,高励珍,张翼明,刘晓杰. 电感耦合等离子体发射光谱法测定镨钕钆合金中稀土杂质量. 金属功能材料. 2021(04): 59-63 .
![]() | |
18. |
苗煦,王礼胜. 湖南临武黑色石英岩质玉矿物组成特征及成因初探. 岩矿测试. 2021(04): 522-531 .
![]() | |
19. |
曾江萍,王家松,王娜,郑智慷,王力强,张楠. 敞开酸溶—电感耦合等离子体质谱法测定锑矿石中的稀土元素. 华北地质. 2021(04): 80-84 .
![]() | |
20. |
尹昌慧,袁永海,杨锋. 阳离子交换树脂富集-电感耦合等离子体质谱法测定铜精矿中14种稀土元素. 理化检验(化学分册). 2020(05): 532-535 .
![]() | |
21. |
王毅民,邓赛文,王祎亚,李松. X射线荧光光谱在矿石分析中的应用评介——总论. 冶金分析. 2020(10): 32-49 .
![]() | |
22. |
张绵绵,高晓哲. 塑胶跑道面层中铅、镉、铬、汞的测定X射线荧光光谱法. 中国石油和化工标准与质量. 2020(16): 71-72+76 .
![]() | |
23. |
王祎亚,高新华,王毅民,邓赛文,李松. 地质材料稀土元素的X射线荧光分析文献评介. 光谱学与光谱分析. 2020(11): 3341-3352 .
![]() | |
24. |
袁静,刘建坤,郑荣华,沈加林. 高能偏振能量色散X射线荧光光谱仪特性研究及地质样品中主微量元素分析. 岩矿测试. 2020(06): 816-827 .
![]() | |
25. |
李迎春,张磊,周伟,尚文郁. 熔融制样-波长色散和能量色散X射线荧光光谱仪应用于硅酸盐类矿物及疑难样品分析. 岩矿测试. 2020(06): 828-838 .
![]() | |
26. |
赵毅华. 熔融制样-X射线荧光光谱法测定镜铁矿中主次成分. 分析测试技术与仪器. 2019(01): 33-38 .
![]() | |
27. |
阿丽莉,张盼盼,贺攀红,杨珍,梁亚丽,杨有泽. X射线荧光光谱法测定地质样品中的硫和氟. 中国无机分析化学. 2019(02): 50-53 .
![]() | |
28. |
王啸,李田义,姜菲. ICP-MS测定高硅矿物中铌、钽及稀土. 稀土. 2019(03): 109-114 .
![]() | |
29. |
阿丽莉,贺攀红,张盼盼. 粉末压片-X射线荧光光谱法测定地质样品中镧铈镨钕钐. 冶金分析. 2019(09): 39-45 .
![]() | |
30. |
田衎,郭伟臣,杨永,岳亚萍,张覃,赵亚娴. 波长色散X射线荧光光谱法测定土壤和水系沉积物中13种重金属元素. 冶金分析. 2019(10): 30-36 .
![]() | |
31. |
董学林,何海洋,储溱,仇秀梅,唐兴敏. 碱熔沉淀分离-电感耦合等离子体质谱法测定伴生重晶石稀土矿中的稀土元素. 岩矿测试. 2019(06): 620-630 .
![]() |