• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
Chuan-bo XIA, Xue-hai CHENG, Hui-tang ZHANG, Wei ZHAO, Qing WANG. Determination of Twelve Major and Minor Elements in Tourmaline by X-ray Fluorescence Spectrometry with Fusion Sample Preparation[J]. Rock and Mineral Analysis, 2018, 37(1): 36-42. DOI: 10.15898/j.cnki.11-2131/td.201610260197
Citation: Chuan-bo XIA, Xue-hai CHENG, Hui-tang ZHANG, Wei ZHAO, Qing WANG. Determination of Twelve Major and Minor Elements in Tourmaline by X-ray Fluorescence Spectrometry with Fusion Sample Preparation[J]. Rock and Mineral Analysis, 2018, 37(1): 36-42. DOI: 10.15898/j.cnki.11-2131/td.201610260197

Determination of Twelve Major and Minor Elements in Tourmaline by X-ray Fluorescence Spectrometry with Fusion Sample Preparation

More Information
  • Received Date: October 25, 2016
  • Revised Date: April 29, 2017
  • Accepted Date: June 14, 2017
  • Published Date: December 31, 2017
  • Highlights
    · Twelve major and minor elements in tourmaline were determined by XRF with fusion sample preparation.
    · This method solved the problem that tourmaline is difficult to decompose and the interference effect of boron element.
    · Accuracy, precision and detection limit of most elements were improved, and the method is simple, less time-consuming and low cost.
    Tourmaline is a class of boron-bearing aluminosilicate minerals. It has a complex chemical component and stable chemical property, and is difficult to decompose by wet methods. The high content of B2O3 makes it difficult to simultaneously determine major and minor elements in tourmaline. X-ray Fluorescence Spectrometry (XRF) was applied to determine Na2O, MgO, Al2O3, SiO2, P2O5, K2O, CaO, TiO2, V2O5, Cr2O, MnO, TFe2O3 in tourmaline samples with fusion sample preparation in this study. The dilution ratio of 1:10 was set for the sample to flux lithium tetraborate-lithium metaborate-lithium fluoride (quality ratio of 4.5:1:0.4) in order to eliminate the particle size effect and mineral effect. When the tourmaline reference materials were unavailable, soil, stream sediment and different types of rock reference materials were used to establish calibration curves. The accuracy of the method was verified using reference materials that have chemical compositions similar to tourmaline. The relative standard deviation (RSD, n=11) was less than 4.2%. The proposed method was used to determine four different tourmaline samples, the results were in good agreement with the values obtained by wet chemical methods. This method solved the problem that tourmaline is difficult to decompose and eliminated the interference effect of boron. The analytical results are accurate and reliable. Compared with other methods, this method is easy to operate and has a short analytical time.

  • 胡应模, 陈旭波, 汤明茹.电气石功能复合材料研究进展及前景展望[J].地学前缘, 2014, 21(5):331-337. http://d.wanfangdata.com.cn/Periodical_dxqy201405028.aspx

    Hu Y M, Chen X B, Tang M R.Research development and prospects of functional tourmaline composites[J].Earth Science Frontiers, 2014, 21(5):331-337. http://d.wanfangdata.com.cn/Periodical_dxqy201405028.aspx
    黄雪飞, 张宝林, 李晓利, 等.电气石研究进展及其找矿意义[J].黄金科学技术, 2012, 20(3):56-65. http://www.oalib.com/paper/4763805

    Huang X F, Zhang B L, Li X L, et al.Research progress of tourmaline and its prospecting significance[J].Gold Science & Technology, 2012, 20(3):56-65. http://www.oalib.com/paper/4763805
    Hinsberg V J V, Henry D J, Marschall H R.Tourmaline:An ideal indicator of its host environment[J].Canadian Mineralogist, 2011, 49(1):1-16. doi: 10.3749/canmin.49.1.1
    岩石矿物分析编委会.岩石矿物分析(第四版第二分册)[M].北京:地质出版社, 2011:390-396.

