Yu WANG, Li-hua WANG, Jian-qiang WANG, Zheng JIANG, Chan JIN, Yan-fei WANG. Investigation of Organic Matter Pore Structures of Shale in Three Dimensions of Shale Using Nano-X-ray Microscopy[J]. Rock and Mineral Analysis, 2017, 36(6): 563-573. DOI: 10.15898/j.cnki.11-2131/td.201703240038
Citation: Yu WANG, Li-hua WANG, Jian-qiang WANG, Zheng JIANG, Chan JIN, Yan-fei WANG. Investigation of Organic Matter Pore Structures of Shale in Three Dimensions of Shale Using Nano-X-ray Microscopy[J]. Rock and Mineral Analysis, 2017, 36(6): 563-573. DOI: 10.15898/j.cnki.11-2131/td.201703240038

Investigation of Organic Matter Pore Structures of Shale in Three Dimensions of Shale Using Nano-X-ray Microscopy

More Information
  • Received Date: March 23, 2017
  • Revised Date: August 19, 2017
  • Accepted Date: October 19, 2017
  • Published Date: October 31, 2017
  • Highlights
    · The three dimensional pore structure of shale was comparatively investigated using nano-scale synchrontron radiation CT and laboratory CT.
    · Synchrontron radiation CT and laboratory CT show a similar law of pore size distribution but obvious deviations considering the exact figures.
    · Problems of threshold partition and small scan view can be improved by reconstruction algorithm, 3D data analysis and representative elementary volume.
    Three dimensional (3D) structures of nanometer scale pores is a determining factor for the shale gas micro-seepage mechanism, and it is a critical issue needing to be solved urgently to develop a better model for the description of flow behavior in shale. In this study, 3D structure of the OM pores of the Longmaxi formation shale sample (Φ=7 μm) from the Sichuan basin was rebuilt using synchrontron radiation CT and experimental CT respectively. The purpose of the study was to compare the pore structural parameters obtained from the radiation CT and experimental CT. The results indicate:(1) The OM pores, with a porosity of about 60%, exhibit a honeycomb pattern and good connectivity. The pore size distribution exhibits a bimodal pattern, mainly concentrating in 60-150 nm and 500-1400 nm, and pores with diameters larger than 500 nm contribute the most to the total porosity. (2) The porosity and the total pore number obtained from synchrontron radiation CT and experimental CT remain consistent within the accepted margin of error, but the total throat number and throat diameters obtained from the second method above suggest a relatively large difference. Although the pore size distribution and coordination number distribution laws are similar, there are obvious deviations considering the exact figures. (3) For 3D characterization of shale pore structures using nanometer CT, there are problems of threshold partition and small scan view. The problems can be reduced by three plans starting with reconstruction algorithm, 3D data analysis and REV.

  • Loucks R G, Reed R M, Ruppel S C, et al.Spectrum of pore types for matrix-related mud pores[J].AAPG Bulletin, 2012, 96(6):1071-1098. doi: 10.1306/08171111061
    Pommer M, Milliken K.Pore types and pore-size distri-butions across thermal maturity, Eagle Ford formation, Southern Texas[J].AAPG Bulletin, 2015, 99(9):1713-1744. doi: 10.1306/03051514151
    邹才能, 朱如凯, 白斌, 等.中国油气储层中纳米孔首次发现及其科学价值[J].岩石学报, 2011, 27(6):1857-1864. http://d.wanfangdata.com.cn/Periodical/ysxb98201106024

    Zou C N, Zhu R K, Bai B, et al.First discovery of nano-pore throat in oil and gas reservoir in China and its scientific value[J].Acta Petrologica Sinica, 2011, 27(6):1857-1864. http://d.wanfangdata.com.cn/Periodical/ysxb98201106024
    张东晓, 杨婷云, 吴天昊, 等.页岩气开发机理和关键问题[J].科学通报, 2016, 61(1):62-71. http://www.cqvip.com/QK/94252X/201601/667877157.html

