Citation: | GONG Liqiang,LI Zhihong,ZHOU Bo,et al. Research Progress on the Preparation and Analytical Methods of Per- and Polyfluoroalkyl Substances in Groundwater[J]. Rock and Mineral Analysis,2025,44(4):1−14. DOI: 10.15898/j.ykcs.202412310279 |
Per- and polyfluoroalkyl substances (PFASs) are a class of synthetic chemicals listed as persistent organic pollutants (POPs) and emerging contaminants, drawing critical environmental concern globally. PFASs have been widely detected in aquatic environments worldwide, posing potential risks to aquatic organisms, human health, and ecological safety. The trace-level concentrations of PFASs in groundwater present significant challenges for the sensitivity and accuracy of current monitoring methods. However, existing techniques suffer from insufficient sensitivity and high operational complexity, making them inadequate for comprehensive monitoring and necessary for further optimization. To address these issues, this study systematically reviews recent advancements in the monitoring methods for typical PFASs in groundwater, focusing on sample collection, sample preparation, and analytical detection techniques. For groundwater sampling, newly developed passive sampling provides the possibility of low-cost continuous monitoring of groundwater. For groundwater sample pretreatment, new automatic technologies such as membrane solid phase extraction and dispersive solid phase extraction have greatly reduced the preparation time compared with current SPE method. For detection methods, liquid chromatography-tandem mass spectrometry (LC-MS/MS) is still the major option for quantitative detection of PFASs while non-targeted screening of HR-MS allows the identification of PFASs in groundwater without standards. Meanwhile, application of sensor detection provides new means for the rapid detection of groundwater in the field. Future researches should focus on the development and improvement of high-throughput and automatic pretreatment methods combined with sensitive, accurate and specific detection methods for PFASs.
[1] |
Evich M G, Davis M J, McCord J P, et al. Per- and Polyfluoroalkyl Substances in the Environment[J]. Science, 2022, 375(6580): 9065. doi: 10.1126/science.abg9065
|
[2] |
吴晓妍, 廖佳. 全氟化合物的环境污染及检测方法[J]. 化学世界, 2021, 62(1): 6. doi: 10.19500/j.cnki.0367-6358.20190805
Wu X Y, Liao J. Environment Pollution and Detection of Perfluorochemicals[J]. Chemical World, 2021, 62(1): 6. doi: 10.19500/j.cnki.0367-6358.20190805
|
[3] |
陈绩, 李彤, 吴限好, 等. 全氟和多氟烷基化合物暴露特征与健康效应研究进展[J]. 环境与职业医学, 2023, 40(8): 958−964. doi: 10.11836/JEOM22444
Chen J, Li T, Wu X H, et al. Review on Exposure Characteristics and Health Effects of Per- and Poly-Fluoroalkyl Substances[J]. Journal of Environmental and Occupational Medicine, 2023, 40(8): 958−964. doi: 10.11836/JEOM22444
|
[4] |
朱清禾, 钱佳浩, 杨洁. 中国土壤与地下水中全氟和多氟烷基化合物分布现状[J]. 环境污染与防治, 2024, 46(6): 908−916. doi: 10.15985/j.cnki.1001-3865.202306088
