• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
YU Kaining,WANG Runzhong,LIU Dandan. A Review of Rapid Detections for Emerging Contaminants in Groundwater[J]. Rock and Mineral Analysis,2023,42(6):1063−1077. DOI: 10.15898/j.ykcs.202302080018
Citation: YU Kaining,WANG Runzhong,LIU Dandan. A Review of Rapid Detections for Emerging Contaminants in Groundwater[J]. Rock and Mineral Analysis,2023,42(6):1063−1077. DOI: 10.15898/j.ykcs.202302080018

A Review of Rapid Detections for Emerging Contaminants in Groundwater

More Information
  • Received Date: February 07, 2023
  • Revised Date: May 09, 2023
  • Accepted Date: September 13, 2023
  • Available Online: December 07, 2023
  • In recent years, emerging contaminants, such as antibiotics, endocrine disruptors, perfluorinated and polyfluoroalkyl substances, are of great worldwide concern. These contaminants enter the water environment through runoff, diffusion, infiltration and other ways. Due to their bioaccumulation, biological toxicity, and environmental sustainability, emerging contaminants pose a potential threat to aquatic organisms, human health, and ecological safety[1]. Therefore, it is urgent to detect and investigate the pollution status of emerging contaminants in the water environment. Many investigations and evaluations have been carried out, making rapid detection methods a research hotspot. The detection methods of emerging contaminants in the water environment based on recent literature is reviewed, comparing the advantages and disadvantages of the emerging contaminants detection methods, summarizing the research progress of rapid detection technology for emerging contaminants in water, and prospecting its development trend.  Emerging contaminants were widely detected in the water environment. For instance, antibiotics have been detected in groundwater in cities such as Harbin[2] and Shijiazhuang[3], in surface rivers such as the Fuyang River and Qin River[4], and in the source water such as Yichang City[5] and the Tuojiang River Basin[6], as well as in groundwater from major urban-rural settings of Pakistan[8]. Similarly, endocrine disruptors have been detected in different types of water in China, such as the Minjiang River Basin[11], as well as in groundwater of the Wuxi—Changzhou region[9] and Xuzhou region[10]. Some endocrine disruptor pollutants have been detected in seawater along the Romanian Black Sea coast[12]. In addition, perfluorinated and polyfluoroalkyl substances have been detected in the surface water of Beijing’s reclaimed groundwater irrigation area[13] and in Hongze Lake[15]. There is perfluoroalkyl acid pollution in the groundwater environment of farmland in some regions of Hainan Province[14]. Perfluorinated compounds have also been detected in major Southern Indian rivers[16]. There are emerging contaminants in the water environment both domestically and internationally. The concentrations and detection rates are high in some areas, posing a serious threat to groundwater and surface water resources.  Nowadays, the emerging contaminants are mainly detected in the laboratory using advanced instruments. The emerging contaminants are widely present in the environment, but their concentrations are quite low, of which the content is in the nanogram to microgram level. In order to reduce the detection limits, the emerging contaminants samples will be concentrated and then tested using high-resolution instruments. Instrument detection technology has the advantages of high throughput, high accuracy, low detection limit, and low false positive rate. While the pre-treatment of samples is very complex, and the analytical instruments used are costly, this is not something that all laboratories can afford. Therefore, the analysis of emerging contaminants takes a long time from sampling to getting analysis results.  Sensor detection technology is a commonly used on-site detection method in the field of environmental monitoring. It mainly includes electrochemical, optical, and biological sensing. The field rapid detection of emerging contaminants in water environment is a promising research direction. Electrochemical sensing has been extensively studied. Sensor detection technology can give results in minutes for emerging contaminants. However, most of the work was focused on detecting a single contaminant; significant progress has been made in the laboratory, but it has not yet been promoted for field testing; there were fewer examples of field rapid detection of emerging contaminants. Further research is needed on the technology for simultaneously determining multiple emerging contaminants in the meantime.  Immunoassay detection technology is suitable for on-site rapid screening of emerging contaminants in the water environment. Enzyme linked immunosorbent assay can preliminarily screen for the emerging contaminants in the water environment, while immunochromatography can perform qualitative or semi-quantitative detection of emerging contaminants. Immunoassay technology has high specificity, strong sensitivity, simplicity, convenience, and no need for expensive instruments. It has great advantages in rapid detection of large amounts of samples and on-site detection. However, it is prone to false negatives and positives[89].  There are various types of rapid detection methods for emerging contaminants. Further, the focus of research should be on utilizing new materials to improve traditional detection methods to meet the needs of rapid and on-site detection of contaminants. Besides, researchers could combine multiple detection techniques to make detection methods simpler, faster, and more cost-effective, and with high sensitivity and accuracy to achieve rapid detection of multiple pollutants simultaneously.

  • [1]
    孔慧敏, 赵晓辉, 徐琬, 等. 我国地下水环境抗生素赋存现状及风险评价[J]. 环境工程, 2023, 41(2): 219−226.

    Kong H M, Zhao X H, Xu W, et al. Occurrence and risk assessment of antibiotics in groundwater environment in China[J]. Environmental Engineering, 2023, 41(2): 219−226.
    [2]
    马健生, 王卓, 张泽宇, 等. 哈尔滨市地下水中29种抗生素分布特征研究[J]. 岩矿测试, 2021, 40(6): 944−953. doi: 10.3969/j.issn.0254-5357.2021.6.ykcs202106013

    Ma J S, Wang Z, Zhang Z Y, et al. Distribution characteristics of 29 antibiotics in groundwater in Harbin[J]. Rock and Mineral Analysis, 2021, 40(6): 944−953. doi: 10.3969/j.issn.0254-5357.2021.6.ykcs202106013
    [3]
    陈慧, 剧泽佳, 赵鑫宇, 等. 石家庄地下水中喹诺酮类抗生素生态风险及其与环境因子的相关性[J]. 环境科学, 2022, 43(9): 4556−4565.