    Zhang D X, Yang T Y, Wu T H, et al.Recovery mechanisms and key issues in shale gas development[J].Chinese Science Bulletin, 2016, 61(1):62-71. http://www.cqvip.com/QK/94252X/201601/667877157.html
    徐祖新, 郭少斌.基于NMR和X-CT的页岩储层孔隙结构研究[J].地球科学进展, 2014, 29(5):624-631. doi: 10.11867/j.issn.1001-8166.2014.05.0624

    Xu Z X, Guo S B.Application of NMR and X-CT technology in the pore structure study of shale gas reservoirs[J].Advances in Earth Science, 2014, 29(5):624-631. doi: 10.11867/j.issn.1001-8166.2014.05.0624
    吴松涛, 朱如凯, 崔京钢, 等.鄂尔多斯盆地长7湖相泥页岩孔隙演化特征[J].石油勘探与开发, 2015, 42(2):167-176. doi: 10.11698/PED.2015.02.05

    Wu S T, Zhu R K, Cui J G, et al.Characteristics of lacustrine shale porosity evolution, Triassic Chang 7 Member, Ordos Basin, NW China[J].Petroleum Exploration and Development, 2015, 42(2):167-176. doi: 10.11698/PED.2015.02.05
    马勇, 钟宁宁, 程礼军, 等.渝东南两套富有机质页岩的孔隙结构特征——来自FIB-SEM的新启示[J].石油实验地质, 2015, 37(1):109-116. doi: 10.11781/sysydz201501109

    Ma Y, Zhong N N, Cheng L J, et al.Pore structure of two organic-rich shales in Southeastern Chongqing area:Insight from focused ion beam scanning electron microscope (FIB-SEM)[J].Petroleum Geology & Experiment, 2015, 37(1):109-116. doi: 10.11781/sysydz201501109
    黄家国, 许开明, 郭少斌, 等.基于SEM、NMR和X-CT的页岩储层孔隙结构综合研究[J].现代地质, 2015, 29(1):198-205. http://www.cnki.com.cn/Article/CJFDTotal-XDDZ201501024.htm

    Huang J G, Xu K M, Guo S B, et al.Comprehensive study on pore structures of shale reservoirs based on SEM, NMR and X-CT[J].Geoscience, 2015, 29(1):198-205. http://www.cnki.com.cn/Article/CJFDTotal-XDDZ201501024.htm
    Curtis M E, Sondergeld C H, Ambrose R J, et al.Micro-structural investigation of gas shales in two and three dimensions using nanometer-scale resolution imaging[J].AAPG Bulletin, 2012, 96(4):665-677. doi: 10.1306/08151110188
    Wang Y, Pu J, Wang L, et al.Characterization of typical 3D pore networks of Jiulaodong Formation shale using nano-transmission X-ray microscopy[J].Fuel, 2016, 170:84-91. doi: 10.1016/j.fuel.2015.11.086
    Misch D, Mendez-Martin F, Hawranek G, et al.SEM and FIB-SEM investigations on potential gas shales in the Dniepr-Donets Basin (Ukraine):Pore space evolution in organic matter during thermal maturation[J].IOP Conference Series:Materials Science and Engineering, 2016, 109(012010).doi: 10.1088/1757-899X/109/1/012010.
    Ma L, Taylor K G, Lee P D, et al.Novel 3D centimetre-to nano-scale quantification of an organic-rich mudstone:The carboniferous Bowland shale, Northern England[J].Marine and Petroleum Geology, 2016, 72:193-205. doi: 10.1016/j.marpetgeo.2016.02.008
    Jiang F, Chen J, Xu Z, et al.Organic matter pore charac-terization in Lacustrine shales with variable maturity using nanometer-scale resolution X-ray computed tomography[J].Energy & Fuels, 2017, 31(3):2669-2680. https://www.sciencedirect.com/science/article/pii/S0376736196800276
    Zhang H, Zhu Y M, Wang Y, et al.Comparison of org-anic matter occurrence and organic nanopore structure within marine and terrestrial shale[J].Journal of Natural Gas Science and Engineering, 2016, 32:356-363. doi: 10.1016/j.jngse.2016.04.040
    Cao G, Lin M, Jiang W, et al.A 3D coupled model of organic matter and inorganic matrix for calculating the permeability of shale[J].Fuel, 2017, 204:129-143. doi: 10.1016/j.fuel.2017.05.052
    Loucks R G, Reed R M.Scanning-electron-microscope petrographic evidence for distinguishing organic matter pores associated with depositional organic matter versus migrated organic matter in mudrocks[J].Gulf Coast Association of Geological Societies Journal, 2014, 3:51-60. http://www.searchanddiscovery.com/abstracts/html/2014/90196gcags/abstracts/91.html
    Ko L T, Loucks R G, Ruppel S C, et al.Origin and cha-racterization of Eagle Ford pore networks in the South Texas Upper Cretaceous Shelf[J].AAPG Bulletin, 2017, 101(3):387-418. doi: 10.1306/08051616035
    王羽, 金婵, 汪丽华, 等.应用氩离子抛光-扫描电镜方法研究四川九老洞组页岩微观孔隙特征[J].岩矿测试, 2015, 34(3):278-285. doi: 10.15898/j.cnki.11-2131/td.2015.03.003