Zhu Q H, Qian J H, Yang J. Current Status of PFAS Distribution in Soil and Groundwater Across China[J]. Environmental Pollution & Control, 2024, 46(6): 908−916. doi: 10.15985/j.cnki.1001-3865.202306088
|
[5] |
陈舒, 焦杏春, 盖楠, 等. 中国东部农村地区土壤及水环境中全氟化合物的组成特征和来源初探[J]. 岩矿测试, 2015, 34(5): 579−585. doi: 10.15898/j.cnki.11-2131/td.2015.05.014
Chen S, Jiao X C, Gai N, et al. Composition and Source of Perfluorinated Compounds in Soil and Waters from the Rural Areas in Eastern China[J]. Rock and Mineral Analysis, 2015, 34(5): 579−585. doi: 10.15898/j.cnki.11-2131/td.2015.05.014
|
[6] |
Tang Z W, Hamid F S, Yusoff I, et al. A Review of PFAS Research in Asia and Occurrence of PFOA and PFOS in Groundwater, Surface Water and Coastal Water in Asia[J]. Groundwater for Sustainable Development, 2023, 22: 100947. doi: 10.1016/j.gsd.2023.100947
|
[7] |
王伟杰, 王洪涛. 全氟与多氟烷基化合物的生态风险现状与分析技术研究进展[J]. 岩矿测试, 2025, 44(2): 174−186. doi: 10.15898/j.ykcs.202412080252
Wang W J, Wang H T. Research Progress on the Ecological Risk Status and Analytical Techniques of Per- and Polyfluoroalkyl Substances[J]. Rock and Mineral Analysis, 2025, 44(2): 174−186. doi: 10.15898/j.ykcs.202412080252
|
[8] |
贺锦灿, 张诗韵, 苏榆媛, 等. 典型全氟有机酸类化合物的样品前处理与分析方法研究进展[J]. 色谱, 2020, 38(1): 86−94. doi: 10.3724/SP.J.1123.2019.06016
He J C, Zhang S Y, Su Y Y, et al. Progress on the Sample Techniques and Analytical Methods for Typical Perfluorinated Organic Acids[J]. Chinese Journal of Chromatography, 2020, 38(1): 86−94. doi: 10.3724/SP.J.1123.2019.06016
|
[9] |
Hepburn E, Madden C, Szabo D, et al. Contamination of Groundwater with Per- and Polyfluoroalkyl Substances (PFAS) from Legacy Landfills in an Urban Re-Development Precinct[J]. Environmental Pollution, 2019, 24: 101−113. doi: 10.1016/j.envpol.2019.02.018
|
[10] |
Pétré M A, Genereux D P, Koropeckyj-Cox L, et al. Per- and Polyfluoroalkyl Substance (PFAS) Transport from Groundwater to Streams near a PFAS Manufacturing Facility in North Carolina, USA[J]. Environmental Science & Technology, 2021, 55(9): 5848−5856. doi: 10.1021/acs.est.0c07978
|
[11] |
蒋沛瑀, 许宜平, 马梅, 等. 被动采样技术在水环境暴露监测评估中的应用与挑战[J]. 生态毒理学报, 2022, 17(4): 59−71. doi: 10.7524/AJE.1673-5897.20220120002
Jiang P Y, Xu Y P, Ma M, et al. Passive Sampling in Aquatic Exposure Assessment: Applications and Challenges[J]. Asian Journal of Ecotoxicology, 2022, 17(4): 59−71. doi: 10.7524/AJE.1673-5897.20220120002
|
[12] |
Kaltenberg E M, Dasu K, Lefkovitz L F, et al. Sampling of Freely Dissolved Per- and Polyfluoroalkyl Substances (PFAS) in Surface Water and Groundwater Using a Newly Developed Passive Sample[J]. Environmental Pollution, 2023, 318: 120940. doi: 10.1016/j.envpol.2022.120940
|
[13] |
McDermett K S, Guelfo J, Anderson T A, et al. The Development of Diffusive Equilibrium, High-Resolution Passive Samplers to Measure Perfluoroalkyl Substances (PFAS) in Groundwater[J]. Chemosphere, 2022, 303: 134686. doi: 10.1016/j.chemosphere.2022.134686
|
[14] |
Gorji S G, Ramos M J G, Dewapriya P, et al. New PFASs Identified in AFFF Impacted Groundwater by Passive Sampling and Nontarget Analysis[J]. Environmental Science & Technology, 2024, 58(3): 1690−1699. doi: 10.1021/acs.est.3c06591