    Chen H, Ju Z J, Zhao X Y, et al. Ecological risk assessment of quinolones antibiotics and the correlation analysis between QNS and physical-chemical parameters in groundwater, Shijiazhuang City[J]. Environmental Science, 2022, 43(9): 4556−4565.
    [4]
    李清雪, 董天羽, 孙王茹, 等. 典型北方城市河流中抗生素污染特征及风险评价[J]. 生态毒理学报, 2022, 17(4): 213−229.

    Li Q X, Dong T Y, Sun W R, et al. Pollution characteristics and risk assessment of antibiotics in typical northern urban rivers[J]. Asian Journal of Ecotoxicology, 2022, 17(4): 213−229.
    [5]
    刘军, 万正杨, 杨财平, 等. 宜昌市水源水中抗生素污染特征与健康风险评价[J]. 公共卫生与预防医学, 2023, 34(2): 65−68. doi: 10.3969/j.issn.1006-2483.2023.02.014

    Liu J, Wan Z Y, Yang C P, et al. Antibiotic pollution characteristics and health risk assessment of source water in Yichang City[J]. Journal of Public Health and Preventive Medicine, 2023, 34(2): 65−68. doi: 10.3969/j.issn.1006-2483.2023.02.014
    [6]
    王若男, 何吉明, 向秋实, 等. 沱江流域饮用水源地抗生素污染的时空变化、生态风险及人体暴露评估[J]. 环境科学研究, 2022, 35(10): 2404−2412. doi: 10.13198/j.issn.1001-6929.2022.07.11

    Wang R N, He J M, Xiang Q S, et al. Spatial and temporal distribution, ecological risk and human exposure assessment of antibiotics in drinking water sources in Tuojiang River Basin[J]. Research of Environmental Sciences, 2022, 35(10): 2404−2412. doi: 10.13198/j.issn.1001-6929.2022.07.11
    [7]
    牛颖, 安圣, 陈凯,等. 2012—2021年中国地下水抗生素污染现状及分析技术研究进展[J]. 岩矿测试, 2023, 42(1): 39−58.

    Niu Y, An S, Chen K, et al. A review of current status and analysis methods of antibiotic contamination in groundwater in China (2012—2021)[J]. Rock and Mineral Analysis, 2023, 42(1): 39−58.
    [8]
    Zainab S M, Junaid M, Rehman M Y A, et al. First insight into the occurrence, spatial distribution, sources, and risks assessment of antibiotics in groundwater from major urban-rural settings of Pakistan[J]. Science of the Total Environment, 2021, 791: 148298. doi: 10.1016/j.scitotenv.2021.148298
    [9]
    王淑婷, 饶竹, 郭峰, 等. 无锡—常州地下水中内分泌干扰物的赋存特征和健康风险评价[J]. 环境科学, 2021, 42(1): 166−174.

    Wang S T, Rao Z, Guo F, et al. Occurrence characteristics and health risk assessment of endocrine disrupting chemicals in groundwater in Wuxi—Changzhou[J]. Environmental Science, 2021, 42(1): 166−174.
    [10]
    杜娟, 胡红娟, 杨靖, 等. 徐州地区地下水中内分泌干扰物的监测与风险评估[J]. 环境监测管理与技术, 2016, 28(6): 38−40. doi: 10.3969/j.issn.1006-2009.2016.06.009

    Du J, Hu H J, Yang J, et al. Analysis and risk assessment of endocrine disruptors in groundwater in Xuzhou Region[J]. The Administration and Technique of Environmental Monitoring, 2016, 28(6): 38−40. doi: 10.3969/j.issn.1006-2009.2016.06.009
    [11]
    华永有, 卢翠英, 林麒, 等. 闽江流域水体中8种酚类内分泌干扰物污染特征[J]. 环境与健康杂志, 2021, 38(3): 226−228. doi: 10.16241/j.cnki.1001-5914.2021.03.010

    Hua Y Y, Lu C Y, Lin Q, et al. Pollution characteristics of eight phenolic endocrine disruptors in water body in Minjiang River Basin[J]. Journal of Environment and Health, 2021, 38(3): 226−228. doi: 10.16241/j.cnki.1001-5914.2021.03.010
    [12]
    Chiriac F L, Pirvu F, Paun I. Investigation of endocrine disruptor pollutants and their metabolites along the Romanian Black Sea Coast: Occurrence, distribution and risk assessment[J]. Environmental Toxicology and Pharmacology, 2021, 86(86): 103673.
    [13]
    陈典, 张照荷, 赵微, 等. 北京市再生水灌区地下水中典型全氟化合物的分布现状及生态风险[J]. 岩矿测试, 2022, 41(3): 499−510.

    Chen D, Zhang Z H, Zhao W, et al. The occurrence, distribution and risk assessment of typical perfluorinated compounds in groundwater from a reclaimed wastewater irrigation area in Beijing[J]. Rock and Mineral Analysis, 2022, 41(3): 499−510.
    [14]
    谭冬飞, 张艳伟, 王璐, 等. 海南省部分区域农田地下水中全氟烷基酸类浓度水平和潜在污染源分析[J]. 农业环境科学学报, 2018, 37(2): 350−357. doi: 10.11654/jaes.2017-1212

    Tan D F, Zhang Y W, Wang L, et al. Distribution and potential PFAA pollution sources in farmland groundwater from Hainan Province[J]. Journal of Agro-Environment Science, 2018, 37(2): 350−357. doi: 10.11654/jaes.2017-1212
    [15]
    黄家浩, 陶艳茹, 黄天寅, 等. 洪泽湖水体全氟化合物的污染特征、来源及健康风险[J]. 环境科学研究, 2023, 36(4): 694−703.

    Huang J H, Tao Y R, Huang T Y, et al. Occurrence, sources and health risk assessment of per- and polyfluoroalkyl substances in surface water of Hongze Lake[J]. Research of Environmental Sciences, 2023, 36(4): 694−703.
    [16]
    Selvaraj K K, Murugasamy M, Patil N N, et al. Investigation of distribution, sources and flux of perfluorinated compounds in major Southern Indian Rivers and their risk assessment[J]. Chemosphere, 2021, 277(277): 130228.
    [17]
    谭韬, 刘应杰, 唐倩, 等. 毛细管电泳对水体中多类抗生素的同时分离检测[J]. 重庆医学, 2018, 47(35): 4530−4533.

