• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
Rui-lin YANG, Yan BAI. The Occurrence of Rare Earth and Radioactive Elements in the Associated Minerals with Raw Coal by EDX-SEM and XRD[J]. Rock and Mineral Analysis, 2019, 38(4): 382-393. DOI: 10.15898/j.cnki.11-2131/td.201811210125
Citation: Rui-lin YANG, Yan BAI. The Occurrence of Rare Earth and Radioactive Elements in the Associated Minerals with Raw Coal by EDX-SEM and XRD[J]. Rock and Mineral Analysis, 2019, 38(4): 382-393. DOI: 10.15898/j.cnki.11-2131/td.201811210125

The Occurrence of Rare Earth and Radioactive Elements in the Associated Minerals with Raw Coal by EDX-SEM and XRD

More Information
  • Received Date: November 11, 2018
  • Revised Date: March 10, 2019
  • Accepted Date: April 08, 2019
  • Published Date: June 30, 2019
  • HIGHLIGHTS
    (1) Further method standardization of studying the occurrence of rare earth and radioactive elements in raw coal.
    (2) Back scattered electron imaging and EDS-point were used to improve the sensitivity of rare earth and radioactive elements in raw coal.
    (3) Illustration of the occurrences of six rare earth elements and one radioactive element in raw coal from the Huoxi coalfield.
    BACKGROUNDThe study on the occurrences of rare earth and radioactive elements in raw coal is of great significance in terms of whether the raw coal is concentrated or dispersed, the emission of fly ash is intercepted, and the rare earth elements (REEs) and radioactive elements are extracted from raw coal or fly ash. Previous studies showed that the occurrences of rare earth and radioactive elements in raw coal of various mining areas are different.
    OBJECTIVESTo study the occurrences of rare earth and radioactive elements in 175 coal samples from two mining areas in the Huoxi coalfield of Shanxi Province.
    METHODSThe analysis region was located by back scattered electron imaging (BSEI), and the main associated minerals were determined by EDS-mapping and powder X-ray diffraction. The trace associated minerals were determined by BSEI and EDS-point methods.
    RESULTSSix rare earth elements and a radioactive element were determined in the coal samples. Cerium, lanthanum and neodymium were associated with kaolinite minerals in the form of phosphate, partly occuring in minerals containing alumina or silicon oxide, and in carbon to a small degree. Yttrium and dysprosium existed independently in carbon in the form of phosphate or oxide, whereas scandium was found in zircon, and thorium is found in monazite.
    CONCLUSIONSThe REE in the coal samples of the mining area were associated with other minerals in the form of fine-grained authigenic minerals, and a few occurred as independent minerals in carbon. The radioactive element thorium was associated with monazite.

  • Zielinski R A, Budahn J R.Radionuclides in fly ash and bottom ash:Improved characterization based on radiography and low energy gamma-ray spectrometry[J].Fuel, 1998, 77(4):259-267. doi: 10.1016/S0016-2361(97)00194-4
    Kizilshtein L Y, Kholodkov Y I.Ecologically hazardous elements in coals of the Donets Basin[J].International Journal of Coal Geology, 1999, 40:189-197. doi: 10.1016/S0166-5162(98)00068-8
    Goodarzi F.Assessment of elemental content of milled coal, combustion residues, and stack emitted materials:Possible environmental effects for a Canadian pulverized coal-fired power plant[J].International Journal of Coal Geology, 2006, 65:17-25. doi: 10.1016/j.coal.2005.04.006
    Flues M, Camargo I M C, Fiqueiredo F P M, et al.Evaluation of radionuclides concentration in Brazilian coals[J].Fuel, 2007, 86:807-812. doi: 10.1016/j.fuel.2006.09.013
    Smolka-Danielowska D.Rare earth elements in fly ashes created during the coal burning process in certain coal-fired power plants operating in Poland-Upper Silesian industrial region[J].Journal of Environmental Radioactivity, 2010, 101:965-968. doi: 10.1016/j.jenvrad.2010.07.001
    Seredin V V.Rare earth element-bearing coals from the Russian Far East deposit[J].International Journal of Coal Geology, 1996, 30:101-129. doi: 10.1016/0166-5162(95)00039-9
    Seredin V V, Dai S.Coal deposits as potential alternative source of lanthanides and yttrium[J].International Journal of Coal Geology, 2012, 94:67-93. doi: 10.1016/j.coal.2011.11.001
    Dai S F, Jiang Y F, Ward C R, et al.Mineralogical and geochemical compositions of the coal in the Guanbanwusu mine, Inner Mongolia, China:Further evidence for the existence of an Al (Ga and REE) ore deposit in the Jungar coalfield[J].International Journal of Coal Geology, 2012, 98:10-40. doi: 10.1016/j.coal.2012.03.003
    Seredin V V, Dai S F, Sun Y Z, et al.Coal deposits as promising sources of rare metals for alternative power and energy-efficient technologies[J].Applied Geochemistry, 2013, 31:1-11. doi: 10.1016/j.apgeochem.2013.01.009
    Funaria V, Bokhari S N H, Vigliotti L, et al.The rare earth elements in municipal solid waste incinerators ash and promising tools for their prospecting[J].Journal of Hazardous Materials, 2016, 301:471-479. doi: 10.1016/j.jhazmat.2015.09.015
    Zhang W C, Rezaee M, Bhagavatula A, et al.A review of the occurrence and promising recovery methods of rare earth elements from coal and coal by-products[J].International Journal of Coal Preparation and Utilization, 2015, 35:295-330. doi: 10.1080/19392699.2015.1033097
    Rozelle P L, Khadilkar A B, Pulati N, et al.A study on removal of rare earth elements from U.S. coal byproducts by ion exchange[J].Metallurgical and Materials Transactions E, 2016, 3:6-17. doi: 10.1007/s40553-015-0064-7
    Lin R H, Howard B H, Roth E A, et al.Enrichment of rare earth elements from coal and coal by-products by physical separations[J].Fuel, 2017, 200:506-520. doi: 10.1016/j.fuel.2017.03.096
    赵志根, 唐修义, 李宝芳.淮南矿区煤的稀土元素地球化学[J].沉积学报, 2000, 18(3):453-459. doi: 10.3969/j.issn.1000-0550.2000.03.022