|
[15] |
刘明睿, 汪伶俐, 陈亮. 超高效液相色谱串联质谱法快速测定地下水和含水层介质中16种全氟烷基酸[J]. 地学前缘, 2019, 26(4): 307−314. doi: 10.13745/j.esf.sf.2019.5.32
Liu M R, Wang L L, Chen L. Quick Analysis of Sixteen PFAAs in Groundwater and Aquifer by Ultra-Performance Liquid Chromatography-Triple Quadrupole Mass Spectrometry[J]. Earth Science Frontiers, 2019, 26(4): 307−314. doi: 10.13745/j.esf.sf.2019.5.32
|
[16] |
朱晓玲, 赵颖, 白立雯. 超高效液相色谱-质谱法测定地下水中全氟辛酸(PFOA)和全氟辛基磺酸(PFOS)[J]. 化学研究与应用, 2022, 34(12): 3004−3008. doi: 10.3969/j.issn.1004-1656.2022.12.030
Zhu X L, Zhao Y, Bai L W. Determination of Perfluorooctane Acid (PFOA) and Perfluorooctane Sulfonic Acid (PFOS) in Groundwater by Ultra-High Performance Liquid Chromatography-Mass Spectrometry[J]. Chemical Research and Application, 2022, 34(12): 3004−3008. doi: 10.3969/j.issn.1004-1656.2022.12.030
|
[17] |
Bautista A, Björnsdotter M, Sáez C, et al. Determination of Persistent and Mobile Organic Compounds in the River–Groundwater Interface of the Besòs River Delta, Spain, Using a Wide Extraction Approach[J]. Chemosphere, 2024, 368: 143673. doi: 10.1016/j.chemosphere.2024.143673
|
[18] |
孙腾飞, 向垒, 陈雷, 等. 环境水样及固相样品中全氟化合物分析方法研究进展[J]. 分析化学, 2017, 45(4): 601−610. doi: 10.11895/j.issn.0253-3820.160817
Sun T F, Xiang L, Chen L, et al. Research Progresses of Determination of Perfluorinated Compounds in Environmental Water and Solid Samples[J]. Chinese Journal of Analytical Chemistry, 2017, 45(4): 601−610. doi: 10.11895/j.issn.0253-3820.160817
|
[19] |
杨愿愿, 李偲琳, 赵建亮, 等. 超高效液相色谱-串联质谱法同时测定水、沉积物和生物样品中57种全/多氟化合物[J]. 分析化学, 2022, 50(8): 1243−1251,139-144. doi: 10.19756/j.issn.0253-3820.210621
Yang Y Y, Li S L, Zhao J L, et al. Determination of 57 Kinds of Per- and Polyfluoroalkyl Substances in Waters, Sediments and Biological Samples by Ultra High Performance Liquid Chromatography-Tandem Mass Spectrometry[J]. Chinese Journal of Analytical Chemistry, 2022, 50(8): 1243−1251,139-144. doi: 10.19756/j.issn.0253-3820.210621
|
[20] |
陈永艳, 吕佳, 张岚, 等. 在线固相萃取-超高效液相色谱-三重四极杆质谱法测定水源水和饮用水中107种典型农药及代谢产物[J]. 色谱, 2022, 40(12): 1064−1075. doi: 10.3724/SP.J.1123.2022.07011
Chen Y Y, Lyu J, Zhang L, et al. Determination of 107 Typical Pesticides and Metabolites in Raw Water and Drinking Water by Online-Solid Phase Extraction Coupled with Ultra Performance Liquid Chromatography-Triple Quadrupole Mass Spectrometry[J]. Chinese Journal of Chromatography, 2022, 40(12): 1064−1075. doi: 10.3724/SP.J.1123.2022.07011
|
[21] |
Getzinger G J, Ferguson P L. High-Throughput Trace-Level Suspect Screening for Per- and Polyfluoroalkyl Substances in Environmental Waters by Peak-Focusing Online Solid Phase Extraction and High-Resolution Mass Spectrometry[J]. ACS ES& T Water, 2021, 1(5): 1240−1251. doi: 10.1021/acsestwater.0c00309
|
[22] |
王巧环, 熊满艳, 孟龄, 等. 在线固相萃取-高效液相色谱-串联质谱法测定地表水中8种全氟化合物[J]. 环境化学, 2023, 42(2): 388−398. doi: 10.7524/j.issn.0254-6108.2022082401