    Tan T, Liu Y J, Tang Q, et al. Simultaneous separation and detection of multiple antibiotics in water by capillary electrophoresis[J]. Chongqing Medicine, 2018, 47(35): 4530−4533.
    [18]
    李兴华, 苗俊杰, 康凯, 等. 固相萃取-高效毛细管电泳法同时分离测定水体和土壤中13种抗生素[J]. 理化检验(化学分册), 2019, 55(7): 769−777.

    Li X H, Miao J J, Kang K, et al. Simultaneous separation and determination of thirteen antibiotics in soil and water by high performance capillary electrophoresis with pretreatment by solid phase extraction[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2019, 55(7): 769−777.
    [19]
    Yi X Z, Bayen S, Kelly B C, et al. Improved detection of multiple environmental antibiotics through an optimized sample extraction strategy in liquid chromatography-mass spectrometry analysis[J]. Analytical and Bioanalytical Chemistry, 2015, 407: 9071−9083. doi: 10.1007/s00216-015-9074-7
    [20]
    曹君, 张雪娇, 赵青, 等. 液相色谱紫外-荧光串联检测器法检测我国污水中常见11种抗生素[J]. 生态学杂志, 2022, 41(1): 190−198.

    Cao J, Zhang X J, Zhao Q, et al. Determination of 11 antibiotics frequently detected in municipal wastewater in China by high-performance liquid chromatography with ultraviolet and fluorescence detector[J]. Chinese Journal of Ecology, 2022, 41(1): 190−198.
    [21]
    Tlili I, Caria G, Ouddane B, et al. Simultaneous detection of antibiotics and other drug residues in the dissolved and particulate phases of water by an off-line SPE combined with on-line SPE-LC-MS/MS: Method development and application[J]. Science of the Total Environment, 2016, 563: 424−433.
    [22]
    Omotola E O, Olatunji O S. Quantification of selected pharmaceutical compounds in water using liquid chromatography-electrospray ionisation mass spectrometry (LC-ESI-MS)[J]. Heliyon, 2020, 6(12): e05787. doi: 10.1016/j.heliyon.2020.e05787
    [23]
    Panditi V R, Batchu S R, Gardinali P R. Online solid-phase extraction–liquid chromatography-electrospray tandem mass spectrometry determination of multiple classes of antibiotics in environmental and treated waters[J]. Analytical and Bioanalytical Chemistry, 2013, 405: 5953−5964. doi: 10.1007/s00216-013-6863-8
    [24]
    李明明. SPE-HPLC-MS/MS检测地表水中的萘啶酸、吡哌酸、培氟沙星、氧氟沙星、司帕沙星和加替沙星残留[J]. 中国测试, 2021, 47(4): 67−71.

    Li M M. Determination of nalidixic acid, pipemidic acid, pefloxacin, ofloxacin, sparfloxacin and gatifloxacin residues in surface water by SPE-HPLC-MS/MS[J]. China Measurement & Test, 2021, 47(4): 67−71.
    [25]
    史晓, 卜庆伟, 吴东奎, 等. 地表水中10种抗生素SPE-HPLC-MS/MS检测方法的建立[J]. 环境化学, 2020, 39(4): 1075−1083.

    Shi X, Bu Q W, Wu D K, et al. Simultaneous determination of 10 antibiotic residues in surface water by SPE-HPLC-MS/MS[J]. Environmental Chemistry, 2020, 39(4): 1075−1083.
    [26]
    甄建辉, 田浩, 艾连峰, 等. 液相色谱-串联质谱法测定水体中8种典型喹诺酮类抗生素[J]. 食品安全质量检测学报, 2022, 13(7): 2230−2235.

    Zhen J H, Tian H, Ai L F, et al. Determination of 8 kinds of typical quinolones antibiotics by liquid chromatography-tandem mass spectrometry in water[J]. Journal of Food Safety and Quality, 2022, 13(7): 2230−2235.
    [27]
    营娇龙, 秦晓鹏, 郎杭, 等. 超高效液相色谱-串联质谱法同时测定水体中37种典型抗生素[J]. 岩矿测试, 2022, 41(3): 394−403.

    Ying J L, Qin X P, Lang H, et al. Determination of 37 typical antibiotics by liquid chromatography-triple quadrupole mass spectrometry[J]. Rock and Mineral Analysis, 2022, 41(3): 394−403.
    [28]
    Yuan S F, Liu Z H, Yin H, et al. Trace determination of sulfonamide antibiotics and their acetylated metabolites via SPE-LC-MS/MS in wastewater and insights from their occurrence in a municipal wastewater treatment plant[J]. Science of the Total Environment, 2019, 653: 815−821. doi: 10.1016/j.scitotenv.2018.10.417
    [29]
    王建凤, 王嘉琦, 刘喆, 等. 超高效液相色谱串联质谱测定中水中喹诺酮类抗生素[J]. 中国给水排水, 2018, 34(6): 116−119.

    Wang J F, Wang J Q, Liu Z, et al. Determination of quinolones antibiotics in reclaimed water by ultra high performance liquid chromatography tandem mass spectrometer[J]. China Water & Wastewater, 2018, 34(6): 116−119.
    [30]
    Ran Y, Liang C, Rong S, et al. Quantification of ultratrace levels of fluoroquinolones in wastewater by molecularly imprinted solid phase extraction and liquid chromatography triple quadrupole mass[J]. Environmental Technology & Innovation, 2020, 19: 100919.
    [31]
    项萍, 汤江江. 气质联用法(GC-MS)检测环境水体中8种内分泌干扰物[J]. 河南理工大学学报(自然科学版), 2019, 38(1): 76−82. doi: 10.16186/j.cnki.1673-9787.2019.1.11

    Xiang P, Tang J J. Determination of eight endocrine disrupting chemicals in environmental water samples by gas chromatography-mass spectrometry (GC-MS)[J]. Journal of Henan Polytechnic University (Natural Science), 2019, 38(1): 76−82. doi: 10.16186/j.cnki.1673-9787.2019.1.11
    [32]
    孙怡琳, 亢洋, 郑龙芳, 等. 衍生化-磁固相萃取高效液相色谱荧光检测内分泌干扰物[J]. 分析化学, 2019, 47(1): 86−92.

