SUN Shu-tang, YAN Qian, LI Ning, HUANG Li-jin, SHUAI Qin. In situ Self-transforming Membrane as Solid Phase Microextraction Coating Extraction of PAHs in Environmental Water Samples[J]. Rock and Mineral Analysis, 2020, 39(3): 408-416. DOI: 10.15898/j.cnki.11-2131/td.202002030014
Citation: SUN Shu-tang, YAN Qian, LI Ning, HUANG Li-jin, SHUAI Qin. In situ Self-transforming Membrane as Solid Phase Microextraction Coating Extraction of PAHs in Environmental Water Samples[J]. Rock and Mineral Analysis, 2020, 39(3): 408-416. DOI: 10.15898/j.cnki.11-2131/td.202002030014

In situ Self-transforming Membrane as Solid Phase Microextraction Coating Extraction of PAHs in Environmental Water Samples

More Information
  • Received Date: February 02, 2020
  • Revised Date: March 09, 2020
  • Accepted Date: May 12, 2020
  • Published Date: April 30, 2020
  • HIGHLIGHTS
    (1) Preparation of solid phase microextraction coating by in situ self-transformation of the metal matrix.
    (2) MOFs material as solid phase microextraction coating for effective extraction of PAHs.
    (3) High efficient detection of PAHs in natural water by solid phase microextraction coupled with GC-MS.
    BACKGROUNDPolycyclic aromatic hydrocarbons (PAHs) are one of the persistent organic pollutants which are carcinogenic and difficult to degrade, and are widespread in the environment. The direct analysis of trace PAHs in the environment is often difficult because of the low sensitivity of the detection methods. It is necessary to combine separation and enrichment methods. Conventional sample pretreatment techniques, such as Soxhlet extraction and liquid-liquid extraction, are time-consuming and use a large number of organic solvents.
    OBJECTIVESTo develop a new, simple, and environmentally-friendly method for sample pretreatment.
    METHODSSolid phase microextraction (SPME) is a solvent-free pretreatment technology which integrates sampling, enrichment and injection. Combined with gas chromatography-mass spectrometry (GC-MS), it can produce the rapid enrichment and detection of trace organic compounds in a complex matrix. At present, the research focus of improving SPME technology is to improve the mechanical strength and extraction performance of the coating. Using iron wire (IW) as the carrier, which also provided the iron ion source, a porous MOFs film[MIL-53(Fe)] was grown on iron wire with good mechanical stability by in-situ self-transformation. It was used as the solid phase microextraction coating[IW@MIL-53(Fe)]. Seven kinds of non-volatile condensed ring PAHs were used as the target analyte, and immersion extraction mode combined with GC-MS as detection means were used to verify its extraction performance.
    RESULTSResults showed that the extraction performance of the new coating was 1-2 times higher than that of the commercial 100μm PDMS coating, and the coating can be used stably for more than 120 times. The detection limits of the methods were 0.03-2.25ng/L, the linear ranges were 250-10000ng/L, and the correlation coefficients were in the range of 0.9903-0.9991. The coating was applied successfully to the detection of PAHs in natural water, where the recoveries were from 80.1% to 108.5%.
    CONCLUSIONSThis study not only provides an idea for the simple and rapid preparation of high-efficiency SPME coatings, but also has great potential to be applied to determinate trace volatile organic pollutants in water with high accurateness and efficiency.

  • Li J L, Wang Y X, Zhang C X, et al.The source apportionment of polycyclic aromatic hydrocarbons (PAHs) in the topsoil in Xiaodian sewage irrigation area, north of China[J]. Ecotoxicology, 2014, 23(10):1943-1950. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4b646c4957fc09cd12fb3d62c9bb547f
    Kim K H, Jahan S A, Kabir E, et al.A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects[J]. Environment International, 2013, 60(1):71-80. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ac240dcd8d5ce7db797fae5535c66d55
    Locatelli M, Forcucci L, Sciascia F, et al.Extraction and detection techniques for PAHs determination in Beverages:A review[J]. Current Chromatography, 2014, 1(2):122-138.
    Alizadeh R, Najafi N M.Quantification of PAHs and chlorinated compounds by novel solid-phase microex-traction based on the arrays of tin oxide nanorods[J]. Environmental Monitoring and Assessment, 2013, 185(9):7353-7563.
    顾涛, 帅琴, 高强, 等.新型固相微萃取装置的研制及在有机磷农药检测中的应用[J].岩矿测试, 2012, 31(1):71-76. http://www.ykcs.ac.cn/article/id/ykcs_20120109

