GU Tao, ZHU Xiao-hua, ZHAO Xin-wen, JIANG Tuo, QIU Xiao-fei, ZHENG Xiao-zhan, SHUAI Qin. Relationship between Lotus Root Quality and Geochemical Conditions in the Xinken Lotus Root Producing Area of Guangzhou[J]. Rock and Mineral Analysis, 2021, 40(6): 833-845. DOI: 10.15898/j.cnki.11-2131/td.202109290136
Citation: GU Tao, ZHU Xiao-hua, ZHAO Xin-wen, JIANG Tuo, QIU Xiao-fei, ZHENG Xiao-zhan, SHUAI Qin. Relationship between Lotus Root Quality and Geochemical Conditions in the Xinken Lotus Root Producing Area of Guangzhou[J]. Rock and Mineral Analysis, 2021, 40(6): 833-845. DOI: 10.15898/j.cnki.11-2131/td.202109290136

Relationship between Lotus Root Quality and Geochemical Conditions in the Xinken Lotus Root Producing Area of Guangzhou

More Information
  • Received Date: September 28, 2021
  • Revised Date: November 04, 2021
  • Accepted Date: November 11, 2021
  • Published Date: November 27, 2021
  • HIGHLIGHTS
    (1) Chemical compositions of sediment, surface water and fresh lotus root in the Xinken area were systematically analyzed.
    (2) The sediment and water environment of Xinken lotus root is generally clean, with low heavy metal contents and rich nutrient elements in sediment. The contents of B, Co, Fe, Mg, Mn, V, Ca and Ge in the sediment are high, which is beneficial to the accumulation of nutrients in lotus root.
    (3) The absorption and enrichment capacity of Xinken lotus root for nutrient elements is greater than that for heavy metals.
    BACKGROUNDEnvironmental geochemical conditions affect the quality of famous and special agricultural products. Xinken lotus root is the national product of geographical indication. Exploring the relationship between the geological background of the production area and the quality of lotus root is of great significance to the large-scale planting of Xinken lotus root.
    OBJECTIVESTo reveal the correlation between the quality of lotus root and the environmental geochemical characteristics in the producing area.
    METHODSSediment, surface water and fresh lotus root in the Xinken area were systematically sampled and analyzed.
    RESULTSThe concentrations of nutrients, i.e., Mn, Zn, Mo, Co, V and Fe, in the sediment of the lotus root pond were high, in the first grade (rich) level. Selenium was mainly in proper amounts and high selenium grade. The concentrations of Cr, Cu, Hg, Ni, Pb and Zn were lower than those of the soil pollution risk threshold of agricultural land. Cu, Zn, Se, B, Hg, Cd, As, Cr(Ⅵ), Pb and Ni in surface water of the lotus pond met the requirement for irrigation water quality. The lotus root was rich in starch, soluble sugar, K, P, Ca, Mg, Fe, Zn and Se, and the contents of heavy metals and crude fiber were low. The average bioaccumulation coefficients of lotus root for different elements ranged from 0.0484 to 65.67. The enrichment ability of P was the strongest and that of Ge was the weakest. There was a significant positive correlation between B and starch in lotus root pond sediment (p ≤ 0.05), between Ca and protein, while a significant negative correlation between As and soluble sugar. The contents of B, Co, Fe, Mg, Mn, V, Ca and Ge in the sediment of the lotus pond were high, which was beneficial to the accumulation of nutrients in lotus root, and thus production of safe and high-quality lotus roots.
    CONCLUSIONSImportance should be attached to the supplement of organic matter, Ca, N and Ge in the lotus pond during the planting process and more attention to the potential ecological security risks caused by Cd and As.