    The Editorial Committee of Rock and Mineral Analysis.Rock and Mineral Analysis (Fourth Edition:Volume Ⅱ)[M].Beijing:Geological Publishing House, 2011:390-396.
    King R W, Kerrich R W, Daddar R.REE distributions in tourmaline:An INAA technique involving pretreatment by B volatilization[J].American Mineralogist, 1988, 73:424-431. https://pubs.geoscienceworld.org/msa/ammin/article-abstract/73/3-4/424/42164/ree-distributions-in-tourmaline-an-inaa-technique?redirectedFrom=fulltext
    de Oliveira E F, Lacerda M A S, Amaral A M, et al. Chemical Composition of Tourmaline by Instrumental Neutron Activation Analysis[C]//Proceedings of International Nuclear Atlantic Conference-INAC 2005 Santos. Brazil, 2005. https://www.researchgate.net/publication/228450779_CHEMICAL_COMPOSITION_OF_TOURMALINES_BY_INSTRUMENTAL_NEUTRON_ACTIVATION_ANALYSIS
    Aigbe S O, Ewa I O B, Ogunleye P O, et al.Elemental characterization of some Nigerian gemstones:Tourmaline, fluorite and topaz by instrumental neutron activation analysis[J].Journal of Radioanalytical & Nuclear Chemistry, 2013, 295(1):801-805. doi: 10.1007/s10967-012-1954-0
    成学海, 夏传波, 郑建业, 等.封闭压力酸溶-电感耦合等离子体质谱法同时测定电气石中29种元素[J].岩矿测试, 2017, 36(3):231-238. doi: 10.15898/j.cnki.11-2131/td.201609220143

    Cheng X H, Xia C B, Zheng J Y, et al.Simultaneous determination of 29 trace elements in tourmaline samples by inductively coupled plasma mass spectrometry with pressurized acid decomposition[J].Rock and Mineral Analysis, 2017, 36(3):231-238. doi: 10.15898/j.cnki.11-2131/td.201609220143
    Lihareva N, Kosturkova P, Vakarelska T.Application of sodium carbonate-zinc oxide decomposition mixture on ICP-AES determination of boron in tourmaline[J].Fresenius Journal of Analytical Chemistry, 2000, 367(1):84. doi: 10.1007/s002160051603
    Tamer K, Yusuf K, Shao Y J.Determination of tourma-line composition in pegmatite from Buldan, Denizli (Western Anatolia, Turkey) using XRD, XRF, and confocal Raman spectroscopy[J].Spectroscopy Letters, 2013, 46(7):499-506. doi: 10.1080/00387010.2012.760102
    Gullu B, Kadioglu Y K.Use of tourmaline as a potential petrogenetic indicator in the determination of host magma:CRS, XRD and PED-XRF methods[J].Spectrochimica Acta Part A:Molecular & Biomolecular Spectroscopy, 2017, 183:68. https://www.sciencedirect.com/science/article/pii/S1386142517303001
    李国会, 李小莉.X射线荧光光谱分析熔融法制样的系统研究[J].冶金分析, 2015, 35(7):1-9. http://www.cnki.com.cn/Article/CJFDTotal-YJFX201507001.htm

    Li G H, Li X L.Systematic study on the fusion sample preparation in X-ray fluorescence spectrometric analysis[J].Metallurgical Analysis, 2015, 35(7):1-9. http://www.cnki.com.cn/Article/CJFDTotal-YJFX201507001.htm
    Watanabe M.Sample preparation for X-ray fluorescence analysis Ⅳ.Fusion bead method-Part 1:Basic principles[J].Rigaku Journal, 2015, 32(2):12-17. http://www.rigaku.com/downloads/journal/RJ31-2/Rigaku%20Journal%2031-2_12-17.pdf
    周建辉, 白金峰.熔融玻璃片制样-X射线荧光光谱测定页岩中主量元素[J].岩矿测试, 2009, 28(2):179-181. http://www.ykcs.ac.cn/article/id/ykcs_20090220

    Zhou J H, Bai J F.Determination of major elements in shale samples by X-ray fluorescence spectrometry with fused glass disc sample preparation[J].Rock and Mineral Analysis, 2009, 28(2):179-181. http://www.ykcs.ac.cn/article/id/ykcs_20090220
    冯晓军.熔融制样-X射线荧光光谱法测定蛇纹石中主次组分[J].冶金分析, 2017, 37(4):27-32. http://d.wanfangdata.com.cn/Periodical_yjfx201309007.aspx

    Feng X J.Determination of major and minor components in serpentine by X-ray fluorescence spectrometry with fusion sample preparation[J].Metallurgical Analysis, 2017, 37(4):27-32. http://d.wanfangdata.com.cn/Periodical_yjfx201309007.aspx
    Berryman E J, Kutzschbach M, Trumbull R B, et al.Tourmaline as a petrogenetic indicator in the Pfitsch Formation, Western Tauern Window, Eastern Alps[J].Lithos, 2017, 284-285:138-155. doi: 10.1016/j.lithos.2017.04.008
    龚仓, 李高湖, 付桂花, 等.X射线荧光光谱法测定富砷地质样品中的主次痕量元素[J].分析试验室, 2014, 33(10):1220-1224. http://www.cnki.com.cn/Article/CJFDTOTAL-YHYJ201602007.htm