    Wang Y, Jin C, Wang L H, et al.Characterization of pore structures of Jiulaodong Formation shale in the Sichuan Basin by SEM with Ar-ion milling[J].Rock and Mineral Analysis, 2015, 34(3):278-285. doi: 10.15898/j.cnki.11-2131/td.2015.03.003
    王羽, 金婵, 姜政, 等.渝东五峰组-龙马溪组页岩矿物成分与孔隙特征分析[J].矿物学报, 2016, 36(4):555-562. http://d.wanfangdata.com.cn/Periodical/kwxb201604016

    Wang Y, Jin C, Jiang Z, et al.Mineral composition and microscopic pore characteristics of Wufeng-Longmaxi Formation shale in Eastern Chongqing City, China[J].Acta Geologica Sinica, 2016, 36(4):555-562. http://d.wanfangdata.com.cn/Periodical/kwxb201604016
    Klaver J, Desbois G, Littke R, et al.BIB-SEM characteri-zation of pore space morphology and distribution in postmature to overmature samples from the Haynesville and Bossier shales[J].Marine and Petroleum Geology, 2015, 59:451-466. doi: 10.1016/j.marpetgeo.2014.09.020
    Klaver J, Desbois G, Littke R, et al.BIB-SEM pore char-acterization of mature and post mature Posidonia shale samples from the Hils area, Germany[J].International Journal of Coal Geology, 2016, 158:78-89. doi: 10.1016/j.coal.2016.03.003
    Zou C, Du J, Xu C, et al.Formation, distribution, resou-rce potential, and discovery of Sinian-Cambrian giant gas field, Sichuan Basin, SW China[J].Petroleum Exploration and Development, 2014, 41(3):306-325. doi: 10.1016/S1876-3804(14)60036-7
    Hu H, Hao F, Lin J, et al.Organic matter-hosted pore system in the Wufeng-Longmaxi (O3w-S11) shale, Jiaoshiba area, Eastern Sichuan Basin, China[J].International Journal of Coal Geology, 2017, 173:40-50. doi: 10.1016/j.coal.2017.02.004
    Michael U, Dennis D, Jeffrey F, et al.Sample dimensions influence strength and crystal plasticity[J].Science, 2004, 305(5686):986-989. doi: 10.1126/science.1098993
    Song Y F, Chang C H, Liu C Y, et al.X-ray beamlines for structural studies at the NSRRC superconducting wavelength shifter[J].Journal of Synchrotron Radiation, 2007, 14(4):320-325. doi: 10.1107/S0909049507021516
    Kak A C, Slaney M, Wang G.Principles of computerized tomographic imaging[J].Medical Physics, 2002, 29(1):105-108. doi: 10.1118/1.1429627
    Oh W, Lindquist W B.Image thresholding by indicator Kriging[J].Ieee Transactions on Pattern Analysis and Machine Intelligence, 1999, 21(7):590-602. doi: 10.1109/34.777370
    王羽, 金婵, 汪丽华, 等.基于SEM图像灰度水平的页岩孔隙分割方法研究[J].岩矿测试, 2016, 35(6):35-41. doi: 10.15898/j.cnki.11-2131/td.2016.06.005