  • Ferretti C G. Relationship between the geology, soil assessment, and terroir of Gewürtztraminer vineyards: A case study in the dolomites of northern Italy[J]. CATENA, 2019, 179: 74-84. doi: 10.1016/j.catena.2019.03.044
    Zhou G H, Zhu L X, Ren T X, et al. Geochemical characteristics affecting the cultivation and quality of Longjing Tea[J]. Journal of Geochemical Exploration, 1995, 55(1-3): 183-191. doi: 10.1016/0375-6742(95)00017-8
    黎旭荣, 朱鑫, 张高强, 等. 广东四会优质沙糖桔产地生态地球化学特征[J]. 现代地质, 2012, 26(1): 125-130. doi: 10.3969/j.issn.1000-8527.2012.01.013

    Li X R, Zhu X, Zhang G Q, et al. Eco-geochemical characteristics of the high-quality Shatang Citrus producing area in Sihui, Guangdong[J]. Geoscience, 2012, 26(1): 125-130. doi: 10.3969/j.issn.1000-8527.2012.01.013
    Amarante C V T D, de Fátima Ferreira Da Rosa E, Albuquerque J A, et al. Soil attributes and fruit quality in organic and conventional apple production systems in southern Brazil[J]. Artigo Científico, 2015, 46(1): 99-109. http://www.ccarevista.ufc.br/seer/index.php/ccarevista/article/download/3341/1068
    Kumssa D B, Joy E J, Young S D, et al. Variation in the mineral element concentration of Moringa oleifera Lam, and M. stenopetala (Bak. f. ) Cuf. : Role in human nutrition[J]. PLOS ONE, 2017, 12(4): e175503.
    严洪泽, 周国华, 孙彬彬, 等. 福建龙海杨梅产地元素地球化学特征[J]. 中国地质, 2018, 45(6): 1155-1166. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201806007.htm

    Yan H Z, Zhou G H, Sun B B, et al. Geochemical characteristics of the bayberry producing area in Longhai, Fujian[J]. Geology in China, 45(6): 1155-1166. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201806007.htm
    王卫星, 曹淑萍, 李攻科. 天津盘山磨盘柿子品质分析及其产地土壤地球化学特征[J]. 物探与化探, 2019, 43(5): 1131-1137. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201905025.htm

    Wang W X, Cao S P, Li G K. Chemical composition analysis and soil geochemical characteristics of Mopan persimmon in Panshan, Tianjin[J]. Geophysical and Geochemical Exploration, 2019, 43(5): 1131-1137. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201905025.htm
    任娜欧, 王数, 张凤荣, 等. 北京妙峰山优质玫瑰生长的农业地质背景[J]. 中国农业大学学报, 2018, 23(7): 107-115. https://www.cnki.com.cn/Article/CJFDTOTAL-NYDX201807013.htm

    Ren N O, Wang S, Zhang F R, et al. Study on the agricultural geological background of high quality rose growth in Miaofeng Mountain in Beijing[J]. Journal of China Agricultural University, 2018, 23(7): 107-115. https://www.cnki.com.cn/Article/CJFDTOTAL-NYDX201807013.htm
    王金龙, 孙彬彬, 周国华, 等. 漳州水仙花产地生态地球化学特征[J]. 桂林理工大学学报, 2018, 38(3): 420-428. doi: 10.3969/j.issn.1674-9057.2018.03.007

    Wang J L, Sun B B, Zhou G H, et al. Ecological and geochemical characteristics of Zhangzhou narcissus planting area[J]. Journal of Guilin University of Technology, 2018, 38(3): 420-428. doi: 10.3969/j.issn.1674-9057.2018.03.007
    孙厚云, 孙晓明, 贾凤超, 等. 河北承德锗元素生态地球化学特征及其与道地药材黄芩适生关系[J]. 中国地质, 2020, 47(6): 1646-1667. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202006005.htm

    Sun H Y, Sun X M, Jia F C, et al. The eco-geochemical characteristics of germanium and its relationship with the genuine medicinal material scutellaria baicalensis in Chengde, Hebei Province[J]. Geology in China, 2020, 47(6): 1646-1667. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202006005.htm
    孙厚云, 卫晓锋, 孙晓明, 等. 承德杏仁产区关键带基岩-土壤-作物果实BRSPC系统元素迁聚特征[J]. 地球科学, 2021, 46(7): 2621-2645. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202107027.htm

