• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
Yu-chun LIU, Qing-wen LIN, Ling MA, Shu-ting LIANG. Optimization of Measurement Conditions for Geochemical Survey Sample Analysis by X-ray Fluorescence Spectrometry with Pressed Powder Pellet Sample Preparation[J]. Rock and Mineral Analysis, 2018, 37(6): 671-677. DOI: 10.15898/j.cnki.11-2131/td.201801300014
Citation: Yu-chun LIU, Qing-wen LIN, Ling MA, Shu-ting LIANG. Optimization of Measurement Conditions for Geochemical Survey Sample Analysis by X-ray Fluorescence Spectrometry with Pressed Powder Pellet Sample Preparation[J]. Rock and Mineral Analysis, 2018, 37(6): 671-677. DOI: 10.15898/j.cnki.11-2131/td.201801300014

Optimization of Measurement Conditions for Geochemical Survey Sample Analysis by X-ray Fluorescence Spectrometry with Pressed Powder Pellet Sample Preparation

More Information
  • Received Date: January 29, 2018
  • Revised Date: July 29, 2018
  • Accepted Date: August 09, 2018
  • Published Date: October 31, 2018
  • HIGHLIGHTS
    (1) The optimal measurement scheme was established for XRF determination of geochemical survey samples.
    (2) The accuracy of the method was proved to meet the quality control requirements of geochemical survey samples.
    (3) The method provided basic data for formulating the local standard on analysis of regional geochemical survey samples.
    BACKGROUNDPowder compaction is a widely used sample preparation method for X-ray Fluorescence Spectrometry. However, due to the existence of mineral and matrix effects, the measurement conditions should be optimized.
    OBJECTIVESTo measure 24 major and minor elements in geochemical survey samples.
    METHODSThe ZSX Primus Ⅱ type Wavelength Dispersive X-ray Fluorescence Spectrometer was used to determine the optimum experimental conditions, such as sample preparation pressure, working voltage and current of the instrument, spectral lines of the elements to be measured and the efficiency of the detector. The optimum experimental conditions were verified by analyzing the National Standard Materials (GBW07402, GBW07404, GBW07424, GBW07426, and GBW07429).
    RESULTSAccording to the optimum experimental conditions, the National Standard Materials of soil and stream sediments are analyzed. Individual elements such as Na2O in GBW07402 and Pb in GBW07404 have relative errors greater than 10%, and other elements have relative errors less than 10%. The relative errors meet the quality control requirements of geochemical survey samples.
    CONCLUSIONSThe requirement of data quality monitoring has been achieved for the analysis of geochemical survey samples and the optimized instrument measurement conditions provide reliable basic data for such samples in China.
  • Owoade O K, Olise F S, Olaniyi H B, et al.Model esti-mated uncertainties in the calibration of a total reflection X-ray fluorescence spectrometer using single-element standards[J].X-Ray Spectrometry, 2010, 35(4):249-252.
    Manninen S.Compton scattering:Present status and fu-ture[J].Journal of Physics and Chemistry of Solids, 2000, 61(3):335-340. doi: 10.1016/S0022-3697(99)00312-1
    Nie H, Chettle D, Stronach I, et al.A study of MDL improvement for the in vivo measurement of lead in bone[J].Nuclear Instruments and Methods in Physics Research, 2004, 213:579-583. doi: 10.1016/S0168-583X(03)01675-6
    于波, 严志远, 杨乐山, 等.X射线荧光光谱法测定土壤和水系沉积物中碳和氮等36个主次痕量元素[J].岩矿测试, 2006, 25(1):74-78. doi: 10.3969/j.issn.0254-5357.2006.01.018

    Yu B, Yan Z Y, Yang L S, et al.Determination of 36 major, minor and trace elements in soil and stream sediment samples by X-ray fluorescence spectrometry[J].Rock and Mineral Analysis, 2006, 25(1):74-78. doi: 10.3969/j.issn.0254-5357.2006.01.018
    徐海, 刘琦, 王龙山.X射线荧光光谱法测定土壤样品中碳氮硫氯等31种组分[J].岩矿测试, 2007, 26(6):490-492. doi: 10.3969/j.issn.0254-5357.2007.06.014

    Xu H, Liu Q, Wang L S.Determination of 31 components in soil samples by X-ray fluorescence spectrometry[J].Rock and Mineral Analysis, 2007, 26(6):490-492. doi: 10.3969/j.issn.0254-5357.2007.06.014
    张勤, 樊守忠, 潘宴山, 等.X射线荧光光谱法测定多目标地球化学调查样品中主次痕量组分[J].岩矿测试, 2004, 23(1):19-24. doi: 10.3969/j.issn.0254-5357.2004.01.005