    Sun Y L, Kang Y, Zheng L F, et al. Determination of endocrine disruptors by high performance liquid chromatography-fluorescence detection using magnetic dispersive solid phase extraction[J]. Chinese Journal of Analytical Chemistry, 2019, 47(1): 86−92.
    [33]
    Zhang G, Yang Y, Lu Y, et al. Effect of heavy metal ions on steroid estrogen removal and transport in SAT using DLLME as a detection method of steroid estrogen[J]. Water, 2020, 12(2): 589. doi: 10.3390/w12020589
    [34]
    纪晓娜, 薛路遥, 任志敏, 等. 高效液相色谱法检测城市污水中的邻苯二甲酸二丁(辛)酯[J]. 化学试剂, 2021, 43(10): 1376−1380.

    Ji X N, Xue L Y, Ren Z M, et al. Detecting dibutyl (di- n-octyl) phthalate in municipal sewage water with high performance liquid chromatography[J]. Chemical Reagents, 2021, 43(10): 1376−1380.
    [35]
    Nur’Hafiz R M, Bahruddin S, Noorfatimah Y, et al. Determination of three endocrine disruptors in water samples by ultrasound-assisted salt-induced liquid-liquid microextraction (UA-SI-LLME) and high-performance liquid chromatography-diode array detection (HPLC-DAD)[J]. Analytical Letters, 2022, 55(1): 132−145. doi: 10.1080/00032719.2021.1919691
    [36]
    Li Y, Taggart M A, McKenzie C, et al. A SPE-HPLC-MS/MS method for the simultaneous determination of prioritised pharmaceuticals and EDCs with high environmental risk potential in freshwater[J]. Journal of Environmental Sciences, 2021, 100: 18−27. doi: 10.1016/j.jes.2020.07.013
    [37]
    Zhang K, Fent K. Determination of two progestin metabolites (17 α-hydroxypregnanolone and pregnanediol) and different classes of steroids (androgens, estrogens, corticosteroids, progestins) in rivers and wastewaters by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS)[J]. Science of the Total Environment, 2018, 610-611: 1164−1172. doi: 10.1016/j.scitotenv.2017.08.114
    [38]
    罗洲飞, 徐梦薇, 陆静, 等. 高效液相色谱-三重四极杆串联质谱测定环境水样中20种环境内分泌干扰物[J]. 环境化学, 2020, 39(7): 1923−1933. doi: 10.7524/j.issn.0254-6108.2019050706

    Luo Z F, Xu M W, Lu J, et al. Determination of 20 endocrine-disrupting compounds in environmental water samples by high performance liquid chromatography-tandem mass spectrometry[J]. Environmental Chemistry, 2020, 39(7): 1923−1933. doi: 10.7524/j.issn.0254-6108.2019050706
    [39]
    Li Y J, Yang L Y, Zhen H J, et al. Determination of estrogens and estrogen mimics by solid-phase extraction with liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography B, 2021: 1168.
    [40]
    李建平, 郝思文, 张毅, 等. 饮用水中11种雌激素类内分泌干扰物的固相萃取-超高效液相色谱-串联质谱测定法[J]. 环境与健康杂志, 2020, 37(8): 722−725. doi: 10.16241/j.cnki.1001-5914.2020.08.016

    Li J P, Hao S W, Zhang Y, et al. Determination of 11 kinds of estrogens EDCs in drinking water by solid-phase extraction-ultra performance liquid chromatography-tandem mass spectrometry[J]. Journal of Environment and Health, 2020, 37(8): 722−725. doi: 10.16241/j.cnki.1001-5914.2020.08.016
    [41]
    邹小南, 罗丹, 李贵洪, 等. 超高效液相色谱-串联质谱法同时分析地下水中24种内分泌干扰物[J]. 中国环境监测, 2022, 38(4): 31−40.

    Zou X N, Luo D, Li G H, et al. Simultaneous analysis of 24 endocrine disruptors in groundwater by ultra-high performance liquid chromatography tandem mass spectrometry[J]. Environmental Monitoring in China, 2022, 38(4): 31−40.
    [42]
    AlAmmari A M, Khan M R, Aqel A. Trace identification of endocrine-disrupting bisphenol a in drinking water by solid-phase extraction and ultra-performance liquid chromatography-tandem mass Spectrometry[J]. Journal of King Saud University-Science, 2020, 32(2): 1634−1640. doi: 10.1016/j.jksus.2019.12.022
    [43]
    Shen X Y, Chang H, Sun D Z, et al. Trace analysis of 61 natural and synthetic progestins in river water and sewage effluents by ultra-high performance liquid chromatography-tandem mass spectrometry[J]. Water Research, 2018, 133: 142−152. doi: 10.1016/j.watres.2018.01.030
    [44]
    刘蔚, 陈芳梅, 李伟, 等. 分散液液微萃取-超高效液相色谱-串联质谱法快速测定市售饮用水样中7种双酚-二环氧甘油醚[J]. 环境化学, 2018, 37(11): 2462−2472. doi: 10.7524/j.issn.0254-6108.2017122204

    Liu W, Chen F M, Li W, et al. Rapid determination of seven bisphenol diglycidyl ethers in drinking water samples by dispersive liquid microextraction-ultra high performance liquid chromatography-tandem mass spectrometry[J]. Environmental Chemistry, 2018, 37(11): 2462−2472. doi: 10.7524/j.issn.0254-6108.2017122204
    [45]
    刘丹丹. 紫外光和自然光降解全氟辛酸及机理研究[D]. 北京:中国地质大学(北京), 2013.

