• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
Hong-bo REN, Chang-ling LIU, Min CHEN, Xue-hui LIN, Yuan-yuan ZHANG, Xing-bo DENG. The Concentration Changes of Major Ions in Seawater During the Methane Hydrate Formation Process[J]. Rock and Mineral Analysis, 2013, 32(2): 278-283.
Citation: Hong-bo REN, Chang-ling LIU, Min CHEN, Xue-hui LIN, Yuan-yuan ZHANG, Xing-bo DENG. The Concentration Changes of Major Ions in Seawater During the Methane Hydrate Formation Process[J]. Rock and Mineral Analysis, 2013, 32(2): 278-283.

The Concentration Changes of Major Ions in Seawater During the Methane Hydrate Formation Process

More Information
  • Received Date: May 21, 2012
  • Accepted Date: July 07, 2012
  • Published Date: March 31, 2013
  • A description of the synthetic experiment of methane hydrate is given in this paper, along with a preliminary study of ion concentration changes during the process, whilst providing important technical support for the gas hydrate geochemical exploration. In this article, the development of a set of experimental devices, which simulate the formation process of methane hydrate, is also discussed in this paper. The position and shape of hydrate, the reaction time, the temperature and pressure of the experiments were observed during methane hydrate formation. The concentrations of major ions including K+, Na+, Ca2+, Mg2+, Cl-, SO42- were continuously detected during the process to investigate the relationship among the major ion concentrations, temperature and pressure. The results show that methane hydrate forms randomly in seawater. It may have a different nucleation and agglomeration process of hydrate under the same initial conditions. There was a good positive linear relationship between the ions variation and methane gas consumption in the system with the correlation coefficients between 0.9848 to 0.9950, which was not affected by the formation position and morphology of the hydrate. The ion content had small differences under the same gas consumption in the microenvironment of the methane hydrate formation process. These important features provide the basis to make a preliminary estimate of gas consumption by using the major ion content in pore water around the methane hydrate.
  • Kvenvolden K A. Worldwide distribution of subaquatic gas hydrates [J]. Geo-marine Letters, 1993,13(1): 32-40. doi: 10.1007/BF01204390
    Kvenvolden K A, Lorenson T D. The global occurrence of natural gas hydrates[C]//Paull C K, Dillon W P, eds. Natural Gas Hydrates: Occurrence, Distribution, and Detection. Washington D C: American Geophysical Union,2001: 3-18.
    Ussler Ⅲ W, Paull C K. Effects of ion exclusion and isotopic fractionation on pore water geochemistry during gas hydrate formation and decomposition [J].Geo-Marine Letters, 1995,15: 37-44. doi: 10.1007/BF01204496
    Kastner M, Sample J C, Whiticar M J, Hovland M, Cragg B A, Parkes R J.Geochemical evidence for fluid flow and diagenesis at the cascadia convergent margin[C]//Carson B, Westbrook G K, Musgrave R J, Suess E, eds. Proceedings of the Ocean Drilling Program Scientific Results,1995,146: 375-384.
    Egeberg P K, Dickens G R.Thermodynamic and pore water halogen constraints on gas hydrate distribution at ODP Site 997(Blake Ridge)[J]. Chemical Geology,1999, 153: 53-79. doi: 10.1016/S0009-2541(98)00152-1
    Torres M E, Mcmanus J. Fluid and chemical fluxes in and out of sediments hosting methane hydrate deposition Hydrate Ridge,OR. Ⅰ: Hydro logical provinces[J]. Earth and Planetary Science Letters, 2002,201: 525-540. doi: 10.1016/S0012-821X(02)00733-1
    Borowski W S, Bohrmann G, Claypool G E. Shipboard Scientific Party, Leg 204 Summary [C]//Gerhard B, Anne M T, Frank R R, eds. Ocean Drilling Program, Drilling Gas Hydrates on Hydrate Ridge, Leg 204 Preliminary Report. Texas: Texas A & M University,2002,204: 23-24.
    蒋少勇,杨涛,薛紫晨,杨竞红,凌洪飞,吴能友,黄永样,刘坚,陈道华.南海北部海区海底沉积物中孔隙水的Cl-和SO42-浓度异常特征及其对天然气水合物的指示意义[J].现代地质,2005,19(1): 45-54.
    蒋少勇,凌洪飞,杨竞红,陆尊礼,陈道华,倪培.海洋浅表层沉积物和孔隙水的天然气水合物地球化学异常识别标志[J].海洋地质与第四纪地质,2003,23(1): 88-94. http://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200301014.htm
    刘昌岭,陈敏,业渝光.海洋天然气水合物元素地球化学异常的实验研究[J].现代地质,2005,19(1): 96-100. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ20050100D.htm
    宋永臣,杨明军,刘瑜,李清平.离子对甲烷水合物相平衡的影响[J].化工学报,2009,60(6): 1363-1366.
    李艳苹,潘献辉,刘小骐.ICP-AES法测定海水中钾、钠、钙、镁、锂、锶、锰[J].中国给水排水,2010,26(4): 86-88. http://www.cnki.com.cn/Article/CJFDTOTAL-GSPS201004026.htm
    李国兴,施青红,郭莹莹,周瑾,朱岩.离子色谱-抑制电导法分别测定海水中阴离子和阳离子[J].分析科学学报,2006,22(2): 153-156. http://www.cnki.com.cn/Article/CJFDTOTAL-FXKX200602007.htm
    石东坡.状态方程法计算气体PVT性质的准确性研究[J].广东化工,2009(10): 161-162. doi: 10.3969/j.issn.1007-1865.2009.10.073
    Zatsepine O Y, Buffett B A. Nulcleation of CO2-hydratie in a porous medium [J]. Fluid Phase Equilibria, 2002, 200(2): 263-275. doi: 10.1016/S0378-3812(02)00032-8
    刘昌岭,业渝光.海洋天然气水合物生成机制的实验研究[J].海洋地质与第四纪地质, 2003, 23(2): 89-96. http://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200302014.htm
    Skovborg P, Rasmussen P.A mass transport limited model for the growth of methane and ethane gas hydrates [J]. Chemical Engineering Science, 1994, 49(8): 1131-1143. doi: 10.1016/0009-2509(94)85085-2
    刘小平,杨晓兰.海底天然气水合物地球化学方法勘查进展[J].天然气地球科学,2007,18(2): 312-316. http://www.cnki.com.cn/Article/CJFDTOTAL-TDKX200702029.htm
  • Related Articles