    Wang Y, Jin C, Wang L H, et al.Pore segmentation methods based on gray scale of SEM images[J].Rock and Mineral Analysis, 2016, 35(6):35-41. doi: 10.15898/j.cnki.11-2131/td.2016.06.005
    Slatt R M, O'brien N R.Pore types in the Barnett and Woodford gas shales:Contribution to understanding gas storage and migration pathways in fine-grained rocks[J].AAPG Bulletin, 2011, 95(12):2017-2030. doi: 10.1306/03301110145
    Rabbani A, Baychev T G, Ayatollahi S, et al.Evolution of pore-scale morphology of oil shale during pyrolysis:A quantitative analysis[J].Transport in Porous Media, 2017, 119(1):143-162. doi: 10.1007/s11242-017-0877-1
    Chen Y Y, Mastalerz M, Schimmelmann A.heterogeneity of shale documented by micro-FTIR and image analysis[J].Journal of Microscopy, 2014, 256(3):177-189. doi: 10.1111/jmi.12169
    王香增, 张丽霞, 高潮.鄂尔多斯盆地下寺湾地区延长组页岩气储层非均质性特征[J].地学前缘, 2016, 23(1):134-145. http://www.doc88.com/p-1354528853840.html

    Wang X Z, Zhang L X, Gao C.The heterogeneity of lacustrine shale gas reservoir in Yanchang Formation, Xiasiwan area, Ordos Basin[J].Earth Science Frontiers, 2016, 23(1):134-145. http://www.doc88.com/p-1354528853840.html
    Wang Y, Luo S, Wang L, et al.Synchrotron radiation-based L1-norm regularization on micro-CT imaging in shale structure analysis[J].Journal of Inverse and Ill-posed Problems, 2017, 25(4):483-498. https://www.researchgate.net/publication/309171769_Synchrotron_radiation-based_l_1-norm_regularization_on_micro-CT_imaging_in_shale_structure_analysis
    Chen R, Dreossi D, Mancini L, et al.PITRE:Software for phase-sensitive X-ray image processing and tomography reconstruction[J].Journal of Synchrotron Radiation, 2012, 19(5):836-845. doi: 10.1107/S0909049512029731
    Gitman I M, Askes H, Sluys L J.Representative volume:Existence and size determination[J].Engineering Fracture Mechanics, 2007, 74(16):2518-2534. doi: 10.1016/j.engfracmech.2006.12.021
  • Related Articles