    Liu D D. PFOA degradation under UV and solar light[D].Beijing: China University of Geoscience (Beijing), 2013.
    [46]
    Ayala-Cabrera J F, Contreras-Llin A, Moyano E, et al. A novel methodology for the determination of neutral perfluoroalkyl and polyfluoroalkyl substances in water by gas chromatography-atmospheric pressure photoionisation-high resolution mass spectrometry[J]. Analytica Chimica Acta, 2020, 1100: 97−106. doi: 10.1016/j.aca.2019.12.004
    [47]
    王晓研, 沈伟健, 王红, 等. 气相色谱-负化学源-质谱法检测水中10种全氟羧酸化合物[J]. 色谱, 2019, 37(1): 32−39. doi: 10.3724/SP.J.1123.2018.07019

    Wang X Y, Shen W J, Wang H, et al. Determination of 10 perfluorinated carboxylic acid compounds in water by gas chromatography-mass spectrometry coupled with negative chemical ionization[J]. Chinese Journal of Chromatography, 2019, 37(1): 32−39. doi: 10.3724/SP.J.1123.2018.07019
    [48]
    Zhong M M, Wang T L, Qi C D, et al. Automated online solid-phase extraction liquid chromatography tandem mass spectrometry investigation for simultaneous quantification of per- and polyfluoroalkyl substances, pharmaceuticals and personal care products, and organophosphorus flame retardants in environmental waters[J]. Journal of Chromatography A, 2019, 1602: 350−358. doi: 10.1016/j.chroma.2019.06.012
    [49]
    Borrull J, Colom A, Fabregas J, et al. A liquid chromatography tandem mass spectrometry method for determining 18 per- and polyfluoroalkyl substances in source and treated drinking water[J]. Journal of Chromatography A, 2020, 1629: 461485. doi: 10.1016/j.chroma.2020.461485
    [50]
    Liang M, Xian Y P, Wang B, et al. High throughput analysis of 21 perfluorinated compounds in drinking water, tap water, river water and plant effluent from Southern China by supramolecular solvents-based microextraction coupled with HPLC-orbitrap HRMS[J]. Environmental Pollution, 2020, 263: 114389. doi: 10.1016/j.envpol.2020.114389
    [51]
    杨愿愿, 李偲琳, 赵建亮, 等. 超高效液相色谱-串联质谱法同时测定水、沉积物和生物样品中57种全/多氟化合物[J]. 分析化学, 2022, 50(8): 1243−1251,139-144.

    Yang Y Y, Li C L, Zhao J L, et al. Determination of 57 kinds of per- and polyfluoroalkyl substances in waters, sediments and biological samples by ultra high performance liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2022, 50(8): 1243−1251,139-144.
    [52]
    Liu S Q, Junaid M, Zhong W, et al. A sensitive method for simultaneous determination of 12 classes of per- and polyfluoroalkyl substances (PFASs) in groundwater by ultrahigh performance liquid chromatography coupled with quadrupole orbitrap high resolution mass spectrometry[J]. Chemosphere, 2020, 251: 126327. doi: 10.1016/j.chemosphere.2020.126327
    [53]
    钱佳浩, 朱清禾, 万江, 等. 超高效液相色谱-串联质谱法测定土壤中18种全氟和多氟烷基化合物[J]. 分析测试学报, 2022, 41(3): 319−326.

    Qian J H, Zhu Q H, Wang J, et al. Determination of 18 perfluorinated and polyfluoroalkyl compounds in soil by ultra performance liquid chromatography-tandem mass spectrometry[J]. Journal of Instrumental Analysis, 2022, 41(3): 319−326.
    [54]
    Deng H L, Wang H B, Liang M H, et al. A novel approach based on supramolecular solvent microextraction and UPLC-Q-Orbitrap HRMS for simultaneous analysis of perfluorinated compounds and fluorine-containing pesticides in drinking and environmental water[J]. Microchemical Journal, 2019, 151: 104250. doi: 10.1016/j.microc.2019.104250
    [55]
    刘明睿, 汪伶俐, 陈亮. 超高效液相色谱串联质谱法快速测定地下水和含水层介质中16种全氟烷基酸[J]. 地学前缘, 2019, 26(4): 307−314. doi: 10.13745/j.esf.sf.2019.5.32

    Liu M R, Wang L L, Chen L. Quick analysis of sixteen PFAAS in groundwater and aquifer by ultra-performance liquid chromatography-triple quadrupole mass spectrometry[J]. Earth Science Frontiers, 2019, 26(4): 307−314. doi: 10.13745/j.esf.sf.2019.5.32
    [56]
    Olomukoro A A, Emmons R V, Godage N H, et al. Ion exchange solid phase microextraction coupled to liquid chromatography/laminar flow tandem mass spectrometry for the determination of perfluoroalkyl substances in water samples[J]. Journal of Chromatography A, 2021, 1651: 462335. doi: 10.1016/j.chroma.2021.462335
    [57]
    姚晶晶, 吴东海, 陆光华, 等. 水环境中PPCPs检测技术及风险评价研究进展[J]. 水资源保护, 2018, 34(1): 76−82. doi: 10.3880/j.issn.1004-6933.2018.01.13

    Yao J J, Wu D H, Lu G H, et al. Research progress of aquatic PPCPs detection technology and risk assessment[J]. Water Resources Protection, 2018, 34(1): 76−82. doi: 10.3880/j.issn.1004-6933.2018.01.13
    [58]
    李征, 方芳, 郑君杰, 等. 荧光定量技术快速检测生乳中磺胺类药物残留[J]. 食品安全质量检测学报, 2021, 12(11): 4352−4357. doi: 10.19812/j.cnki.jfsq11-5956/ts.2021.11.007

    Li Z, Fang F, Zheng J J, et al. Rapid detection of sulfonamides residues in raw milk by fluorescence quantitative technique[J]. Journal of Food Safety and Quality, 2021, 12(11): 4352−4357. doi: 10.19812/j.cnki.jfsq11-5956/ts.2021.11.007
    [59]
    郭润泽. 传感器的工作原理及发展趋势[J]. 中国战略新兴产业, 2017(36): 100. doi: 10.19474/j.cnki.10-1156/f.002149

