• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
WEN Jia-bo, SHANG Dan, SONG Wan-hong, PENG Guo-ping. Quantification of Gallium in Bauxites by Inductively Coupled Plasma-Atomic Emission Spectrometry-Comparison of Sample Pretreatment Methods between Alkali Fusion and Acid Dissolution[J]. Rock and Mineral Analysis, 2011, 30(4): 481-485.
Citation: WEN Jia-bo, SHANG Dan, SONG Wan-hong, PENG Guo-ping. Quantification of Gallium in Bauxites by Inductively Coupled Plasma-Atomic Emission Spectrometry-Comparison of Sample Pretreatment Methods between Alkali Fusion and Acid Dissolution[J]. Rock and Mineral Analysis, 2011, 30(4): 481-485.

Quantification of Gallium in Bauxites by Inductively Coupled Plasma-Atomic Emission Spectrometry-Comparison of Sample Pretreatment Methods between Alkali Fusion and Acid Dissolution

More Information
  • Received Date: August 20, 2010
  • Revised Date: December 19, 2010
  • Two different sample pretreatment methods-NaOH alkali fusion method and HCl-HNO3-HF-HClO4 acid dissolution method were compared in order to quantify Ga in bauxite ore samples by inductively coupled plasma-atomic emission spectrometry (ICP-AES). The loaded reagents, chemical procedure, selection of analysis spectral lines and interferences are discussed in this paper. National Standard Reference bauxite ore samples with different Ga contents were analyzed by using both sample pretreatment methods. The analytical results indicate that the bauxite ore samples were incompletely dissolved by using HCl-HNO3-HF-HClO4 acids, which provided an incorrect result. Meanwhile, the pretreatment for bauxite ore samples with sodium hydroxide by alkali fusion provided higher accuracy and precision, giving a range of 2.51%-5.97% (RSD, n=11) and a detection limit for Ga of 0.15 μg/g with recoveries of the method ranging from 94.8% to 108.2%. The reliability of the alkali fusion method has been tested by quantification of Ga in National Standard Reference materials and the results were in agreement with the certified values. This method has advantages of rapid analysis, simple operation and more efficient measurement of Ga in bauxite ore samples.
  • 曾惠芳,戢朝玉,鲁锦英.感耦等离子体质谱法同时测定岩石中痕量元素的研究[J].岩矿测试,1995,14(3):173-178.
    张军,汉春利,徐益谦,顾中铸.煤中次要元素的赋存方式[J].煤炭转化,1999,22(2):6-11.
    殷宁万,阙松娇,戢朝玉,袁玄辉.化探样品的等离子体直读光谱分析[J].岩矿测试,1984,3(1):65-72.
    王蕾,何红蓼,李冰.碱熔沉淀-等离子体质谱法测定样品中的多元素[J].岩矿测试,2003,22(2):86-92.
    叶家瑜,江宝林.区域地球化学勘查样品分析方法[M].北京:地质出版社,2004:225-230.
    刘春晓,刘英,臧幕文.电感耦合等离子原子发射光谱法中悬浮液直接进样技术的研究与应用的进展[J].理化检验:化学分册,2007,35(2):164-167.
    龚迎莉,汪双清,沈斌.电感耦合等离子体原子发射光谱法同时测定沉积岩中15个元素[J].岩矿测试,2007,26(3):230-232.
    李国榕,王亚平,孙元方,董天姿,王海鹰.电感耦合等离子体质谱法测定地质样品中稀散镓铟碲铊[J].岩矿测试,2010,29(3):255-258.
    韩江伟,熊小林,朱照宇,吴金花.等离子体质谱法测定玄武岩中微量元素三种预处理方法的比较[J].岩矿测试,2008,27(5):325-328.
    周天泽,邹洪.原子光谱样品处理技术[M].北京:化学工业出版社,2006:21-38.
    刘颖,刘海臣,李献华.用ICP-MS准确测定岩石样品中的40种微量元素[J].地球化学,1996,25(6):552-558.
    何红蓼,李冰,韩丽萍,孙德忠,王淑贤,李松.封闭压力酸溶-ICP-MS法测定地质样品中47个元素的评价[J].分析试验室,2002,21(5):8-12.
    倪文山,张萍,姚明星,孟亚兰,李贤珍.萃取富集-电感耦合等离子体原子发射光谱法测定矿石中镓[J].冶金分析,2010,30(4):14-17.
    田晓娅,陈超子.应用ICP-AES法同时测定土壤中27种元素的方法研究[J].土壤通报,1993,24(4):188-190.
    郭鹏.电感耦合等离子体质谱法测定高纯氧化钽中28种痕量杂质元素[J].分析试验室,2008,27(3):106-109.
    解原,李承湘,朱为民.ICP-OES法同时测定含铟渣料中的多元素[J].湖南有色金属,2007,23(5):49-51.
    刘华,李健,杜东平,谢灵芝.ICP-OES法测定煤中镓、钡、钍、磷[J] .煤质技术,2010,25(1):19-21.
    何晋浙.ICP-AES法在元素分析测试中的应用技术[J].浙江工业大学学报,2006,34(1):539-541.
    叶家瑜,江宝林.区域地球化学勘查样品分析方法[M].北京:地质出版社,2004:29-45.
    龚思维,楚民生,沈泽敏,蒋海宁.ICP-AES法测定铝中铁、硅、铜、镓、镁、锌、锰和钛[J].分析试验室,2004,23(1):40-42.
    沈恒培.深海沉积物及多金属结核中微量元素的光谱测定[J].岩矿测试,1997,16(2):91-97.
    韩美,胡净宇,陈玉红,王海舟.集合式屑状标准物质校正-激光烧蚀电感耦合等离子体质谱法分析镍基高温合金中痕量元素[J].冶金分析,2010,30(3):1-6.
    吕振生,赵庆令,李清彩,葛童.电感耦合等离子体发射光谱法测定钨矿石中8种成分[J].冶金分析,2010,30(9):47-50.
    侯广顺,张丽娜.ICP-AES法测定铜、铅、锌精粉中的七种伴生元素[J].冶金分析,2010,30(10):47-50.
    袁玄辉,阙松娇,伍新宇,殷宁万.等离子体直读光谱法同时测定岩石中15个痕量稀土元素[J].岩矿测试,1983,2(2):127-129.
  • Related Articles

