WANG Li-qiang, TANG Ju-xing, WANG Huan, LI Chao, LUO Bing-xue. Geological Characteristics and Re-Os Dating of the Hahaigang W-Mo Polymetallic Deposit, Tibet[J]. Rock and Mineral Analysis, 2012, 31(1): 113-119.
Citation: WANG Li-qiang, TANG Ju-xing, WANG Huan, LI Chao, LUO Bing-xue. Geological Characteristics and Re-Os Dating of the Hahaigang W-Mo Polymetallic Deposit, Tibet[J]. Rock and Mineral Analysis, 2012, 31(1): 113-119.

Geological Characteristics and Re-Os Dating of the Hahaigang W-Mo Polymetallic Deposit, Tibet

More Information
  • Received Date: August 21, 2011
  • The Hahaigang W-Mo polymetallic deposit in Maizhokunggar County, Tibet, is a tungsten and molybdenum polymetallic deposit, which is the first one to be explored in the Nyainqentanglha metallogenic belt. The basic geological characteristics of this deposit have been briefly presented in this paper. The mineralization age of this deposit has been obtained by using Re-Os isotopic dating methods. The Re-Os model ages of the two molybdenite samples from the Hahaigang skarn-type W-Mo orebody are (140.1±2.8) Ma and (143.3±5.2) Ma, with an average age of (141.7±4) Ma. Dating results showed that the ore-forming age of this deposit is Early Cretaceous, and was probably the product of mineralization during the southward subduction and collision stage of the Bangong—Nujiang oceanic crust. The model age is earlier than the diagenetic age (about 126 Ma) of quartz porphyries from the Yaguila deposit and Dongzhongla deposit on its eastern side. The definition of this deposit's mineralization age has enriched the metallogenic series of the Gangdise—Nyainqentanglha metallogenic belt, indicating the fact of Early Cretaceous mineralization and at least four stages of molybdenum mineralization existing in the Gangdise metallogenic belt. Meanwhile, it has great significance on the study of regional magmatic evolution and mineralization, as well as on the regional prospecting prognosis.
  • 唐菊兴,李志军,多吉,郎兴海,黄勇,张金树,刘鸿飞,张丽,陈渊.西藏雄村铜金矿集区纽通门铜金矿床找矿勘查取得突破[J].矿床地质,2010,29(4):727-729.
    郑有业,薛迎喜,程力军,樊子珲,高顺宝.西藏驱龙超大型斑岩铜(钼)矿床:发现、特征及意义[J].地球科学,2004, 29(1): 103-108.
    唐菊兴,邓世林,郑文宝,应立娟,汪雄武,钟康惠,秦志鹏,丁枫,黎枫佶,唐晓倩,钟裕峰,彭慧娟.西藏墨竹工卡县甲玛铜多金属矿床勘查模型[J].矿床地质,2011, 30(2): 179-194.
    王登红,唐菊兴,应立娟,芮宗瑶,郑文宝.甲玛与世界级铜矿的初步对比及下一步找矿工作建议[J].矿床地质,2011, 30(2):197-205.
    王立强,唐菊兴,陈毓川,罗茂澄,冷秋锋,陈伟,王焕.西藏邦铺钼(铜)矿床含矿二长花岗斑岩LA-ICP-MS锆石U-Pb定年及地质意义[J].矿床地质,2011, 30(2): 349-358.
    李光明,刘波,屈文俊,林方成,佘宏全,丰成友.西藏冈底斯成矿带的斑岩-矽卡岩成矿系统:来自斑岩矿床和矽卡岩型铜多金属矿床的Re-Os同位素年龄证据[J].大地构造与成矿学,2005, 29(4):482-490.
    杜安道,何红蓼,殷宁万,邹晓秋,孙亚莉,孙德忠,陈少珍,屈文俊.辉钼矿的铼-锇同位素地质年龄测定方法研究[J].地质学报,1994,68(4):339-347.
    杜安道,赵敦敏,王淑贤,孙德忠,刘敦一. Carius管溶样和负离子热表面电离质谱准确测定辉钼矿铼-锇同位素地质年龄[J].岩矿测试,2001,20(4):247-252.
    Du A D, Wu S Q, Sun D Z, Wang S X, Qu W J, Richard M H S, John M, Dmitry M. Preparation and certification of Re-Os dating reference materials: Molybdenite HLP and JDC[J]. Geostandard and Geoanalytical Research, 2004, 28(1): 41-52.