    Guo R Z. Working principle and development trend of sensor[J]. China Strategic Emerging Industry, 2017(36): 100. doi: 10.19474/j.cnki.10-1156/f.002149
    [60]
    黄翠萍, 黎杉珊, 陆杜鹃, 等. 用于抗生素检测的纳米材料基电化学传感器研究进展[J]. 化学通报, 2021, 84(2): 139−148. doi: 10.14159/j.cnki.0441-3776.2021.02.005

    Haung C P, Li S S, Lu D J, et al. Progress in nanomaterial-based electrochemical sensors for antibiotic detection[J]. Chemistry, 2021, 84(2): 139−148. doi: 10.14159/j.cnki.0441-3776.2021.02.005
    [61]
    黄鹏程, 孙健, 靳伟, 等. TiO2/聚乙烯醇纳米复合材料电化学检测雨水径流中微量抗生素[J]. 安全与环境学报, 2022, 22(5): 2872−2878.

    Huang P C, Sun J, Jin W, et al. TiO2/PVA nano-composite electrochemical detection of trace antibiotics in rainwater runoff[J]. Journal of Safety and Environment, 2022, 22(5): 2872−2878.
    [62]
    王群. 电化学传感器检测水中氯霉素和氧氟沙星的研究[D]. 北京: 中国地质大学(北京), 2021.

    Wang Q. Study on the detection of chloramphenicol and ofloxacin in water by electrochemical sensor[D]. Beijing: China University of Geosciences (Beijing), 2021.
    [63]
    孙心悦. 基于氧化石墨烯的电化学传感器对酚类内分泌干扰物的检测研究[D]. 上海: 上海师范大学, 2022.

    Sun X Y. Study on the detection of phenolic endocrine disruptors by electrochemical sensor based on graphene oxide[D]. Shanghai: Shanghai Normal University, 2022.
    [64]
    Verma D, Yadav A K, Mukherjee M D, et al. Fabrication of a sensitive electrochemical sensor platform using reduced graphene oxide-molybdenum trioxide nanocomposite for BPA detection: An endocrine disruptor[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105504. doi: 10.1016/j.jece.2021.105504
    [65]
    孙俊永, 张利军, 司瑞茹, 等. 双模板分子印迹电化学传感器的构建及同时检测磺胺类抗生素[J]. 信阳师范学院学报(自然科学版), 2022, 35(2): 274−279.

    Sun J Y, Zhang L J, Si R R, et al. Fabrication of double template molecularly imprinted electrochemical sensor and simultaneous determination of sulfonamide antibiotics[J]. Journal of Xinyang Normal University (Natural Science Edition), 2022, 35(2): 274−279.
    [66]
    王孟龙. 基于分子印迹电化学传感检测水体痕量环境激素的研究[D]. 湖南: 中南林业科技大学, 2020.

    Wang M L. Detection of trace environmental hormones in water based on molecularly imprinted electrochemical sensing[D]. Hunan: Central South University of Forestry and Technology, 2020.
    [67]
    雷小玲. 基于导电金属有机框架的电化学传感器及其用于环境激素的检测研究[D]. 常州: 常州大学, 2021.

    Lei X L. Research on electrochemical sensor based on conductive metal-organic framework and its application in environmental hormone detection[D]. Changzhou: Changzhou University, 2021.
    [68]
    Cheng Y H, Dushyant B, Soltis J A, et al. Metal-organic framework-based microfluidic impedance sensor platform for ultrasensitive detection of perfluorooctanesulfonate[J]. Applied Materials & Interfaces, 2020, 12(9): 10503−10514.
    [69]
    马海宽, 张旭, 钟石磊, 等. 基于静电富集-表面增强拉曼光谱联用技术的抗生素检测[J]. 中国激光, 2018, 45(2): 306−313.

    Ma H K, Zhang X, Zhong S L, et al. Detection of antibiotics based on hyphenated technique of electrostatic-preconcentration and surface-enhanced-Raman-spectroscopy[J]. Chinese Journal of Lasers, 2018, 45(2): 306−313.
    [70]
    Gao M, Yao J C, Li J, et al. A novel strategy for improving SERS activity by cerium ion f→d transitions for rapid detection of endocrine disruptor[J]. Chemical Engineering Journal, 2022, 430: 131467. doi: 10.1016/j.cej.2021.131467
    [71]
    李晶, 刘璐, 郭会琴, 等. 基于氟-氟相互作用的上转换荧光法快速测定水中的全氟辛烷磺酸[J]. 分析化学, 2019, 47(3): 380−387. doi: 10.19756/j.issn.0253-3820.181639

    Li J, Liu L, Guo H Q, et al. An upconversion fluorescent method for rapid detection of perfluorooctane sulfonate in water samples based on fluorine-fluorine interaction[J]. Chinese Journal of Analytical Chemistry, 2019, 47(3): 380−387. doi: 10.19756/j.issn.0253-3820.181639
    [72]
    Sullivan M V, Henderson A, Hand R A, et al. A molecularly imprinted polymer nanoparticle-based surface plasmon resonance sensor platform for antibiotic detection in river water and milk[J]. Analytical and Bioanalytical Chemistry, 2022, 414: 3687−3696. doi: 10.1007/s00216-022-04012-8
    [73]
    Hu S J, Wei Y Q, Wang J, et al. A photo-renewable ZIF-8 photo-electrochemical sensor for the sensitive detection of sulfamethoxazole antibiotic[J]. Analytica Chimica Acta, 2021: 1178.
    [74]
    王涛, 刘厦, 刘宝林, 等. 基于适配体和抗体的生物传感器在雌二醇检测中的应用[J]. 应用化学, 2022, 39(3): 374−390. doi: 10.19894/j.issn.1000-0518.210108