    Gong C, Li G H, Fu G H, et al.Determination of major, minor and trace elements in geological samples with arsenic by X-ray fluorescence spectrometry[J].Chinese Journal of Analysis Laboratory, 2014, 33(10):1220-1224. http://www.cnki.com.cn/Article/CJFDTOTAL-YHYJ201602007.htm
  • Related Articles

    [1]YUAN Jing, LI Yingchun, TAN Guili, HUANG Haibo, ZHANG Hua, LIU Jiao. Some Difficulties and Status in the Application of X-Ray Spectrometry in Geological Analysis: A Review[J]. Rock and Mineral Analysis, 2025, 44(2): 161-173. DOI: 10.15898/j.ykcs.202403150052
    [2]Jing CHEN, Zhi-jun GAO, Chong-ke CHEN, Yan-xia LIU, Ming-wei ZHANG. Application Skills on Determination of Geological Sample by X-ray Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2015, 34(1): 91-98. DOI: 10.15898/j.cnki.11-2131/td.2015.01.012
    [3]Zhao-shui YU, Qin ZHANG, Xiao-li LI, Shou-zhong FAN, Yan-shan PAN, Guo-hui LI. Determination of 23 Elements in Biological Samples by Wavelength Dispersion X-ray Fluorescence Spectrometry with High Pressure Pressed Powder Pellet Preparation[J]. Rock and Mineral Analysis, 2014, 33(6): 844-848.
    [4]MA Tian-fang, LI Xiao-li, CHEN Yong-jun, DENG Zhen-pin, LI Guo-hui. Interchangeable Analysis of Method on the X-ray Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2011, 30(4): 486-490.
    [5]CHEN Yongjun, WANG Yaping, XU Chunxue, ZHENG Miaozi, WANG Suming. Preparation of Synthetic Standard Reference Materials for X-ray Fluorescence Spectrometric Analysis[J]. Rock and Mineral Analysis, 2009, 28(5): 462-466.
    [6]Determination of Mo,Pb,Fe and Cu in Molybdenum Ores by Energy-dispersive X-ray Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2008, 27(3): 235-236.
    [7]Determination of Multi-elements in Iron Ores by X-ray Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2008, 27(3): 229-231.
    [8]Simultaneous Determination of Major, Minor and Trace Components in Limestone Samples by X-ray Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2008, 27(2): 149-150.
    [9]Determination of Major and Minor Components in Sea Sediment Samples by Fused Bead-X-ray Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2008, 27(1): 74-76.
    [10]A Semi-quantitative Method Improved for Rare-earth Element Analysis by XRF without Standards[J]. Rock and Mineral Analysis, 2003, (1): 37-39.
  • Cited by

    Periodical cited type(31)