    [1]SHI Youchang, CHEN Guiren, ZHAO Mengsheng, LYU Zhenlong, YANG Jinguo. Determination of Sulfur in Different Types of Geochemical Samples by ICP-OES with Acid Dissolution and Combustion-Infrared Absorption Spectrometry[J]. Rock and Mineral Analysis, 2022, 41(4): 663-672. DOI: 10.15898/j.cnki.11-2131/td.202108200104
    [2]LIU Bing-quan, SHA Min, XIE Chang-yu, ZHOU Qiang-qiang, WEI Xing-xing, ZHOU Fan. Geochemical Characteristics of Soil Selenium and Influencing Factors of Selenium Bioavailability in Rice Root Soils in Qingxi Area, Ganxian County, Jiangxi Province[J]. Rock and Mineral Analysis, 2021, 40(5): 740-750. DOI: 10.15898/j.cnki.11-2131/td.202107230082
    [3]Jun WANG, Di WANG, Chang-sheng DENG, Jian-mei ZHANG, Dong YANG, Bin-tang WANG, Su-xia ZHU. Determination of Thorium in Geochemical Samples by Inductively Coupled Plasma-Atomic Emission Spectrometry[J]. Rock and Mineral Analysis, 2014, 33(4): 501-505.
    [4]Zhi-fei ZHAO, Hui YAN, Lan YAO, Jin-dong FANG, Xing-min TANG. Application of Normal Distribution to Estimate the Quality of Regional Geochemical Survey Samples[J]. Rock and Mineral Analysis, 2013, 32(1): 96-100.
    [5]ZHAO Yu-yan, LU Ji-long, HAO Li-bo, SUN Li-ji, WANG Lian-he. Management and Quality Control System for Geochemical Sample Analysis Based on Network[J]. Rock and Mineral Analysis, 2010, 29(6): 727-732.
    [6]JIANG Hong. Quantitative Assessment Method for the Similarity of Geochemical Maps[J]. Rock and Mineral Analysis, 2010, 29(1): 23-28.
    [7]Geochemical Zoning Based on Agricultural Environmental Quality in the Poyang Lake Area[J]. Rock and Mineral Analysis, 2008, 27(4): 269-273.
    [8]Discussion of Quality Control Method for the Analysis of Samples in Regional Geochemical Survey[J]. Rock and Mineral Analysis, 2004, (2): 137-142147.
    [9]The Quality Management System for Analytical Data of the Geochemical Samples[J]. Rock and Mineral Analysis, 2003, (3): 211-216.
    [10]The Geochemical Characteristics of Water Body in Miyun Reservoir[J]. Rock and Mineral Analysis, 2003, (1): 44-48.
  • Cited by

    Periodical cited type(8)

    1. 王小花,黄韡,顾培良,李静,周佳. 基于自动顶空-固相微萃取-气相色谱质谱检测葡萄酒中的9种木塞污染物. 食品科技. 2024(08): 322-328 .
    2. 吴悦,赖永忠,陆国永,林晓昇,梁树生,许文帅. 顶空/气相色谱-质谱法同时测定印染废水中吡啶、苯胺和硝基苯. 岩矿测试. 2023(04): 781-792 . 本站查看
    3. 陶慧,黄理金,欧阳磊,帅琴. 氨基化共价有机骨架固相微萃取涂层用于水体中酚类的高效萃取. 岩矿测试. 2022(06): 1040-1049 . 本站查看
    4. 黄百祺,沈丹妮,王如意,李双林,林焕怡,李咏梅. 不同萃取头分析大高良姜挥发性成分效果比较. 中成药. 2021(06): 1656-1662 .
    5. 赵佳平,王俊霞,刘婷婷,张占恩. 含铁二氧化硅涂层固相微萃取-GC/MS法测定水中的有机磷阻燃剂. 现代化工. 2021(09): 235-240 .
    6. 梁淼,杨艳,石嘉悦,汪兴平,郑福平,余爱农. 酶/酸水解毛叶木姜子中键合态香味成分的比较. 精细化工. 2020(05): 989-996 .
    7. 孙书堂,严倩,黎宁,黄理金,帅琴. 铁丝原位自转化-固相微萃取新涂层应用于萃取环境水样中多环芳烃的性能研究. 岩矿测试. 2020(03): 408-416 . 本站查看
    8. 杨洪早,李锦宇,王东升,张世栋,董书伟,闫宝琪,那立冬,吴春丽,邓俊,吴冠连,陈新丽,赵留涛,朱凯,梁永喜,严作廷. GC法测定马香苓口服液中百秋李醇含量研究. 中国畜牧兽医. 2020(07): 2264-2276 .

    Other cited types(3)

Catalog

    Article views (9067) PDF downloads (59) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return