    Wang T, Liu X, Liu B L, et al. Application of biosensors based on aptamers and antibodies in the detection of estradiol[J]. Chinese Journal of Applied Chemistry, 2022, 39(3): 374−390. doi: 10.19894/j.issn.1000-0518.210108
    [75]
    卓雨欣, 徐文娟, 程源, 等. 倏逝波光纤传感器快速检测诺氟沙星[J]. 中国环境科学, 2022, 42(5): 2283−2288. doi: 10.3969/j.issn.1000-6923.2022.05.034

    Zhuo Y X, Xu W J, Cheng Y, et al. Rapid detection of norfloxacin in water by evanescent wave fiber optic biosensor[J]. China Environmental Science, 2022, 42(5): 2283−2288. doi: 10.3969/j.issn.1000-6923.2022.05.034
    [76]
    Cennamo N, Zeni L, Tortora P, et al. A high sensitivity biosensor to detect the presence of perfluorinated compounds in environment[J]. Talanta, 2018, 178: 955−961. doi: 10.1016/j.talanta.2017.10.034
    [77]
    Zhang N, Liu B S, Cui X L, et al. Recent advances in aptasensors for mycotoxin detection: On the surface and in the colloid[J]. Talanta, 2021, 223: 121729. doi: 10.1016/j.talanta.2020.121729
    [78]
    王紫璇, 孙洁芳, 邵兵. 核酸适配体生物传感器用于内分泌干扰物快速检测研究进展[J]. 食品安全质量检测学报, 2022, 13(18): 5939−5945. doi: 10.3969/j.issn.2095-0381.2022.18.spaqzljcjs202218021

    Wang Z X, Sun J F, Shao B, et al. Advanced in the rapid detection of endocrine disrupting chemicals by the aptamer-based biosensor[J]. Journal of Food Safety & Quality, 2022, 13(18): 5939−5945. doi: 10.3969/j.issn.2095-0381.2022.18.spaqzljcjs202218021
    [79]
    刘晓, 朱成龙, 庞月红, 等. 基于黑磷纳米片的荧光适配体传感器检测雌激素17 β-雌二醇[J]. 食品工业科技, 2021, 42(11): 248−254. doi: 10.13386/j.issn1002-0306.2020090046

    Liu X, Zhu C L, Pang Y H, et al. Fluorescence aptasensor for 17 β-estradiol determination based on blackphosphorus nanosheets[J]. Science and Technology of Food Industry, 2021, 42(11): 248−254. doi: 10.13386/j.issn1002-0306.2020090046
    [80]
    Yang R, Liu J Y, Song D, et al. Reusable chemiluminescent fiber optic aptasensor for the determination of 17 β-estradiol in water samples[J]. Microchimica Acta, 2019, 186: 726. doi: 10.1007/s00604-019-3813-y
    [81]
    马建国. 水中抗生素高通量免疫检测技术研究及应用[D]. 济南: 山东大学, 2019.

    Ma J G. Research and application of high-throughput immunoassay technology for antibiotics in water[D]. Jinan: Shandong University, 2019.
    [82]
    张玉超, 刘旭东. 基于单克隆抗体的双酚A间接竞争酶联免疫分析法的建立[J]. 食品研究与开发, 2020, 41(17): 172−177. doi: 10.12161/j.issn.1005-6521.2020.17.028

    Zhang Y C, Liu X D. Establishment of indirect competitive immunoassay for bisphenol A based on monoclonal antibody[J]. Food Research and Development, 2020, 41(17): 172−177. doi: 10.12161/j.issn.1005-6521.2020.17.028
    [83]
    贾文哲, 李奕君, 张天牧, 等. 基于免疫分析技术的雌二醇与壬基酚同时检测方法[J]. 环境化学, 2021, 40(4): 1020−1028. doi: 10.7524/j.issn.0254-6108.2019111102

    Jia W Z, Li Y J, Zhang T M, et al. Simultaneous detection of estradiol and nonylphenol based on immunosorbent assay[J]. Environmental Chemistry, 2021, 40(4): 1020−1028. doi: 10.7524/j.issn.0254-6108.2019111102
    [84]
    朱江, 杨道丽, 李炳智, 等. 全氟辛烷磺酸酶联免疫检测方法的研究[J]. 上海交通大学学报(农业科学版), 2014, 32(2): 74−78.

    Zhu J, Yang D L, Li B Z, et al. Development of an indirect competitive ELISA for the detection of the perfluorooctane sulphonate[J]. Journal of Shanghai Jiaotong University (Agricultural Science), 2014, 32(2): 74−78.
    [85]
    Wang Y, Zhao X D, Zhang M, et al. Immunosorbent assay based on upconversion nanoparticles controllable assembly for simultaneous detection of three antibiotics[J]. Journal of Hazardous Materials, 2021, 406: 124703. doi: 10.1016/j.jhazmat.2020.124703
    [86]
    常青. 四环素荧光免疫层析检测方法研究[D]. 天津: 天津科技大学, 2019.

    Chang Q. Development of fluorescence immunochromatographic assay for detection of tetracycline[D]. Tianjin: Tianjin University of Science and Technology, 2019.
    [87]
    杜志辉, 李森林, 高志贤, 等. 壬基酚免疫层析快速检测试纸条的研制[J]. 解放军预防医学杂志, 2007(4): 238−241. doi: 10.3969/j.issn.1001-5248.2007.04.002

    Du Z H, Li S L, Gao Z X, et al. Preparation of immunochromatographic test strip for rapid detection of nonylphenol[J]. Journal of Preventive Medicine of Chinese People’s Liberation Army, 2007(4): 238−241. doi: 10.3969/j.issn.1001-5248.2007.04.002
    [88]
    Pu H B, Huang Z B, Sun D W, et al. Development of a highly sensitive colorimetric method for detecting 17β-estradiol based on combination of gold nanoparticles and shortening DNA aptamers[J]. Water, Air, & Soil Pollution, 2019, 230(6): 124.
    [89]
    曹金博, 王耀, 胡骁飞, 等. 免疫分析技术在四环素类抗生素残留检测中的应用[J]. 饲料工业, 2019, 40(12): 53−59. doi: 10.13302/j.cnki.fi.2019.12.010

    Cao J B, Wang Y, Hu X F, et al. The application of immunoassay technique in the detection of tetracycline antibiotics residue[J]. Feed Industry, 2019, 40(12): 53−59. doi: 10.13302/j.cnki.fi.2019.12.010
    [90]
    贾文哲. 水中内分泌干扰物快速检测技术研究及应用[D]. 武汉: 武汉科技大学, 2020.