    Gu T, Shuai Q, Gao Q, et al.A study on solid phase micro-extraction device and application of organophosphorus pesticides determination[J]. Rock and Mineral Analysis, 2012, 31(1):71-76. http://www.ykcs.ac.cn/article/id/ykcs_20120109
    熊茂富, 任敏, 杜伊, 等.顶空固相微萃取-气相色谱质谱联用法同时测定湖库水中12种氯苯甲醚的条件优化[J].岩矿测试, 2019, 38(6):724-733. doi: 10.15898/j.cnki.11-2131/td.201901210016

    Xiong M F, Ren M, Du Y, et al.Simultaneous determination of 12 chloroanisoles in lake reservoir waters by headspace solid phase microextraction-gas chromatography-mass spectrometry[J]. Rock and Mineral Analysis, 2019, 38(6):724-733. doi: 10.15898/j.cnki.11-2131/td.201901210016
    Arthur C L, Pawliszyn J.Solid-phase microextraction with thermal-desorption using fused-silica optical fibers[J]. Analytical Chemistry, 1990, 62(19):2145-2148.
    Koziel J, Jia M Y, Khaled A, et al.Field air analysis with SPME device[J]. Analytica Chimica Acta, 1999, 400(1):153-162.
    Xu Y, Zhou X, Zhang D Y, et al.Headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometric (GC-MS) analysis of volatile profiles during the stir-frying process of malt[J]. Analytical Methods, 2016, 8(7):1699-1704. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e043b1414bafb312acab136a9b7aaf36
    Li L, Huang L J, Sun S T, et al.An amino-func-tionalized ordered mesoporous polymer as a fiber coating for solid phase microextraction of phenols prior to GC-MS analysis[J]. Microchimica Acta, 2019, 186(9):6651-6658.
    Risticevic S, Niri V H, Vuckovic D, et al.Recent developments in solid-phase microextraction[J]. Analytical and Bioanalytical Chemistry, 2009, 393(3):781-795.
    Spietelun A, Pilarczyk M, Kloskowski A, et al.Current trends in solid-phase microextraction (SPME) fibre coatings[J]. Chemical Society Reviews, 2010, 39(11):4524-4537. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=842fec4c66cc651db6f5cbeb6f0596c6
    Anbia M, Khazaei M.Ordered nanoporous carbon-based SPME and determination by GC[J]. Chromatographia, 2011, 73(3-4):379-384. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f8fd2deb2f5c6ab0663d1852ca1d2bbf
    Silva E A S, Risticevic S, Pawliszyn J.Recent trends in SPME concerning sorbent materials, configurations and in vivo applications[J]. TrAC Trends in Analytical Chemistry, 2013, 43(1):24-36. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1a24558ea7eded9e4d4d18f2cd8e3dad
    Zhang X Q, Liang Q L, Han Q, et al.Metal-organic frameworks@graphene hybrid aerogels for solid-phase extraction of non-steroidal anti-inflammatory drugs and selective enrichment of proteins[J]. Analyst, 2016, 141(13):4219-4226. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8ae4568964c576e6f642dd63e3a094ce
    Tian J, Lu C, He C T, et al.Rapid separation of non-polar and weakly polar analytes with metal-organic framework MAF-5 coated capillary column[J]. Talanta, 2016, 152(1):283-287. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fe81b6a1d34e05ac9688568fa943dabe
    Lirio S, Liu W L, Lin C L, et al.Aluminum based metal-organic framework-polymer monolith in solid-phase microextraction of penicillins in river water and milk samples[J]. Journal of Chromatography A, 2016, 1428(1):236-245. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=992fbc2e79f53abd01319b5bd18845e0
    van Nguyen Thi T, Luu C L, Hoang T C, et al.Synthesis of MOF-199 and application to CO2 adsorption[J]. Advances in Natural Sciences:Nanoscience and Nanotechnology, 2013, 4(3):1-6. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cuihuaxb201511011
    Zhao Y, Song Z X, Li X, et al.Metal organic frameworks for energy storage and conversion[J]. Energy Storage Materials, 2016, 2(1):35-62. http://d.old.wanfangdata.com.cn/Periodical/wnkb-e202004001