    1. 梁亚丽,吴领军,杨珍,孙银生,阿丽莉,贺攀红. 四酸消解-电感耦合等离子体质谱法测定砂岩型铀矿中铀钍及稀土元素. 冶金分析. 2025(01): 68-75 .
    2. 刘维一,熊正烨,郭竞渊,廖小婷,余果. 雷州半岛东部近岸水体溴质量浓度空间分布及其影响因素. 激光与光电子学进展. 2024(05): 89-97 .
    3. 李晓敬,胡艳巧,张金明,冉卓,赵良成,金倩. 微波消解-电感耦合等离子体质谱法测定石墨矿中16种稀土元素. 冶金分析. 2024(08): 18-26 .
    4. 黄平安,王夏青,唐湘玲,王玉堂,李玮,罗增,吕飞亚. X射线荧光光谱岩心扫描影响因素及校正方法的研究进展. 物探与化探. 2023(03): 726-738 .
    5. 李小莉,王毅民,邓赛文,王祎亚,李松,白金峰. 中国X射线荧光光谱分析的地学应用60年. 光谱学与光谱分析. 2023(10): 2989-2998 .
    6. 董龙腾,王生进,刘才云. 电感耦合等离子体质谱标准物质换算法测定地质样品中15种稀土元素. 化学分析计量. 2022(02): 53-57 .
    7. 王晨希. X射线荧光光谱法测定农田底泥中8种元素. 化学分析计量. 2022(02): 40-44 .
    8. 刘闫,姚明星,张丽萍,樊蕾,张宏丽,王甜甜. 电感耦合等离子体质谱法测定锆钛矿中16种稀土元素分量及其总量. 冶金分析. 2022(03): 19-25 .
    9. 胡瑶瑶,王浩铮,侯玉杨,宋皓然. 基于电子探针面扫描定量化的石英闪长岩微区成分分析. 岩矿测试. 2022(02): 260-271 . 本站查看
    10. 秦燕华,刘巍,刘姜瑾,练文柳,罗嘉,韩星,任建新. 基于EDXRF光谱法的滤棒中痕量砷和铅的快速检测. 烟草科技. 2022(07): 40-46 .
    11. 周凯红,张立锋,李佳. 电感耦合等离子体质谱法测定白云鄂博矿石中15种稀土元素总量及其分量. 冶金分析. 2022(08): 87-95 .
    12. 曾江萍,王家松,朱悦,张楠,王娜,吴良英,魏双. 敞开酸溶-电感耦合等离子体质谱法测定铀矿石中15种稀土元素. 岩矿测试. 2022(05): 789-797 . 本站查看
    13. 王娜,王家松,曾江萍,李强,吴磊,陈枫. 重铬酸钾和高锰酸钾电位落差法测定砂岩型铀矿氧化还原电位的探讨. 岩矿测试. 2022(05): 806-814 . 本站查看
    14. 玉永珊. 稀土元素分析测试方法在地质学上的应用. 世界有色金属. 2022(15): 166-168 .
    15. 张玉芹,彭艳,韦时宏,朱健. 高压密闭消解-电感耦合等离子体质谱法测定地质样品中稀土元素. 实验室研究与探索. 2021(03): 29-32 .
    16. 李艳. 熔融制样X射线荧光光谱法测定矿石中五氧化二钒的含量. 福建分析测试. 2021(01): 54-58 .
    17. 刘春,高励珍,张翼明,刘晓杰. 电感耦合等离子体发射光谱法测定镨钕钆合金中稀土杂质量. 金属功能材料. 2021(04): 59-63 .
    18. 苗煦,王礼胜. 湖南临武黑色石英岩质玉矿物组成特征及成因初探. 岩矿测试. 2021(04): 522-531 . 本站查看
    19. 曾江萍,王家松,王娜,郑智慷,王力强,张楠. 敞开酸溶—电感耦合等离子体质谱法测定锑矿石中的稀土元素. 华北地质. 2021(04): 80-84 .
    20. 尹昌慧,袁永海,杨锋. 阳离子交换树脂富集-电感耦合等离子体质谱法测定铜精矿中14种稀土元素. 理化检验(化学分册). 2020(05): 532-535 .
    21. 王毅民,邓赛文,王祎亚,李松. X射线荧光光谱在矿石分析中的应用评介——总论. 冶金分析. 2020(10): 32-49 .
    22. 张绵绵,高晓哲. 塑胶跑道面层中铅、镉、铬、汞的测定X射线荧光光谱法. 中国石油和化工标准与质量. 2020(16): 71-72+76 .
    23. 王祎亚,高新华,王毅民,邓赛文,李松. 地质材料稀土元素的X射线荧光分析文献评介. 光谱学与光谱分析. 2020(11): 3341-3352 .
    24. 袁静,刘建坤,郑荣华,沈加林. 高能偏振能量色散X射线荧光光谱仪特性研究及地质样品中主微量元素分析. 岩矿测试. 2020(06): 816-827 . 本站查看
    25. 李迎春,张磊,周伟,尚文郁. 熔融制样-波长色散和能量色散X射线荧光光谱仪应用于硅酸盐类矿物及疑难样品分析. 岩矿测试. 2020(06): 828-838 . 本站查看
    26. 赵毅华. 熔融制样-X射线荧光光谱法测定镜铁矿中主次成分. 分析测试技术与仪器. 2019(01): 33-38 .
    27. 阿丽莉,张盼盼,贺攀红,杨珍,梁亚丽,杨有泽. X射线荧光光谱法测定地质样品中的硫和氟. 中国无机分析化学. 2019(02): 50-53 .
    28. 王啸,李田义,姜菲. ICP-MS测定高硅矿物中铌、钽及稀土. 稀土. 2019(03): 109-114 .
    29. 阿丽莉,贺攀红,张盼盼. 粉末压片-X射线荧光光谱法测定地质样品中镧铈镨钕钐. 冶金分析. 2019(09): 39-45 .
    30. 田衎,郭伟臣,杨永,岳亚萍,张覃,赵亚娴. 波长色散X射线荧光光谱法测定土壤和水系沉积物中13种重金属元素. 冶金分析. 2019(10): 30-36 .
    31. 董学林,何海洋,储溱,仇秀梅,唐兴敏. 碱熔沉淀分离-电感耦合等离子体质谱法测定伴生重晶石稀土矿中的稀土元素. 岩矿测试. 2019(06): 620-630 . 本站查看

    Other cited types(3)

Catalog

    Article views (13082) PDF downloads (74) Cited by(34)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return