    Zhao Z G, Tang X Y, Li B F.Geochemistry of rare-earth elements of coal in Huainan mining area[J].Acta Sedimentologica Sinica, 2000, 18(3):453-459. doi: 10.3969/j.issn.1000-0550.2000.03.022
    李大华, 胡礼忠, 陈坤, 等.中国西南煤中的稀土元素[J].中国煤田地质, 2002, 14(1):11-13. doi: 10.3969/j.issn.1674-1803.2002.01.004

    Li D H, Hu L Z, Chen K, et al.Rare-earth elements in coal of South-Western China[J].Coal Geology of China, 2002, 14(1):11-13. doi: 10.3969/j.issn.1674-1803.2002.01.004
    代世峰, 任德贻, 李生盛.华北若干晚古生代煤中稀土元素的赋存特征[J].地球学报, 2003, 24(3):273-278. doi: 10.3321/j.issn:1006-3021.2003.03.013

    Dai S H, Ren D Y, Li S S.Modes of occurrence of rare earth elements in some Late Paleozoic coals of North China[J].Acta Geoscientia Sinica, 2003, 24(3):273-278. doi: 10.3321/j.issn:1006-3021.2003.03.013
    Lashari A A, Kazi T G, Ali J, et al.Evaluation of sequential extraction schemes for the ETAAS determination of cadmium concentrations in coal samples from the Thar Coalfield, Pakistan[J].Atomic Spectroscopy, 2018, 39(5):203-209.
    姜尧发, 王西勃, 赵蕾.大屯矿区太原组煤中稀土元素的赋存特征[J].煤炭科学技术, 2006, 34(1):73-75. doi: 10.3969/j.issn.0253-2336.2006.01.022

    Jiang Y F, Wang X B, Zhao L.Distribution characteristics of rare-earth element in coal of Taiyuan group in datum mining area[J].Coal Science and Technology, 2006, 34(1):73-75. doi: 10.3969/j.issn.0253-2336.2006.01.022
    Dai S F, Zhao L, Peng S P, et al.Abundances and dis-tribution of minerals and elements in high-alumina coal fly ash from the Jungar Power Plant, Inner Mongolia, China[J].International Journal of Coal Geology, 2010, 81:320-332. doi: 10.1016/j.coal.2009.03.005
    Moore F, Esmaeili A.Mineralogy and geochemistry of the coals from the Karmozd and Kiasar coal mines, Mazandaran Province, Iran[J].International Journal of Coal Geology, 2012, 96-97(4):9-21. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c4ee6eb1106b752f5ead6963f950be71
    赵明坤, 王海泉, 许军, 等.河南省二1煤层稀土元素赋存特征研究[J].煤炭科学技术, 2019, 47(2):176-180. http://d.old.wanfangdata.com.cn/Periodical/mtkxjs201902029