Wang Q H, Xiong M Y, Meng L, et al. Determination of 8 Perfluorinated Compounds in Surface Water by On-Line Solid Phase Extraction-High Performance Liquid Chromatography-Tandem Mass Spectrometry[J]. Environmental Chemistry, 2023, 42(2): 388−398. doi: 10.7524/j.issn.0254-6108.2022082401
|
[23] |
姚志建, 顾凯丽, 李涛, 等. 基于膜式固相萃取的水体全氟化合物检测方法研究[J]. 环境科技, 2024, 37(2): 40−45. doi: 10.3969/j.issn.1674-4829.2024.02.008
Yao Z J, Gu K L, Li T, et al. Study on Detection Method of PFASs in Water Based on Membrane Solid Phase Extraction[J]. Environmental Science and Technology, 2024, 37(2): 40−45. doi: 10.3969/j.issn.1674-4829.2024.02.008
|
[24] |
Ng K, Alygizakis N, Androulakakis A, et al. Target and Suspect Screening of 4777 Per- and Polyfluoroalkyl Substances (PFAS) in River Water, Wastewater, Groundwater and Biota Samples in the Danube River Basin[J]. Journal of Hazardous Materials, 2022, 436: 129276. doi: 10.1016/j.jhazmat.2022.129276
|
[25] |
Aparicio I, Martín J, Santos J L, et al. Stir Bar Sorptive Extraction and Liquid Chromatography-Tandem Mass Spectrometry Determination of Polar and Non-Polar Emerging and Priority Pollutants in Environmental Waters[J]. Journal of Chromatography A, 2017, 1500: 43−52. doi: 10.1016/j.chroma.2017.04.007
|
[26] |
Olomukoro A A, Emmons R V, Godage N H, et al. Ion Exchange Solid Phase Microextraction Coupled to Liquid Chromatography/Laminar Flow Tandem Mass Spectrometry for the Determination of Perfluoroalkyl Substances in Water Samples[J]. Journal of Chromatography A, 2021, 1651: 462335. doi: 10.1016/j.chroma.2021.462335
|
[27] |
Bach C, Boiteux V, Hemard J, et al. Simultaneous Determination of Perfluoroalkyl Iodides, Perfluoroalkane Sulfonamides, Fluorotelomer Alcohols, Fluorotelomer Iodides and Fluorotelomer Acrylates and Methacrylates in Water and Sediments Using Solid-Phase Microextraction-Gas Chromatography/Mass Spectrometry[J]. Journal of Chromatography A, 2016, 1448: 98−106. doi: 10.1016/j.chroma.2016.04.025
|
[28] |
宋新力, 王宁, 何飞燕, 等. 碳纳米管复合材料结合分散固相萃取-高效液相色谱-串联质谱法检测环境水样中痕量全氟化合物[J]. 色谱, 2023, 41(5): 409−416. doi: 10.3724/SP.J.1123.2022.09016
Song X L, Wang N, He F Y, et al. Determination of Trace Perfluorinated Compounds in Environmental Water Samples by Dispersive Solid-Phase Extraction-High Performance Liquid Chromatography-Tandem Mass Spectrometry Using Carbon Nanotube Composite Materials[J]. Chinese Journal of Chromatography, 2023, 41(5): 409−416. doi: 10.3724/SP.J.1123.2022.09016
|
[29] |
Petromelidou S, Zoi T, Alampanos V, et al. Dispersive Solid Phase Extraction of 18 PFAS from Environmental Water Samples Using a Novel MOF-Polymeric Monolith Composite Followed by High-Resolution Mass Spectrometry Analysis[J]. Microchemical Journal, 2024, 207: 111795. doi: 10.1016/j.microc.2024.111795
|
[30] |
Zhou Y S, He Z Y, Tao Y, et al. Preparation of a Functional Silica Membrane Coated on Fe3O4 Nanoparticle for Rapid and Selective Removal of Perfluorinated Compounds from Surface Water Sample[J]. Chemical Engineering Journal, 2016, 303: 156−166. doi: 10.1016/j.cej.2016.05.137
|
[31] |