    Sun H Y, Wei X F, Sun X M, et al. Element migration and accumulation characteristics of bedrock-regolith-soil-fruit plant continuum of the earth's critical zone in Chengde almond producing area[J]. Earth Science, 2021, 46(7): 2621-2645. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202107027.htm
    Zhu F. Structures, properties, and applications of lotus starches[J]. Food Hydrocolloids, 2017, 63: 332-348. doi: 10.1016/j.foodhyd.2016.08.034
    Zhang Y, Lu X, Zeng S, et al. Nutritional composition, physiological functions and processing of lotus (Nelumbo nucifera Gaertn. ) seeds: A review[J]. Phytochemistry Reviews, 2015, 14(3): 321-334. doi: 10.1007/s11101-015-9401-9
    罗满, 张灿明, 李有志, 等. 洞庭湖区莲藕重金属污染特征[J]. 农业资源与环境学报, 2016, 33(6): 554-559. https://www.cnki.com.cn/Article/CJFDTOTAL-NHFZ201606008.htm

    Luo M, Zhang C M, Li Y Z, et al. Characteristics of heavy metals contamination in lotus root in the Dongting Lake area, China[J]. Journal of Agricultural Resources and Environment, 2016, 33(6): 554-559. https://www.cnki.com.cn/Article/CJFDTOTAL-NHFZ201606008.htm
    张文胜, 吴永中, 龙伟, 等. 广州新垦莲藕品种应用现状、问题与对策[J]. 长江蔬菜, 2016(3): 13-15. https://www.cnki.com.cn/Article/CJFDTOTAL-CJSC201603008.htm

    Zhang W S, Wu Y Z, Long W, et al. Application status, problems and countermeasures of Xinken lotus root varieties in Guangzhou[J]. Journal of Changjiang Vegetables, 2016(3): 13-15. https://www.cnki.com.cn/Article/CJFDTOTAL-CJSC201603008.htm
    张文胜. 风味独特的新垦莲藕[J]. 长江蔬菜, 2016(12): 20-21. https://www.cnki.com.cn/Article/CJFDTOTAL-CJSC201612044.htm

    Zhang W S. Xinken lotus root with unique flavor[J]. Journal of Changjiang Vegetables, 2016(12): 20-21. https://www.cnki.com.cn/Article/CJFDTOTAL-CJSC201612044.htm
    Rai G K, Bhat B A, Mushtaq M, et al. Insights into decontamination of soils by phytoremediation: A detailed account on heavy metal toxicity and mitigation strategies[J]. Physiologia Plantarum, 2021: 1-18. doi: 10.1111/ppl.13433
    Mansoor S, Kour N, Manhas S, et al. Biochar as a tool for effective management of drought and heavy metal toxicity[J]. Chemosphere, 2021, 271: 129458. doi: 10.1016/j.chemosphere.2020.129458
    Rehman A U, Nazir S, Irshad R, et al. Toxicity of heavy metals in plants and animals and their uptake by magnetic iron oxide nanoparticles[J]. Journal of Molecular Liquids, 2021, 321: 114455. doi: 10.1016/j.molliq.2020.114455
    窦磊, 杜海燕, 游远航, 等. 珠江三角洲经济区生态地球化学评价[J]. 现代地质, 2014, 28(5): 915-927. doi: 10.3969/j.issn.1000-8527.2014.05.005

    Dou L, Du H Y, You Y H, et al. Eco-geochemical survey and assessment in Pearl River Delta Economic Zone, Guangdong Province, China[J]. Geoscience, 2014, 28(5): 915-927. doi: 10.3969/j.issn.1000-8527.2014.05.005
    杜海燕, 赖启宏, 周国华, 等. 广东省珠江三角洲经济区区域生态地球化学评价报告[R]. 2011.