    Zhao M K, Wang H Q, Xu J, et al.Study on occurrence features of rare earth elements from Seam B1 in Henan Province[J].Coal Science and Technology, 2019, 47(2):176-180. http://d.old.wanfangdata.com.cn/Periodical/mtkxjs201902029
    Vassilev S V, Vassileva C G.Occurrence, abundance and origin of mineral in coals and coal ashes[J].Fuel Processing Technology, 1996, 48:85-106. doi: 10.1016/S0378-3820(96)01021-1
    Dai S F, Zhao L, Hower J C, et al.Petrology, mineralogy, and chemistry of size-fractioned fly ash from the Jungar power plant, Inner Mongolia, China, with emphasis on the distribution of rare earth elements[J].Energy Fuel, 2014, 28:1502-1514. doi: 10.1021/ef402184t
    焦汇胜, 李香庭.扫描电镜能谱仪及波谱仪分析技术[M].长春:东北师范大学出版社, 2011:76-80.

    Jiao H S, Li X T.Analysis Technology in Scanning Electron Microscope-Energy Dispersive Spectrometer and Spectrometer[M].Changchun:Northeast Normal University Press, 2011:76-80.
    赵文宽.仪器分析实验[M].北京:高等教育出版社, 2011:55-61.

    Zhao W K.Instrumental Analysis[M].Beijing:Higher Education Press, 2011:55-61.
    胡勇平, 于学峰, 郑林伟, 等.高分辨扫描电镜和X射线能谱Mapping技术研究碲矿物的成分和形态特征[J].岩矿测试, 2015, 34(6):643-651. doi: 10.15898/j.cnki.11-2131/td.2015.06.007

    Hu Y P, Yu X F, Zheng L W, et al.Application of high-resolution scanning electron microscope and X-ray energy dispersive spectroscope mapping technique to study the composition and morphology of tellurium minerals[J].Rock and Mineral Analysis, 2015, 34(6):643-651. doi: 10.15898/j.cnki.11-2131/td.2015.06.007
    王含, 周征宇, 钟倩, 等.电子微探针-X射线衍射-扫描电镜研究老挝石岩石矿物学特征[J].岩矿测试, 2016, 35(1):56-61. doi: 10.15898/j.cnki.11-2131/td.2016.01.010

    Wang H, Zhou Z Y, Zhong Q, et al.Study on petrological and mineralogical characteristics of Laos Stone by EMPA-XRD-SEM[J].Rock and Mineral Analysis, 2016, 35(1):56-61. doi: 10.15898/j.cnki.11-2131/td.2016.01.010
    刘亚非, 王立社, 魏小燕, 等.应用电子微探针-扫描电镜-拉曼光谱-电子背散射衍射研究一种未知Ti-Zr-U氧化物的矿物学特征[J].岩矿测试, 2016, 35(1):48-55. doi: 10.15898/j.cnki.11-2131/td.2016.01.009

    Liu Y F, Wang L S, Wei X Y, et al.Study on the mineralogical properties of an unknown Ti-Zr-U oxide using EMPA, SEM, Raman spectroscopy and EBSD techniques[J].Rock and Mineral Analysis, 2016, 35(1):48-55. doi: 10.15898/j.cnki.11-2131/td.2016.01.009
    李春辉, 宋党育, 宋播艺, 等.豫西裴沟矿二叠系构造煤中稀土元素分布与赋存特征[J].地球化学, 2017, 46(7):435-457. http://d.old.wanfangdata.com.cn/Periodical/dqhx201704005

    Li C H, Song D Y, Song B Y, et al.Distribution and occurrence of REE in the Permian tectonically deformed coals from the Peigou Mine, Western Henan Province[J].Geochimica, 2017, 46(7):435-457. http://d.old.wanfangdata.com.cn/Periodical/dqhx201704005
    林龙斌.河东煤田北部主采煤中稀土元素地球化学特征[J].中国煤炭地质, 2018, 30(11):18-23. doi: 10.3969/j.issn.1674-1803.2018.11.05

    Lin L B.REE Geochemical features of main mineable coal seams in Northern Hedong Coalfield[J].Coal Geology of China, 2018, 30(11):18-23. doi: 10.3969/j.issn.1674-1803.2018.11.05
    殷晓.扫描电镜能谱法测定独居石中铈、镧、钍等元素的含量[J].地质与资源, 2015, 24(5):501-506. doi: 10.3969/j.issn.1671-1947.2015.05.017

    Yin X.Content determination of cerium, lanthanum, thorium and other elements in monazite with SEM-EDS analysis[J].Geology and Resources, 2015, 24(5):501-506. doi: 10.3969/j.issn.1671-1947.2015.05.017
    沈明联, 杨瑞东.煤中稀土元素研究综述[J].中国煤炭地质, 2016, 28(9):18-20. doi: 10.3969/j.issn.1674-1803.2016.09.04