Ayala-Cabrera J F, Moyano E, Santos F J. Gas Chromatography and Liquid Chromatography Coupled to Mass Spectrometry for the Determination of Fluorotelomer Olefins, Fluorotelomer Alcohols, Perfluoroalkyl Sulfonamides and Sulfonamido-Ethanols in Water[J]. Journal of Chromatography A, 2020, 1609: 460463. doi: 10.1016/j.chroma.2019.460463
|
[32] |
Trojanowicz M, Koc M. Recent Developments in Methods for Analysis of Perfluorinated Persistent Pollutants[J]. Microchimica Acta, 2013, 180: 957−971. doi: 10.1007/s00604-013-1046-z
|
[33] |
吴建刚, 龙强, 肖文, 等. 环境水样中全氟磺酸类和全氟羧酸类化合物分析方法研究进展[J]. 环境化学, 2018, 37(8): 1851−1859. doi: 10.7524/j.issn.0254-6108.2017122901
Wu J G, Long Q, Xiao W, et al. Analytical Methods of Perfluorosulfonic Acids (PFSAs) and Perfluorocarboxylic Acids (PFCAs) in Environmental Water Samples[J]. Environmental Chemistry, 2018, 37(8): 1851−1859. doi: 10.7524/j.issn.0254-6108.2017122901
|
[34] |
王晓研, 沈伟健, 王红, 等. 气相色谱-负化学源-质谱法检测水中10种全氟羧酸化合物[J]. 色谱, 2019, 37(1): 32−39. doi: 10.3724/SP.J.1123.2018.07019
Wang X Y, Shen W J, Wang H, et al. Determination of 10 Perfluorinated Carboxylic Acid Compounds in Water by Gas Chromatography-Mass Spectrometry Coupled with Negative Chemical Ionization[J]. Chinese Journal of Chromatography, 2019, 37(1): 32−39. doi: 10.3724/SP.J.1123.2018.07019
|
[35] |
Liu M, Munoz G, Vo D S, et al. Per- and Polyfluoroalkyl Substances in Contaminated Soil and Groundwater at Airports: A Canadian Case Study[J]. Environmental Science & Technology, 2022, 56(2): 885−895. doi: 10.1021/acs.est.1c04798
|
[36] |
Silver M, Phelps W, Masarik K, et al. Prevalence and Source Tracing of PFAS in Shallow Groundwater Used for Drinking Water in Wisconsin, USA[J]. Environmental Science & Technology, 2023, 57(45): 17415−17426. doi: 10.1021/acs.est.3c02826
|
[37] |
Jensen C R, Genereux D P, Solomon D K, et al. Forecasting and Hindcasting PFAS Concentrations in Groundwater Discharging to Streams near a PFAS Production Facility[J]. Environmental Science & Technology, 2024, 58(40): 17926−17936. doi: 10.1021/acs.est.4c06697
|
[38] |
Geiger M J, Morrison J M, Carmack D J, et al. A High-Throughput Small Volume Matrix Based Calibration Using Isotope Dilution Liquid Chromatography Tandem Mass Spectrometry Analysis for 42 Per and Polyfluoroalkyl Substances in Groundwater[J]. Journal of Chromatography A, 2024, 1716: 464633. doi: 10.1016/j.chroma.2024.464633
|
[39] |
Cáñez T T, Guo B, McIntosh J C, et al. Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) in Groundwater at a Reclaimed Water Recharge Facility[J]. Science of the Total Environment, 2021, 791: 147906. doi: 10.1016/j.scitotenv.2021.147906
|
[40] |
McFarlan E L, Lemke L D. Per- and Polyfluoroalkyl Substances (PFAS) Fate and Transport Across a Groundwater-Surface Water Interface[J]. Science of the Total Environment, 2024, 951: 175672. doi: 10.1016/j.scitotenv.2024.175672
|
[41] |
Zeng J, Liu K, Liu X, et al. Driving Factor, Source Identification, and Health Risk of PFAS Contamination in Groundwater Based on the Self-Organizing Map[J]. Water Research, 2024, 267: 122458. doi: 10.1016/j.watres.2024.122458