    [1]Guo-dong XU, Bin JIN, Jian-hua GE, Jun DONG, Jiang CHENG. Determination of Trace Silver in Carbonate Rock Samples by Graphite Furnace Atomic Absorption Spectrometry with Ammonium Oxalate Matrix Modifier[J]. Rock and Mineral Analysis, 2016, 35(2): 134-137. DOI: 10.15898/j.cnki.11-2131/td.2016.02.004
    [2]Hui XIA, Yong-hua ZHANG, Jing-wen LI, Hui-ling YANG, Qian LIANG, Hua-yun HAN. An Improved Method for Determination of Trace Silver in Geochemical Exploration Samples by Graphite Furnace Atomic Absorption Spectrometry[J]. Rock and Mineral Analysis, 2013, 32(1): 48-52.
    [3]YAO Chao-ying, REN Lan. Determination of Beryllium in Soils by Graphite Furnace Atomic Absorption Spectrometry with Palladium Chloride as a Matrix Modifier[J]. Rock and Mineral Analysis, 2012, 31(6): 975-979.
    [4]WU Zheng, MU Nai-cang, WANG Long-shan, ZHANG Fei-ge, GAO Deng-feng, WANG Guang-zhao. Determination of Trace Cadmium in Geological Samples by Rapid Temperature Programming-Graphite Furnace Atomic Absorption Spectrometry[J]. Rock and Mineral Analysis, 2011, 30(2): 186-189.
    [5]YANG Xiaoli, WANG Dimin, TANG Zhiyong. Determination of Micro-amount of Lead and Chromium in Phosphate Ores by Graphite Furnace-Atomic Absorption Spectrometry[J]. Rock and Mineral Analysis, 2010, 29(1): 51-54.
    [6]Determinations of Micro-amount of Silver in Geochemical Exploration Samples by Graphite Furnace Atomic Absorption Spectrometry in Thiourea Medium[J]. Rock and Mineral Analysis, 2008, 27(3): 237-238.
    [7]Determination of Water-soluble Ca and Mg in Soils by High-resolution Continuum Source Atomic Absorption Spectrometry[J]. Rock and Mineral Analysis, 2008, 27(2): 95-98.
    [8]Micro-hydride Generation Apparatus and Its Application in Determination of Mercury by Cold Atomic Absorption Spectromphotometry[J]. Rock and Mineral Analysis, 2008, 27(1): 69-70.
    [9]Uncertainty Evaluation of Measurement Results for the Determination of Cadmium in Soil Samples by Graphite Furnace Atomic Absorption Spectrometry[J]. Rock and Mineral Analysis, 2007, 26(1): 51-54.
    [10]Direct Determination of Trace Lead in Amber by Graphite Furnace Atomic Absorption Spectrometry with Slurry Sampling[J]. Rock and Mineral Analysis, 2003, (3): 228-230.

Catalog

    Article views (2105) PDF downloads (1397) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return