    Du H Y, Lai Q H, Zhou G H, et al. Report on eco-geochemical survey and assessment in Pearl River Delta Economic Zone, Guangdong Province[R]. 2011.
    赵亚楠, 周玉蓉, 王红梅. 宁夏东部荒漠草原灌丛引入下土壤水分空间异质性[J]. 应用生态学报, 2018, 29(11): 3577-3586. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201811010.htm

    Zhao Y N, Zhou Y R, Wang H M. Spatial heterogeneity of soil water content under introduced shrub (Caragana korshinskii) in desert grassland of the eastern Ningxia, China[J]. Chinese Journal of Applied Ecology, 2018, 29(11): 3577-3586. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201811010.htm
    崔昆, 赵庚星, 王卓然, 等. 黄河三角洲夏季典型田块土壤盐分的多尺度空间变异[J]. 应用生态学报, 2020, 31(5): 1451-1458. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB202005004.htm

    Cui K, Zhao G X, Wang Z R, et al. Multi-scale spatial variability of soil salinity in typical fields of the Yellow River Delta in summer[J]. Chinese Journal of Applied Ecology, 2020, 31(5): 1451-1458. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB202005004.htm
    刘子宁, 窦磊, 张伟. 珠江三角洲第四纪沉积物Cd元素的分布特征及成因[J]. 地质通报, 2012, 31(1): 172-180. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201201021.htm

    Liu Z N, Dou L, Zhang W. Distribution and origin of cadmium in the Quaternary sediments of the Pearl River Delta Plain, Guangdong Province, southern China[J]. Geological Bulletin of China, 2012, 31(01): 172-180. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201201021.htm
    陈丹青, 谢志宜, 张雅静, 等. 基于PCA/APCS和地统计学的广州市土壤重金属来源解析[J]. 生态环境学报, 2016, 25(6): 1014-1022. https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ201606016.htm

    Chen D Q, Xie Z Y, Zhang Y J, et al. Source apportionment of soil heavy metals in Guangzhou based on the PCA/APCS model and geostatistics[J]. Ecology and Environmental Sciences, 2016, 25(6): 1014-1022. https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ201606016.htm
    徐慧秋, 黄银华, 吴志峰, 等. 广州市农业土壤As和Cd污染及其对景观异质性的多尺度响应[J]. 应用生态学报, 2016, 27(10): 3283-3289. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201610027.htm

    Xu H Q, Huang Y H, Wu Z F, et al. Agricultural soil contamination from As and Cd and its responses to landscape heterogeneity at multiple scales in Guangzhou, China[J]. Chinese Journal of Applied Ecology, 2016, 27(10): 3283-3289. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201610027.htm
    涂静. 莲藕品质评价及其冻结特性研究[D]. 无锡: 江南大学, 2014.

    Tu J. Study on the quality evaluation and freezing characteristics of lotus root[D]. Wuxi: Jiangnan University, 2014.
    高培培, 肖冰, 刘文菊, 等. 莲藕中重金属含量特征及其健康风险评价[J]. 环境化学, 2020, 39(2): 362-370. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX202002009.htm

    Gao P P, Xiao B, Liu W J, et al. Analysis and health risk assessment of heavy metal in lotus root[J]. Environmental Chemistry, 2020, 39(2): 362-370. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX202002009.htm
    Xiong C, Zhang Y, Xu X, et al. Lotus roots accumulate heavy metals independently from soil in main production regions of China[J]. Scientia Horticulturae, 2013, 164: 295-302. http://or.nsfc.gov.cn/bitstream/00001903-5/228194/1/1000008898862.pdf
    程婷婷, 惠小涵, 尚欣欣, 等. 10个产地莲藕营养成分分析与品质综合评价[J]. 食品工业科技, 2021, 42(8): 320-325. https://www.cnki.com.cn/Article/CJFDTOTAL-SPKJ202108047.htm

    Cheng T T, Hui X H, Shang X X, et al. Nutrient composition analysis and quality comprehensive evaluation of lotus root in 10 producing areas[J]. Science and Technology of Food Industry, 2021, 42(8): 320-325. https://www.cnki.com.cn/Article/CJFDTOTAL-SPKJ202108047.htm
    杨月欣. 中国食物成分表(标准版)[M]. 北京: 北京大学医学出版社, 2018: 1-363.