    Zheng J, Li S Y, Wang Y, et al.In situ growth of IRMOF-3 combined with ionic liquids to prepare solid-phase microextraction fibers[J]. Analytica Chimica Acta, 2014, 829(1):22-27. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5a0f2fadc4591ad080c1dddd97c8f5ab
    Hu Y L, Lian H X, Zhou L J, et al.In situ solvothermal growth of metal-organic framework-5 supported on porous copper foam for noninvasive sampling of plant volatile sulfides[J]. Analytical Chemistry, 2015, 87(1):406-412. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e0da1ff3e39ba06fc79839004399e21b
    Huang L J, He M, Chen B B, et al.Magnetic Zr-MOFs nanocomposites for rapid removal of heavy metal ions and dyes from water[J]. Chemosphere, 2018, 199:435-444. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5cce554d0f9bbf6a739b3bdcf22ee2dc
    Ai L H, Li L L, Zhang C H, et al.MIL-53(Fe):A metal-organic framework with intrinsic peroxidase-like catalytic activity for colorimetric biosensing[J]. Chemistry-A European Journal, 2013, 19(45):15105-15108. http://d.old.wanfangdata.com.cn/Periodical/gyscl201701007
    Chen X F, Zang H, Wang X, et al.Metal-organic framework MIL-53(Al) as a solid-phase microextraction adsorbent for the determination of 16 polycyclic aromatic hydrocarbons in water samples by gas chromatography-tandem mass spectrometry[J]. Analyst, 2012, 137(22):5411-5419. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f74d4649ae52b2cd148bc91e2165e1bc
    Zhang S L, Du Z, Li G K.Metal-organic framework-199/graphite oxide hybrid composites coated solid-phase microextraction fibers coupled with gas chromatography for determination of organochlorine pesticides from complicated samples[J]. Talanta, 2013, 115(1):32-39. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=aa946fdc3bae20d492f99165755032c8
    Zhang G J, Zang X H, Li Z, et al.Polydimethylsiloxane/metal-organic frameworks coated fiber for solid-phase microextraction of polycyclic aromatic hydrocarbons in river and lake water samples[J]. Talanta, 2014, 129(1):600-605. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ac90c768ad2d997c3bac8b7c15b7f5df
    Sun S T, Huang L J, Xiao H Y, et al.In situ self-transformation metal into metal-organic framework membrane for solid-phase microextraction of polycyclic aromatic hydrocarbons[J]. Talanta, 2019, 202(1):145-151. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8a7a5a1acbe1d524b0b25004e902fbd7
    Lü F, Gan N, Huang J, et al.A poly-dopamine based metal-organic framework coating of the type PDA-MIL-53(Fe) for ultrasound-assisted solid-phase microextraction of polychlorinated biphenyls prior to their determination by GC-MS[J]. Microchimica Acta, 2017, 184(8):2561-2568. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d44457e5348a533ac8499dbf1dcf6a36
    Tian J Y, Xu J Q, Zhu F.Application of nanomaterials in sample preparation[J]. Journal of Chromatography A, 2013, 1300(1):2-16.
    赖永忠.顶空进样-固相微萃取测定饮用水源水中吡啶[J].岩矿测试, 2011, 30(5):596-600. http://www.ykcs.ac.cn/article/id/ykcs_20110514

    Lai Y Z.Determination of pyridine in drinking source water by head space sampling-solid phase micro-extraction[J]. Rock and Mineral Analysis, 2011, 30(5):596-600. http://www.ykcs.ac.cn/article/id/ykcs_20110514
    Jalili V, Barkhordari A, Ghiasvand A.Solid-phase microextraction technique for sampling and preconcentration of polycyclic aromatic hydrocarbons:A review[J]. Microchemical Journal, 2020, 157:104967.
    Harati F, Ghiasvand A, Dalvand K, et al.Fused-silica capillary internally modified with nanostructured octadecyl silica for dynamic in-tube solid-phase microextraction of polycyclic aromatic hydrocarbons from aqueous media[J]. Microchemical Journal, 2020, 155:104672.
    欧阳钢锋, Pawliszyn Janusz.固相微萃取:原理与应用[M].北京:化学工业出版社, 2012.