    Jia W Z. Research and application of rapid detection technology for endocrine disruptors in water[D]. Wuhan: Wuhan University of Science and Technology, 2020.
    [91]
    徐玮琦, 张永明, 周小红, 等. 基于平面波导型荧光免疫传感器的双酚A检测适用性研究[J]. 环境科学, 2015, 36(1): 338−342. doi: 10.13227/j.hjkx.2015.01.045

    Xu W Q, Zhang Y M, Zhou X H, et al. Applicability of bisphenol a detection by a planar waveguide fluorescent biosensor[J]. Environmental Science, 2015, 36(1): 338−342. doi: 10.13227/j.hjkx.2015.01.045
    [92]
    李树莹, 田艳, 陈蓓, 等. 基于平面波导传感器的恩诺沙星与诺氟沙星同时检测方法[J]. 环境科学学报, 2018, 38(5): 1899−1905. doi: 10.13671/j.hjkxxb.2017.0429

    Li S Y, Tian Y, Chen B, et al. Simultaneous detection of enrofloxacin and norfloxacin by planar waveguide immunosensor[J]. Acta Scientiae Circumstantiae, 2018, 38(5): 1899−1905. doi: 10.13671/j.hjkxxb.2017.0429
    [93]
    单迪迪, 文晓刚, 刘兰华, 等. 基于阵列倏逝波荧光传感器的雌二醇免疫检测方法[J]. 光谱学与光谱分析, 2018, 38(10): 3148−3152.

    Shan D D, Wen X G, Liu L H, et al. Immunoassay of estradiol by an array evanescent wave fluorescent biosensor[J]. Spectroscopy and Spectral Analysis, 2018, 38(10): 3148−3152.
    [94]
    高燕梅, 陈文, 张之琛. 极谱法检测环境水体中的全氟辛烷磺酸[J]. 分析科学学报, 2022, 38(3): 297−302.

    Gao Y M, Chen W, Zhang Z C. Determination of perfluorooctane sulfonic acid in environmental water by polarography[J]. Journal of Analytical Science, 2022, 38(3): 297−302.
    [95]
    王硕, 何欢, 王俊平, 等. 基于分子印迹材料的雌酮快速检测方法研究[J]. 食品工业科技, 2011, 32(3): 393−395. doi: 10.13386/j.issn1002-0306.2011.03.030

    Wang S, He H, Wang J P, et al. Rapid determination estrone method on the basis of molecular imprinted polymer[J]. Science and Technology of Food Industry, 2011, 32(3): 393−395. doi: 10.13386/j.issn1002-0306.2011.03.030
    [96]
    He J C, Qiu P P, Song J Y, et al. A resonance Rayleigh scattering and colorimetric dual-channel sensor for sensitive detection of perfluorooctane sulfonate based on toluidine blue[J]. Analytical and Bioanalytical Chemistry, 2020, 412(22): 5329−5339. doi: 10.1007/s00216-020-02748-9
  • Related Articles

    [1]GONG Liqiang, LI Zhihong, ZHOU Bo, ZHOU Zhengyuan. Research Progress on the Preparation and Analytical Methods of Per- and Polyfluoroalkyl Substances in Groundwater[J]. Rock and Mineral Analysis. DOI: 10.15898/j.ykcs.202412310279
    [2]WANG Baoli, ZHANG Yijun, ZHANG Yuhang, CHEN Yan. Research Progress of Biochar Based Materials and Their Applications Using Electrochemical Sensors[J]. Rock and Mineral Analysis, 2024, 43(6): 967-981. DOI: 10.15898/j.ykcs.202403170058
    [3]Development of a Portable Extinction Photometer and Its Application to in situ Rapid Detection of Adulterated Milk[J]. Rock and Mineral Analysis, 2008, 27(3): 169-173.
    [4]Discussion on the Definition and Classification of Detection Limit[J]. Rock and Mineral Analysis, 2008, 27(2): 155-157.
    [5]Hydride Generation and Its Application in Analysis and Detection Field[J]. Rock and Mineral Analysis, 2008, 27(1): 55-59.
    [6]A View of the Present Status and Development Trends on Geoanalytical Instrumentation in China and Abroad[J]. Rock and Mineral Analysis, 2007, 26(6): 472-476.
    [7]An Interface Program for Data Processing in AAS Analysis[J]. Rock and Mineral Analysis, 2006, 25(3): 291-293.
    [8]Discussion on the Detection Limit in X-Ray Fluorescence Spectrometric Analysis[J]. Rock and Mineral Analysis, 2003, (4): 291-296.
    [9]The Software for Tackling the Export Data in Instrument Analysis[J]. Rock and Mineral Analysis, 2003, (1): 49-54.
  • Cited by

    Periodical cited type(4)

    1. 侯将,肖传晶,姚阔为. 快速检测技术在水环境污染物检测中的应用研究进展. 实验室检测. 2024(07): 30-33 .
    2. 高启宇. SPE-UFLC-MS法测定医药废水中8种四环素类抗生素. 化学工程师. 2024(08): 30-34 .
    3. 赵静,侯静云,高超,包虹艳. 无机及分析化学实验的综合应用教学研究. 保山学院学报. 2024(05): 103-108 .
    4. 王宝丽,张逸君,张宇航,陈艳. 生物炭基材料及其在电化学传感领域的应用. 岩矿测试. 2024(06): 967-981 . 本站查看

    Other cited types(2)

Catalog

    Article views (620) PDF downloads (95) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return