    Zhang Q, Fan S Z, Pan Y S, et al.Determination of 25 major, minor and trace elements in geochemical exploration samples by X-ray fluorescence spectrometry[J].Rock and Mineral Analysis, 2004, 23(1):19-24. doi: 10.3969/j.issn.0254-5357.2004.01.005
    Luo L, Chettle D R, Nie H, et al.Curve fitting using a genetic algorithm for the X-ray fluorescence measurement of lead in bone[J].Journal of Radioanalytical and Nuclear Chemistry, 2006, 269(2):325-329. doi: 10.1007/s10967-006-0386-0
    岩石矿物分析编委会.岩石矿物分析(第四版 第一分册)[M].北京:地质出版社, 2011:605-622.

    The Editorial Committee of Rock and Mineral Analysis.Rock and Mineral Analysis (Fourth Edition:VolumeⅠ)[M].Beijing:Geological Publishing House, 2011:605-622.
    王祎亚, 詹秀春, 樊兴涛, 等.粉末压片-X射线荧光光谱法测定地质样品中痕量硫的矿物效应佐证实验及其应用[J].冶金分析, 2010, 30(1):7-11. doi: 10.3969/j.issn.1000-7571.2010.01.002

    Wang Y Y, Zhan X C, Fan X T, et al.Experimental evidence of mineralogical effects on the determination of trace sulfur in geological samples by X-ray fluorescence spectrometry with pressed powder pellet sample preparation and its application[J].Metallurgical Analysis, 2010, 30(1):7-11. doi: 10.3969/j.issn.1000-7571.2010.01.002
    王晓红, 何红蓼, 王毅民, 等.超细样品的地质分析应用[J].分析测试学报, 2010, 29(6):578-583. http://d.old.wanfangdata.com.cn/Periodical/fxcsxb201006010

    Wang X H, He H L, Wang Y M, et al.Geological techniques using ultrafine samples[J].Journal of Instrumental Analysis, 2010, 29(6):578-583. http://d.old.wanfangdata.com.cn/Periodical/fxcsxb201006010
    陈静, 高志军, 陈冲科, 等.X射线荧光光谱法分析地质样品的应用技巧[J].岩矿测试, 2015, 34(1):91-98. doi: 10.15898/j.cnki.11-2131/td.2015.01.012

    Chen J, Gao Z J, Chen C K, et al.Application skills on determination of geological sample by X-ray fluorescence spectrometry[J].Rock and Mineral Analysis, 2015, 34(1):91-98. doi: 10.15898/j.cnki.11-2131/td.2015.01.012
    郑存江.地质标准物质不确定度评估方法初探[J].岩矿测试, 2005, 24(4):284-286. doi: 10.3969/j.issn.0254-5357.2005.04.010

    Zheng C J.Primary investigation for evaluation of uncertainty of geological reference materials[J].Rock and Mineral Analysis, 2005, 24(4):284-286. doi: 10.3969/j.issn.0254-5357.2005.04.010
    张荣, 张玉钧, 章炜, 等.土壤重金属铅元素的X射线荧光光谱测量分析[J].光谱学与光谱分析, 2013, 33(2):554-557. doi: 10.3964/j.issn.1000-0593(2013)02-0554-04

    Zhang R, Zhang Y J, Zhang W, et al.Spectrometry and analysis of lead in soil using X-ray fluorescence spectrometry[J].Spectroscopy and Spectral Analysis, 2013, 33(2):554-557. doi: 10.3964/j.issn.1000-0593(2013)02-0554-04
    Rousseau R M.Corrections for matrix effects in X-ray fluorescence analysis-A tutorial[J].Spectrochimica Acta Part B:Atomic Spectroscopy, 2006, 61(7):759-777. doi: 10.1016/j.sab.2006.06.014
    胡波, 武晓梅, 余韬, 等.X射线荧光光谱仪的发展及应用[J].核电子学与探测技术, 2015(7):695-702. doi: 10.3969/j.issn.0258-0934.2015.07.012

    Hu B, Wu X M, Yu T, et al.The development and application of X-ray fluorescence spectrometer[J].Nuclear Electronics and Detection Technology, 2015(7):695-702. doi: 10.3969/j.issn.0258-0934.2015.07.012
    周国兴, 赵恩好, 岳明新, 等.X射线荧光光谱仪及其分析技术的发展[J].当代化工, 2013(8):1169-1172. doi: 10.3969/j.issn.1671-0460.2013.08.047

    Zhou G X, Zhao E H, Yue M X, et al.Development of X-ray fluorescence spectrometer and its analysis technology[J].Contemporary Chemical Industry, 2013(8):1169-1172. doi: 10.3969/j.issn.1671-0460.2013.08.047
    罗立强, 詹秀春, 李国会.X射线荧光光谱仪[M].北京:化学出版社, 2008:162-165.