    Shen M L, Yang R D.Summarization of REE in coal[J].Coal Geology of China, 2016, 28(9):18-20. doi: 10.3969/j.issn.1674-1803.2016.09.04
    黄文辉, 久博, 李媛.煤中稀土元素分布特征及其开发利用前景[J].煤炭学报, 2019, 44(1):287-294. http://d.old.wanfangdata.com.cn/Periodical/mtxb201901029

    Huang W H, Jiu B, Li Y.Distribution characteristics of rare earth elements in coal and its prospects on development and exploitation[J].Journal of China Coal Society, 2019, 44(1):287-294. http://d.old.wanfangdata.com.cn/Periodical/mtxb201901029
  • Related Articles

    [1]ZENG Jiangping, WANG Jiasong, ZHU Yue, ZHANG Nan, WANG Na, WU Liangying, WEI Shuang. Determination of 15 Rare Earth Elements in Uranium Ore by Open Acid Dissolution-Inductively Coupled Plasma-Mass Spectrometry[J]. Rock and Mineral Analysis, 2022, 41(5): 789-797. DOI: 10.15898/j.cnki.11-2131/td.202112070197
    [2]ZHOU An-li, WU Zhi-yuan, NING Hai-long, WANG Dong, YANG Li, LÜ Xin-ming. Determination of 15 Rare Earth Elements in Hetian Jade by Inductively Coupled Plasma-Mass Spectrometry with High-pressure Closed Digestion[J]. Rock and Mineral Analysis, 2020, 39(3): 451-458. DOI: 10.15898/j.cnki.11-2131/td.201907170106
    [3]MEN Qian-ni, SHEN Ping, GAN Li-ming, FENG Bo-xin. Determination of Rare Earth Elements and Nb, Ta, Zr, Hf in Polymetallic Mineral Samples by Inductively Coupled Plasma-Mass Spectrometry Coupled with Open Acid Dissolution and Lithium Metaborate Alkali Fusion[J]. Rock and Mineral Analysis, 2020, 39(1): 59-67. DOI: 10.15898/j.cnki.11-2131/td.201905100060
    [4]Xuan HU, Lei SHI, Wei-hua ZHANG. Determination of Sulfur in High-sulfur Bauxite by Alkali Fusion-Inductively Coupled Plasma-Optical Emission Spectrometry[J]. Rock and Mineral Analysis, 2017, 36(2): 124-129. DOI: 10.15898/j.cnki.11-2131/td.2017.02.005
    [5]Jun WANG, Di WANG, Chang-sheng DENG, Jian-mei ZHANG, Dong YANG, Bin-tang WANG, Su-xia ZHU. Determination of Thorium in Geochemical Samples by Inductively Coupled Plasma-Atomic Emission Spectrometry[J]. Rock and Mineral Analysis, 2014, 33(4): 501-505.
    [6]Zhen-hua GUO, Han-jiang HE, Feng-ying TIAN. Determination of Rare Earth Elements in Phosphate Ores by Inductively Coupled Plasma-Mass Spectrometry with Mixed Acid Dissolution[J]. Rock and Mineral Analysis, 2014, 33(1): 25-28.
    [7]Hui-ling YANG, Hui XIA, Tian-jun DU, Lu BAI, Jiu-hong QIN, Jin-lin TIE. Simultaneous Determination of Sn, W, Mo, Cu, Pb and Zn in Tin Ores by Inductively Coupled Plasma-Atomic Emission Spectrometry[J]. Rock and Mineral Analysis, 2013, 32(6): 887-892.
    [8]Xiao-jie LIU, Yu-Mei LI, Li-jing LIU. Determination of Aluminum Oxide in Rare Earth Ore by Inductively Coupled Plasma-Atomic Emission Spectrometry[J]. Rock and Mineral Analysis, 2013, 32(3): 436-440.
    [9]CUI De-song. Determination of 11 Elements in Chromite Ores by Inductively Coupled Plasma-Atomic Emission Spectrometry with Sodium Carbonate- Tetraborate Alkali Melting[J]. Rock and Mineral Analysis, 2012, 31(1): 138-141.
    [10]WEN Jia-bo, SHANG Dan, SONG Wan-hong, PENG Guo-ping. Quantification of Gallium in Bauxites by Inductively Coupled Plasma-Atomic Emission Spectrometry-Comparison of Sample Pretreatment Methods between Alkali Fusion and Acid Dissolution[J]. Rock and Mineral Analysis, 2011, 30(4): 481-485.

Catalog

    Article views (2098) PDF downloads (59) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return