    Du A D, Wu S Q, Sun D Z, Wang S X, Qu W J, Richard M H S, John M, Dmitry M. Preparation and certification of Re-Os dating reference materials: Molybdenite HLP and JDC[J]. Geostandard and Geoanalytical Research, 2004, 28(1): 41-52.
    杜安道,屈文俊,李超,杨刚.铼锇同位素定年方法及分析测试技术的进展[J].岩矿测试,2009, 28(3):288-304.
    McCandless T E, Ruiz J R, Canpbell A R. Rhenium behavior in molybdenite in hypogene and near-surface environments: Implications for Re-Os geochronometry[J].Geochimica et Cosmochimica Acta,1993,57:889-905.

    McCandless T E, Ruiz J R, Canpbell A R. Rhenium behavior in molybdenite in hypogene and near-surface environments: Implications for Re-Os geochronometry[J].Geochimica et Cosmochimica Acta,1993,57:889-905.
    祝向平,陈华安,马东方,黄瀚宵,李光明,李玉彬,李玉昌.西藏波龙斑岩铜金矿床的Re-Os同位素年龄及其地质意义[J].岩石学报,2011, 27(7): 2159-2163.
    唐菊兴,陈毓川,王登红,王成辉,许远平,屈文俊,黄卫,黄勇.西藏工布江达县沙让斑岩钼矿床辉钼矿铼-锇同位素年龄及其地质意义[J].地质学报,2009, 83(5): 698-702.
    王保弟,许继峰,陈建林,张兴国,王立全,夏抱本.冈底斯东段汤不拉斑岩Mo-Cu矿床成岩成矿时代与成因研究[J].岩石学报,2010, 26(6): 1820-1830.
    应立娟,王登红,唐菊兴,畅哲生,屈文俊,郑文宝,王焕.西藏甲玛铜多金属矿辉钼矿Re-Os定年及其成矿意义[J].地质学报,2010, 84(8): 1165-1173.
    应立娟,唐菊兴,王登红,畅哲生,屈文俊,郑文宝.西藏甲玛铜多金属矿床矽卡岩中辉钼矿铼-锇同位素定年及其成矿意义[J].岩矿测试,2009, 28(3): 265-268.
    李光明,杨家瑞,丁俊.西藏雅鲁藏布江成矿区矿产资源评价新进展[J].地质通报,2003,22(9):699-703.
    孟祥金,侯增谦,高永丰,黄卫,曲晓明,屈文俊.西藏冈底斯成矿带驱龙斑岩铜矿Re-Os年龄及其成矿意义[J].地质论评,2003, 49(6): 660-664.
    王亮亮,莫宣学,李冰,董国臣,赵志丹.西藏驱龙斑岩铜矿含矿斑岩的年代学与地球化学[J].岩石学报,2006, 22(4): 1001-1008.
    闫学义,黄树峰,杜安道.冈底斯泽当大型钨铜钼矿Re-Os年龄及陆缘走滑转换成矿作用[J].地质学报,2010, 84(3): 398-405.
    高一鸣,陈毓川,唐菊兴,李超,李新法,高明,蔡志超.西藏工布江达地区亚贵拉铅锌钼矿床辉钼矿Re-Os测年及其地质意义[J].地质通报,2011,30(7):1027-1035.
    朱弟成,潘桂棠,王立全,莫宣学,赵志丹,周长勇,廖忠礼,董国臣,袁四化.西藏冈底斯带中生代岩浆岩的时空分布和相关问题的讨论[J].地质通报,2008,27(9):1535-1547.
    Zhu D C, Zhao Z D, Niu Y L, Mo X X, Chung S L, Hou Z Q, Wang, L Q, Wu F Y. The Lhasa Terrane: Record of a microcontinet and its histories of drift and growth[J].Earth and Planetary Science Letters,2011,301:241-255.