    Luo L Q, Zhan X C, Li G H.X-ray Fluorescence Spectrometer[M].Beijing:Chemical Industry Press, 2008:162-165.
  • Cited by

    Periodical cited type(19)

    1. 张敏,甘黎明,冯博鑫,门倩妮,王啸,廖彬膑,王鹏. 熔融制样-X射线荧光光谱法测定铁矿石中铁、硅、铝. 中国无机分析化学. 2025(02): 249-256 .
    2. 王顺祥,王睿,帅林阳,王立华,魏巍,卜道露,丁洋. X射线荧光光谱法同时测定泥岩中26种组分. 中国无机分析化学. 2025(04): 506-514 .
    3. 乔浩,王明力,邓长生,王斌堂,李鹏飞. 纤维素衬层压片-X射线荧光光谱法测定砂岩型铀矿中9种主次元素. 中国无机分析化学. 2024(04): 443-449 .
    4. 董铮,王琳,田芳,陆鸿飞. 荧光探针PTAID固态试纸法测定土壤中Pd~(2+)和Cu~(2+)的比较研究. 环境监控与预警. 2024(02): 53-58 .
    5. 金一,安帅,宋丽华. X射线衍射和X射线荧光技术在泥土物证分析中的应用. 化学研究与应用. 2024(08): 1759-1766 .
    6. 张涛,陈朝阳,陈景伟. 粉末压片-能量色散X射线荧光光谱法测定多金属矿石中锡. 冶金分析. 2023(02): 23-30 .
    7. 王晨希. X射线荧光光谱法测定农田底泥中8种元素. 化学分析计量. 2022(02): 40-44 .
    8. 李迎春,张磊,尚文郁. 粉末压片-X射线荧光光谱法分析富硒土壤样品中的硒及主次量元素. 岩矿测试. 2022(01): 145-152 . 本站查看
    9. 徐冬梅,陈晋,张敏. WDXRF法测定污染土壤和沉积物中金属元素. 环境监测管理与技术. 2022(06): 52-55+68 .
    10. 周莉莉,董礼男,朱春要,张继明. 硼酸衬底压片制样-X射线荧光光谱法测定除尘灰中14种主次量元素. 岩矿测试. 2021(04): 612-618 . 本站查看
    11. 李妤,田志仁,蒋月,夏新. 土壤中锌元素测定精密度评价标准建议值的探讨. 岩矿测试. 2021(05): 731-739 . 本站查看
    12. 李大勇,朱志雄,李靖,王亮. X射线荧光光谱法半定量分析高烧失量矿物的准确度研究. 岩矿测试. 2020(01): 135-142 . 本站查看
    13. 贺攀红,杨珍,龚治湘. 氢化物发生-电感耦合等离子体发射光谱法同时测定土壤中的痕量砷铜铅锌镍钒. 岩矿测试. 2020(02): 235-242 . 本站查看
    14. 王毅民,邓赛文,李松,王祎亚. X射线荧光光谱在地球化学调查中的应用评介. 冶金分析. 2020(10): 50-62 .
    15. 张绵绵,高晓哲. 塑胶跑道面层中铅、镉、铬、汞的测定X射线荧光光谱法. 中国石油和化工标准与质量. 2020(16): 71-72+76 .
    16. 陈春霏,洪欣,王晓飞,苏荣,梁晓曦,何宇,卢秋,田艳. X射线荧光光谱法测定土壤和沉积物中的锰. 岩矿测试. 2020(05): 777-784 . 本站查看
    17. 王西. 滤纸制样–X射线荧光光谱法同时测定血液中7种微量元素. 化学分析计量. 2020(06): 67-70 .
    18. 田衎,郭伟臣,杨永,岳亚萍,张覃,赵亚娴. 波长色散X射线荧光光谱法测定土壤和水系沉积物中13种重金属元素. 冶金分析. 2019(10): 30-36 .
    19. 田志仁,封雪,姜晓旭,李宗超,李妤,夏新. 生态环境监测工作中应用AAS/AFS和XRF法测定土壤重金属数据质量评价. 岩矿测试. 2019(05): 479-488 . 本站查看

    Other cited types(1)

Catalog

    Article views (2859) PDF downloads (82) Cited by(20)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return