    [1]TIAN Qin, TONG Ling, AN Ziyi, XU Chunxue, SUN Huizhong, DIAO Jinling. Development of Certified Reference Materials of Polycyclic Aromatic Hydrocarbons, Organochlorine Pesticides and Polychlorinated Biphenyls in Sediments[J]. Rock and Mineral Analysis, 2022, 41(3): 511-520. DOI: 10.15898/j.cnki.11-2131/td.202110130149
    [2]TIAN Zong-ping, PENG Jun, WANG Gan-zhen, YI Xiao-ming, CAO Jian, QIN Yi. Preparation of Standard Materials for Composition Analysis of Stone Coal Vanadium Ore[J]. Rock and Mineral Analysis, 2021, 40(1): 111-120. DOI: 10.15898/j.cnki.11-2131/td.202001070008
    [3]LING Yuan, HUANG Yi, SHANG Wen-yu, XIE Man-man, Liu Shu-bo, SUN Qing. Review on Pre-enrichment Methods in Compound Specific Carbon Isotope Analysis of Chlorinated Hydrocarbon in Water[J]. Rock and Mineral Analysis, 2011, 30(6): 795-801.
    [4]SHE Xiaolin, HU Lan, LIU Jun, CHEN Bo, HUANG Qin. Determination of Chlorine in Marine Sediments by Ion Chromatagraphy[J]. Rock and Mineral Analysis, 2009, 28(4): 373-375.
    [5]CHEN Yun-ping, TANG Jin-song. Mercury Thiocyanate Spectrophotometric Determination of Chlorine in Ores[J]. Rock and Mineral Analysis, 2008, 27(6): 479-480.
    [6]Determination of Chlorine in Zinc Concentrates by Neutral Leaching out-Mercuric Thiocyanate-Ammonium Ferric Sulfate Spectrophotometry[J]. Rock and Mineral Analysis, 2008, 27(3): 227-229.
    [7]Determination of Chlorine in Coal by Combustion Bomb-Potentiometric Titration[J]. Rock and Mineral Analysis, 2006, 25(1): 79-81.
    [8]Determination of Chlorine in Coals by Ion Chromatography[J]. Rock and Mineral Analysis, 1999, (4): 299-302.
    [9]Indirect Determination of Chlorine in Phosphorus Ores by Flame_AAS[J]. Rock and Mineral Analysis, 1997, (1): 80-81.
    [10]Determination of Trace Chlorine in Geological Materials by Goulometric Titration[J]. Rock and Mineral Analysis, 1990, (3): 178-183.
  • Cited by

    Periodical cited type(4)

    1. 陈菲菲,金斌,杨梦娜,陈瑜,冉敬,徐国栋. 高钙碳酸盐岩样品中微量钛ICP-MS测试方法. 岩矿测试. 2024(04): 558-567 . 本站查看
    2. 唐永春,莫延慧,胡小键,张续,朱英,孙琦. 母乳中16种元素的石墨消解-碰撞模式-电感耦合等离子体-质谱测定法. 环境与健康杂志. 2024(09): 804-809 .
    3. 陈丽春. 电感耦合等离子体发射光谱法测定石灰岩样品中氧化钾、氧化钠的方法改进. 福建分析测试. 2023(06): 55-59 .
    4. 李晓云,王羽,金婵,张林娟,王建强. 微波消解-高分辨电感耦合等离子体质谱法测定土壤中8种金属元素. 岩矿测试. 2022(03): 374-383 . 本站查看

    Other cited types(0)

Catalog

    Article views (1066) PDF downloads (9) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return