|
[42] |
Sadia M, Kunz M, Ter L T, et al. Forever Legacies? Profiling Historical PFAS Contamination and Current Influence on Groundwater Used for Drinking Water[J]. Science of the Total Environment, 2023, 890: 164420. doi: 10.1016/j.scitotenv.2023.164420
|
[43] |
陈典, 张照荷, 赵微, 等. 北京市再生水灌区地下水中典型全氟化合物的分布现状及生态风险[J]. 岩矿测试, 2022, 41(3): 499−510. doi: 10.15898/j.cnki.11-2131/td.202111300190
Chen D, Zhang Z H, Zhao W, et al. The Occurrence, Distribution and Risk Assessment of Typical Perfluorinated Compounds in Groundwater from a Reclaimed Wastewater Irrigation Area in Beijing[J]. Rock and Mineral Analysis, 2022, 41(3): 499−510. doi: 10.15898/j.cnki.11-2131/td.202111300190
|
[44] |
Xu B, Liu S, Zhou J L, et al. PFAS and Their Substitutes in Groundwater: Occurrence, Transformation and Remediation[J]. Journal of Hazardous Materials, 2021, 412: 125159. doi: 10.1016/j.jhazmat.2021.125159
|
[45] |
Zhao Z, Li J, Zhang X, et al. Perfluoroalkyl and Polyfluoroalkyl Substances (PFASs) in Groundwater: Current Understandings and Challenges to Overcome[J]. Environmental Science and Pollution Research, 2022, 29(33): 49513−49533. doi: 10.1007/s11356-022-20755-4
|
[46] |
王振聚, 罗忻, 梁生康, 等. 高分辨质谱技术在全氟多氟化合物分析中的应用研究进展[J]. 分析测试学报, 2022, 41(6): 931−940. doi: 10.19969/j.fxcsxb.22022006
Wang Z J, Luo X, Liang S K, et al. Research Progress on Application of High-Resolution Mass Spectrometry in Analysis of PFAS[J]. Journal of Instrumental Analysis, 2022, 41(6): 931−940. doi: 10.19969/j.fxcsxb.22022006
|
[47] |
Rehnstam S, Czeschka M B, Ahren L. Suspect Screening and Total Oxidizable Precursor (TOP) Assay as Tools for Characterization of Per- and Polyfluoroalkyl Substance (PFAS)-Contaminated Groundwater and Treated Landfill Leachate[J]. Chemosphere, 2023, 334: 138925. doi: 10.1016/j.chemosphere.2023.138925
|
[48] |
Rehnstam S, Smith S J, Ahrens L. Suspect and Non-Target Screening of Per- and Polyfluoroalkyl Substances (PFAS) and Other Halogenated Substances in Electrochemically Oxidized Landfill Leachate and Groundwater[J]. Journal of Hazardous Materials, 2024, 480: 136316. doi: 10.1016/j.jhazmat.2024.136316
|
[49] |
Liu S, Junaid M, Zhong W, et al. A Sensitive Method for Simultaneous Determination of 12 Classes of Per- and Polyfluoroalkyl Substances (PFASs) in Groundwater by Ultrahigh Performance Liquid Chromatography Coupled with Quadrupole Orbitrap High Resolution Mass Spectrometry[J]. Chemosphere, 2020, 251: 126327. doi: 10.1016/j.chemosphere.2020.126327
|
[50] |
韩亚萌, 郭丽莉, 王蓓丽, 等. 水环境中全氟化合物的传感检测方法研究进展[J]. 环境化学, 2023, 42(9): 3112−3124. doi: 10.7524/j.issn.0254-6108.2022032902
Han Y M, Guo L L, Wang B L, et al. Research Progress on Sensing Methods for the Detection of Perfluorinated Compounds in Water Environment[J]. Environmental Chemistry, 2023, 42(9): 3112−3124. doi: 10.7524/j.issn.0254-6108.2022032902
|
[51] |
于开宁, 王润忠, 刘丹丹. 水环境中新污染物快速检测技术研究进展[J]. 岩矿测试, 2023, 42(6): 1063−1077. doi: 10.15898/j.ykcs.202302080018