    Zhu D C, Zhao Z D, Niu Y L, Mo X X, Chung S L, Hou Z Q, Wang, L Q, Wu F Y. The Lhasa Terrane: Record of a microcontinet and its histories of drift and growth[J].Earth and Planetary Science Letters,2011,301:241-255.
    唐菊兴,黄勇,李志军,邓起,郎兴海,陈渊,张丽.西藏谢通门县雄村铜金矿床元素地球化学特征[J].矿床地质,2009, 28(1): 15-26.
    侯增谦,莫宣学,杨志明,王安建,潘桂棠,曲晓明,聂凤军.青藏高原碰撞造山带成矿作用:构造背景、时空分布和主要类型[J].中国地质,2006,33(2):340-347.
    侯增谦,杨竹森,徐文艺,莫宣学,丁林,高永丰,董方浏,李光明,曲晓明,李光明,赵志丹,江思宏,孟祥金,李振清,秦克章,杨志明. 青藏高原碰撞造山带:Ⅰ.主碰撞造山成矿作用[J].矿床地质,2006, 25(4): 337-358.
    侯增谦,潘桂棠,王安建,莫宣学,田世洪,孙晓明,丁林,王二七,高永丰,谢玉玲,曾普胜,秦克章,许继峰,曲晓明,杨志明,杨竹森,费红彩,孟祥金,李振清.青藏高原碰撞造山带:Ⅱ.晚碰撞转换成矿作用[J]. 矿床地质,2006,25(5):521-543.
    侯增谦,赵志丹,高永丰,杨志明,江万.印度大陆板片前缘撕裂与分段俯冲:来自冈底斯新生代火山——岩浆作用证据[J].岩石学报,2006, 22(4):761-774.
    侯增谦,曲晓明,杨竹森,孟祥金,李振清,杨志明,郑绵平,郑有业,聂凤军,高永丰,江思宏,李光明.青藏高原碰撞造山带:Ⅲ. 后碰撞伸展成矿作用[J].矿床地质,2006,25(6):629-651.
  • Related Articles

    [1]Yu-chun LIU, Qing-wen LIN, Ling MA, Shu-ting LIANG. Optimization of Measurement Conditions for Geochemical Survey Sample Analysis by X-ray Fluorescence Spectrometry with Pressed Powder Pellet Sample Preparation[J]. Rock and Mineral Analysis, 2018, 37(6): 671-677. DOI: 10.15898/j.cnki.11-2131/td.201801300014
    [2]Yong-li FU, Wen-cui CHENG, Zhao-fa ZHANG, Li WEI, Meng-hua SUN, Xue-min PANG. Evaluation in the Application of Multi-instrument Synergy X-ray Fluorescence Spectrometry in a Regional Geochemical Survey[J]. Rock and Mineral Analysis, 2017, 36(5): 495-500. DOI: 10.15898/j.cnki.11-2131/td.201703070028
    [3]MA Tian-fang, LI Xiao-li, CHEN Yong-jun, DENG Zhen-pin, LI Guo-hui. Interchangeable Analysis of Method on the X-ray Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2011, 30(4): 486-490.
    [4]Determination of Mo,Pb,Fe and Cu in Molybdenum Ores by Energy-dispersive X-ray Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2008, 27(3): 235-236.
    [5]Simultaneous Determination of Major, Minor and Trace Components in Limestone Samples by X-ray Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2008, 27(2): 149-150.
    [6]X-ray Fluorescence Spectrometric Analysis of Major Components in Bauxite Samples[J]. Rock and Mineral Analysis, 2008, 27(1): 71-73.
    [7]Determination of Cl, S, N, P, K, Cu, Zn and Br in Biological Samples by X-ray Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2008, 27(1): 41-44.
    [8]X-ray Fluorescence Spectrometric Analysis of Wollastonite[J]. Rock and Mineral Analysis, 2007, 26(3): 245-247.
    [9]Quantitative Analysis of Valences for Manganese in Cobalt-rich Crust Samples from the Central Pacific Ocean by X-ray Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2007, 26(2): 97-100.
    [10]The Application of Chemometrics to X_Ray Fluorescence Analysis[J]. Rock and Mineral Analysis, 1997, (2): 128-137.

Catalog

    Article views (2075) PDF downloads (1598) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return