• DOAJ
  • Scopus
  • Core Journal of China
  • Chinese Science Citation Database (CSCD)
  • Chinese Scientific and Technical Paper and Citation Database (CSTPCD)
HUANG Qiu-hong, LIU Li-kun, GUO Dong-fa, WANG Yu-xue, WU Zhao-hui, TANG San-xing, LI Hong-guang. Rapid and Accurate Determination of Uranium in Uranium Ores in the Field Using TOPO Extraction and α-counting Method[J]. Rock and Mineral Analysis, 2011, 30(4): 423-429.
Citation: HUANG Qiu-hong, LIU Li-kun, GUO Dong-fa, WANG Yu-xue, WU Zhao-hui, TANG San-xing, LI Hong-guang. Rapid and Accurate Determination of Uranium in Uranium Ores in the Field Using TOPO Extraction and α-counting Method[J]. Rock and Mineral Analysis, 2011, 30(4): 423-429.

Rapid and Accurate Determination of Uranium in Uranium Ores in the Field Using TOPO Extraction and α-counting Method

More Information
  • Received Date: November 15, 2010
  • Revised Date: March 19, 2011
  • The method of TOPO extraction followed by α-counting has been developed for field determination of uranium in uranium ores. The traditional method of field uranium determination is by spectrometry. The content of uranium using that method is determined by the intensity of the ray, therefore, results have larger errors when uranium and radium are in equilibrium. The method researched by this article combines the nuclear and chemical properties of uranium. The content of the uranium is determined directly by the intensity recorded by an α counter after following dissolution and extraction processes. The detection limit of uranium is 2.41 μg/g. When the content of uranium is about 100 μg/g, the relative standard deviation (RSD) is 5.93%. The determining range of uranium is 7.23 μg/g-n%. The dissolution method requires less reagents, has better dissolving efficiency and less pollution. The extraction method has the advantage and efficiency (>97%). The equipment is portable so consequently can be used in the field where operation is simple and rapid, with higher precision and accuracy than the traditional method.
  • Leif L, Harold W, Poul S, John H. Field determination of uranium and thorium by gamma-ray spectrometry, exemplified by measurements in the Ilmaussaq alkaline intrusion, south Greenland[J]. Economic Geology, 1971, 66(3): 368-384.

    Leif L, Harold W, Poul S, John H. Field determination of uranium and thorium by gamma-ray spectrometry, exemplified by measurements in the Ilmaussaq alkaline intrusion, south Greenland[J]. Economic Geology, 1971, 66(3): 368-384.
    王鉴.中国铀矿开采[M].北京:原子能出版社,1997:477.
    曹利国.核地球物理勘察方法[M].北京:原子能出版社,1991:11-309.
    刘纯魁.用γ能谱法测量铀矿石有效平衡系数的研究[J]. 铀矿冶,1989,8(3):41-45.
    刘小学,吕有惠. 3112矿床铀镭平衡及铀资源远景分析[J]. 铀矿地质,2009,25(1):40-44.
    刘宝秀, 顾鼎祥. β-γ闪烁测铀中镭影响的研究[J]. 放射性地质,1980(5): 86-92.
    刘海生.土壤中铀系不平衡对地面γ能谱测量的影响[J]. 物探与化探,2002,26(3):45-46.
    蔡金芳,张富平,张洁,王荣.砂岩型铀矿勘茶样品中铀的野外快速测定方法研究[J].铀矿地质,2005,21(3):53-58.
    黄秋红,刘立坤,郭冬发,王玉学,汤三星,武朝晖.一种铀矿石中铀的定量分析方法.中国:专利申请号:201010522787.X .2010-10-27.
    汤三星,郭冬发,黄秋红,刘立坤.一种野外用α测铀仪.中国:专利申请号:201020531500.5 .2010-9-1.
    陈莉月,徐立强.密闭微波溶样方法的进展[J].分析仪器,1997(4):12-13.
    陈中义.增压溶样技术在化学分析中的应用[J].冶金分析,1995,15(5):38-41.
    Sandro D, Mario F, Anna M, Livio B. Analytical extraction of uranium with TOPO from sea water[J]. The Chemical Society of Japan,1983,56(3):904-908.

    Sandro D, Mario F, Anna M, Livio B. Analytical extraction of uranium with TOPO from sea water[J]. The Chemical Society of Japan,1983,56(3):904-908.
    张正雄,刘勇.萃取分离ICP-AES法测定含锆铀铌合金中的杂质元素[J].分析试验室,2004,23(6):63.
    任奇钰,张建国,何亚非. TOPO萃取光度法连续测定地球化学样品中的铀和钍[J].岩石矿物学杂志,1984,3(3):274-276.
    吉艳琴,李金英,罗上庚. TOPO萃取色层分离ICP-MS法测定土壤中痕量铀的同位素丰度比[J].核化学与放射化学,2004,26(2):88-94.
    Florin B, Pompilia D. Uranium(Ⅵ) extraction from acid mixtures with organophosphorus esters[J]. Hydrometallurgy,1986,16(2):167-175.

    Florin B, Pompilia D. Uranium(Ⅵ) extraction from acid mixtures with organophosphorus esters[J]. Hydrometallurgy,1986,16(2):167-175.
  • Related Articles

    [1]JIN Yi, AN Shuai, LIU Xin, SONG Lihua, ZHAO Enhao, MA Jiansheng, ZHANG Zhibin. Material Evidence Analysis and Regional Classification and Identification of Soil Based on X-ray Fluorescence Spectrometry and X-ray Diffraction[J]. Rock and Mineral Analysis, 2024, 43(5): 744-754. DOI: 10.15898/j.ykcs.202403140047
    [2]JI Ang. Development of X-ray Fluorescence Spectrometry in the 30 Years[J]. Rock and Mineral Analysis, 2012, 31(3): 383-398.
    [3]MA Tian-fang, LI Xiao-li, CHEN Yong-jun, DENG Zhen-pin, LI Guo-hui. Interchangeable Analysis of Method on the X-ray Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2011, 30(4): 486-490.
    [4]DENG Sai-wen, LIANG Guo-li, LIU Yi-jian, MA Tian-fang. The Performance and Application of GGB-1 Bead Maker with High Frequency Induction Heating in X-ray Fluorescence Analysis[J]. Rock and Mineral Analysis, 2009, 28(2): 169-172.
    [5]X-ray Fluorescence Spectrometric Analysis of Major Components in Bauxite Samples[J]. Rock and Mineral Analysis, 2008, 27(1): 71-73.
    [6]X-ray Fluorescence Spectrometric Analysis of Wollastonite[J]. Rock and Mineral Analysis, 2007, 26(3): 245-247.
    [7]Analysis of ZL205A Alloy by X-Ray Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2003, (4): 303-306.
    [8]Application of X-Ray Fluorescence Spectrometry in Refractory Material Analysis[J]. Rock and Mineral Analysis, 2003, (3): 217-220224.
    [9]Standardization of X-Ray Fluorescence Spectrometric Analysis[J]. Rock and Mineral Analysis, 2002, (1): 42-48.
    [10]X-Ray Fluorescence Spectrometry Integrated Analysis System[J]. Rock and Mineral Analysis, 1995, (1): 61-65.

Catalog

    Article views (1697) PDF downloads (1333) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return