Yu K N, Wang R Z, Liu D D. A Review of Rapid Detections for Emerging Contaminants in Groundwater[J]. Rock and Mineral Analysis, 2023, 42(6): 1063−1077. doi: 10.15898/j.ykcs.202302080018
|
[52] |
Niu H, Wang S, Zhou Z, et al. Sensitive Colorimetric Visualization of Perfluorinated Compounds Using Poly (Ethylene Glycol) and Perfluorinated Thiols Modified Gold Nanoparticles[J]. Analytical Chemistry, 2014, 86(9): 4170−4177. doi: 10.1021/ac403406d
|
[53] |
李晶, 刘璐, 郭会琴, 等. 基于氟-氟相互作用的上转换荧光法快速测定水中的全氟辛烷磺酸[J]. 分析化学, 2019, 47(3): 380−387. doi: 10.19756/j.issn.0253-3820.181639
Li J, Liu L, Guo H Q, et al. An Upconversion Fluorescent Method for Rapid Detection of Perfluorooctane Sulfonate in Water Samples Based on Fluorine-Fluorine Interaction[J]. Chinese Journal of Analytical Chemistry, 2019, 47(3): 380−387. doi: 10.19756/j.issn.0253-3820.181639
|
[54] |
Chen B, Yang Z, Qu X, et al. Screening and Discrimination of Perfluoroalkyl Substances in Aqueous Solution Using a Luminescent Metal–Organic Framework Sensor Array[J]. ACS Applied Materials & Interfaces, 2021, 13(40): 47706−47716. doi: 10.1021/acsami.1c15528
|
[55] |
Harrison E E, Waters M L. Detection and Differentiation of Per- and Polyfluoroalkyl Substances (PFAS) in Water Using a Fluorescent Imprint-and-Report Sensor Array[J]. Chemical Science, 2023, 14(4): 928−936. doi: 10.1039/D2SC05685B
|
[56] |
王宝丽, 张逸君, 张宇航, 等. 生物炭基材料及其在电化学传感领域的应用[J]. 岩矿测试, 2024, 43(6): 967−981. doi: 10.15898/j.ykcs.202403170058
Wang B L, Zhang Y J, Zhang Y H, et al. Research Progress of Biochar Based Materials and Their Applications Using Electrochemical Sensors[J]. Rock and Mineral Analysis, 2024, 43(6): 967−981. doi: 10.15898/j.ykcs.202403170058
|
[57] |
Karimian N, Stortini A M, Moretto L M, et al. Electrochemosensor for Trace Analysis of Perfluorooctanesulfonate in Water Based on a Molecularly Imprinted Poly (o-Phenylenediamine) Polymer[J]. ACS Sensors, 2018, 3(7): 1291−1298. doi: 10.1021/acssensors.8b00154
|
[58] |
Cheng Y H, Barpaga D, Soltis J A, et al. Metal-Organic Framework-Based Microfluidic Impedance Sensor Platform for Ultrasensitive Detection of Perfluorooctanesulfonate[J]. ACS Applied Materials & Interfaces, 2020, 12(9): 10503−10514. doi: 10.1021/acsami.9b22445
|
[59] |
Lu D, Zhu D Z, Gan H, et al. An Ultra-Sensitive Molecularly Imprinted Polymer (MIP) and Gold Nanostars (AuNS) Modified Voltammetric Sensor for Facile Detection of Perfluorooctance Sulfonate (PFOS) in Drinking Water[J]. Sensors and Actuators B: Chemical, 2022, 352: 131055. doi: 10.1016/j.snb.2021.131055
|
[60] |
Cho S, Remucal C K, Wei H. Common and Distinctive Raman Spectral Features for the Identification and Differentiation of Per- and Polyfluoroalkyl Substances[J]. ACS ES& T Water, 2024, 5(1): 300−309. doi: 10.1021/acsestwater.4c00847
|
[61] |
Park H, Park J, Kim W, et al. Ultra-Sensitive SERS Detection of Perfluorooctanoic Acid Based on Self-Assembled p-Phenylenediamine Nanoparticle Complex[J]. Journal of Hazardous Materials, 2023, 453: 131384. doi: 10.1016/j.jhazmat.2023.131384
|