    Yang Y X. China food composition tables (The Standard Edition)[M]. Beijing: Peking University Medical Press, 2018: 1-363.
    马宏宏, 彭敏, 刘飞, 等. 广西典型碳酸盐岩区农田土壤-作物系统重金属生物有效性及迁移富集特征[J]. 环境科学, 2020, 41(1): 449-459. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202001054.htm

    Ma H H, Peng M, Liu F, et al. Bioavailability, translocation, and accumulation characteristics of heavy metals in a soil-crop system from a typical carbonate rock area in Guangxi, China[J]. Environment Science, 2020, 41(1): 449-459. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202001054.htm
    Ng C C, Boyce A N, Abas M R, et al. Phytoassessment of vetiver grass enhanced with EDTA soil amendment grown in single and mixed heavy metal-contaminated soil[J]. Environmental Monitoring and Assessment, 2019, 191(434): 1-16. doi: 10.1007%2Fs10661-019-7573-2
    阳国运, 唐裴颖, 张洁, 等. 电感耦合等离子体质谱法测定地球化学样品中的硼碘锡锗[J]. 岩矿测试, 2019, 38(2): 154-159. doi: 10.15898/j.cnki.11-2131/td.201805070055

    Yang G Y, Tang P Y, Zhang J, et al. Determination of boron iodine tin and germanium in geochemical samples by inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2019, 38(2): 154-159. doi: 10.15898/j.cnki.11-2131/td.201805070055
    Al-Mayahi A M W. Effect of calcium and boron on growth and development of callus and shoot regeneration of date palm 'Barhee'[J]. Canadian Journal of Plant Science, 2020, 100(4): 357-364. doi: 10.1139/cjps-2019-0084
    Wang Q, Zhang W, Xiao H, et al. Involvement of boron transporter BOR1 in growth under low boron and high nitrate conditions in Arabidopsis thaliana[J]. Physiologia Plantarum, 2021, 171(4): 703-713. doi: 10.1111/ppl.13249
    Burger A, Lichtscheidl I. Stable and radioactive cesium: A review about distribution in the environment, uptake and translocation in plants, plant reactions and plants'potential for bioremediation[J]. Science of The Total Environment, 2018, 618: 1459-1485.
    Tang R, Zhao F, Yang Y, et al. A calcium signalling network activates vacuolar K+ remobilization to enable plant adaptation to low-K environments[J]. Nature Plants, 2020, 6(4): 384-393. http://www.nature.com/articles/s41477-020-0692-5?utm_source=other&utm_medium=other&utm_content=null
    Nakamura T, Shimada Y, Takeda T, et al. Organogermanium compound, Ge-132, forms complexes with adrenaline, ATP and other physiological cis-diol compounds[J]. Future Medicinal Chemistry, 2015, 7(10): 1233-1246. http://www.onacademic.com/detail/journal_1000038262881310_4955.html
    刘艳, 侯龙鱼, 赵广亮, 等. 锗对植物影响的研究进展[J]. 中国生态农业学报, 2015, 23(8): 931-937. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201508001.htm

    Liu Y, Hou L Y, Zhao G L, et al. Mechanism and application of germanium in plant growth[J]. Chinese Journal of Eco-Agriculture, 2015, 23(8): 931-937. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201508001.htm
  • Related Articles