    Ouyang G F, Pawliszyn J.Solid phase microextraction:Principle and application[M]. Beijing:Chemical Industry Press, 2012.
  • Cited by

    Periodical cited type(18)

    1. 苏炤新,赵传明,董希良,杨敬一,杨丰春,慈霖,张义东,郑囡. 我国抗生素环境污染及管理现状. 环境卫生学杂志. 2025(01): 31-37 .
    2. 李思,薛海林,王雅娟,宋瑞平,孙卫玲. 水环境中阿莫西林的分布特征及其风险研究进展. 应用基础与工程科学学报. 2024(01): 1-19 .
    3. 钟奕昕,李立湘,吴鑫,周施阳,姚飞延,董好刚. 浙南瓯江流域水体抗生素污染特征及风险评价. 环境科学. 2024(03): 1480-1491 .
    4. 李希冉,郭梦晗,李欣怡,祁义函,赵霞. 水环境四环素类抗生素降解技术研究进展. 化学工程师. 2024(05): 69-72+102 .
    5. 张译文,段明杰,罗锦秋,吕冬梅. 我国水环境抗生素污染研究综述与对策建议. 海峡科学. 2024(03): 84-90 .
    6. 高川子,廖浩麟,王毅博,郑一,郑春苗,裘文慧. 药物及个人护理用品的生态毒理. 化学进展. 2024(09): 1363-1379 .
    7. 王锦,叶开晓,田艳,刘珂,梁柳玲,李青倩,黄宁,王欣婷. 固相萃取-高效液相色谱-串联质谱法同时测定环境水样中22种抗生素. 色谱. 2023(03): 241-249 .
    8. 牛颖,安圣,陈凯,秦久君,刘菲. 2012—2021年中国地下水抗生素污染现状及分析技术研究进展. 岩矿测试. 2023(01): 39-58 . 本站查看
    9. 孔慧敏,赵晓辉,徐琬,代宇函,张佳宇. 我国地下水环境抗生素赋存现状及风险评价. 环境工程. 2023(02): 219-226 .
    10. 张照荷,陈典,赵微,袁国礼,李俊,焦杏春. 水环境中药物与个人护理品(PPCPs)的环境水平及降解行为研究进展. 岩矿测试. 2023(04): 649-666 . 本站查看
    11. 焦利静,刘洋,卞战强,于建,王多春,李洪兴. 三地水源水中抗生素和抗性基因检出情况及相关性分析. 环境与职业医学. 2023(08): 936-941 .
    12. 邓星亮,杨安富,杜涛,林天,吴克富,卓奕秀,董璐,吴晓晨. 海南省三座典型垃圾填埋场渗滤液及周边地下水中抗生素的污染特征研究. 环境科学研究. 2023(09): 1779-1790 .
    13. 于开宁,王润忠,刘丹丹. 水环境中新污染物快速检测技术研究进展. 岩矿测试. 2023(06): 1063-1077 . 本站查看
    14. 郭子宁,王旭升,向师正,胡桐搏,刘菲,关翔宇. 再生水入渗区典型抗生素分布特征与地下水微生物群落影响因素研究. 岩矿测试. 2022(03): 451-462 . 本站查看
    15. 营娇龙,秦晓鹏,郎杭,郭健一,熊玲,张占昊,刘菲. 超高效液相色谱-串联质谱法同时测定水体中37种典型抗生素. 岩矿测试. 2022(03): 394-403 . 本站查看
    16. 杨大杰,欧阳友,李炳华,潘兴瑶,马宁,杨默远,黄上富. 我国水环境中喹诺酮类抗生素赋存特征及生态风险评估. 人民黄河. 2022(08): 97-102+108 .
    17. 晋春虹. 四环素类抗生素的去除技术研究进展与展望. 山东化工. 2022(18): 102-106 .
    18. 马江雄,周欣,赵超,陈华国,龚小见. 水体中痕量四环素类抗生素分析方法研究进展. 化学通报. 2022(11): 1336-1345 .

    Other cited types(18)

Catalog

    Article views (2634) PDF downloads (36) Cited by(36)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return