    [1]SHI Youchang, CHEN Guiren, ZHAO Mengsheng, LYU Zhenlong, YANG Jinguo. Determination of Sulfur in Different Types of Geochemical Samples by ICP-OES with Acid Dissolution and Combustion-Infrared Absorption Spectrometry[J]. Rock and Mineral Analysis, 2022, 41(4): 663-672. DOI: 10.15898/j.cnki.11-2131/td.202108200104
    [2]LIU Bing-quan, SHA Min, XIE Chang-yu, ZHOU Qiang-qiang, WEI Xing-xing, ZHOU Fan. Geochemical Characteristics of Soil Selenium and Influencing Factors of Selenium Bioavailability in Rice Root Soils in Qingxi Area, Ganxian County, Jiangxi Province[J]. Rock and Mineral Analysis, 2021, 40(5): 740-750. DOI: 10.15898/j.cnki.11-2131/td.202107230082
    [3]Jun WANG, Di WANG, Chang-sheng DENG, Jian-mei ZHANG, Dong YANG, Bin-tang WANG, Su-xia ZHU. Determination of Thorium in Geochemical Samples by Inductively Coupled Plasma-Atomic Emission Spectrometry[J]. Rock and Mineral Analysis, 2014, 33(4): 501-505.
    [4]Zhi-fei ZHAO, Hui YAN, Lan YAO, Jin-dong FANG, Xing-min TANG. Application of Normal Distribution to Estimate the Quality of Regional Geochemical Survey Samples[J]. Rock and Mineral Analysis, 2013, 32(1): 96-100.
    [5]ZHAO Yu-yan, LU Ji-long, HAO Li-bo, SUN Li-ji, WANG Lian-he. Management and Quality Control System for Geochemical Sample Analysis Based on Network[J]. Rock and Mineral Analysis, 2010, 29(6): 727-732.
    [6]JIANG Hong. Quantitative Assessment Method for the Similarity of Geochemical Maps[J]. Rock and Mineral Analysis, 2010, 29(1): 23-28.
    [7]Geochemical Zoning Based on Agricultural Environmental Quality in the Poyang Lake Area[J]. Rock and Mineral Analysis, 2008, 27(4): 269-273.
    [8]Discussion of Quality Control Method for the Analysis of Samples in Regional Geochemical Survey[J]. Rock and Mineral Analysis, 2004, (2): 137-142147.
    [9]The Quality Management System for Analytical Data of the Geochemical Samples[J]. Rock and Mineral Analysis, 2003, (3): 211-216.
    [10]The Geochemical Characteristics of Water Body in Miyun Reservoir[J]. Rock and Mineral Analysis, 2003, (1): 44-48.
  • Cited by

    Periodical cited type(8)

    1. 王小花,黄韡,顾培良,李静,周佳. 基于自动顶空-固相微萃取-气相色谱质谱检测葡萄酒中的9种木塞污染物. 食品科技. 2024(08): 322-328 .
    2. 吴悦,赖永忠,陆国永,林晓昇,梁树生,许文帅. 顶空/气相色谱-质谱法同时测定印染废水中吡啶、苯胺和硝基苯. 岩矿测试. 2023(04): 781-792 . 本站查看
    3. 陶慧,黄理金,欧阳磊,帅琴. 氨基化共价有机骨架固相微萃取涂层用于水体中酚类的高效萃取. 岩矿测试. 2022(06): 1040-1049 . 本站查看
    4. 黄百祺,沈丹妮,王如意,李双林,林焕怡,李咏梅. 不同萃取头分析大高良姜挥发性成分效果比较. 中成药. 2021(06): 1656-1662 .
    5. 赵佳平,王俊霞,刘婷婷,张占恩. 含铁二氧化硅涂层固相微萃取-GC/MS法测定水中的有机磷阻燃剂. 现代化工. 2021(09): 235-240 .
    6. 梁淼,杨艳,石嘉悦,汪兴平,郑福平,余爱农. 酶/酸水解毛叶木姜子中键合态香味成分的比较. 精细化工. 2020(05): 989-996 .
    7. 孙书堂,严倩,黎宁,黄理金,帅琴. 铁丝原位自转化-固相微萃取新涂层应用于萃取环境水样中多环芳烃的性能研究. 岩矿测试. 2020(03): 408-416 . 本站查看
    8. 杨洪早,李锦宇,王东升,张世栋,董书伟,闫宝琪,那立冬,吴春丽,邓俊,吴冠连,陈新丽,赵留涛,朱凯,梁永喜,严作廷. GC法测定马香苓口服液中百秋李醇含量研究. 中国畜牧兽医. 2020(07): 2264-2276 .

    Other cited types(3)

Catalog

    Article views (1027) PDF downloads (30) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return