• DOAJ
  • Scopus
  • Core Journal of China
  • Chinese Science Citation Database (CSCD)
  • Chinese Scientific and Technical Paper and Citation Database (CSTPCD)
YANG Hui,WU Xia,YU Jianguo,et al. Influencing Factors of Dissolved Organic Carbon Isotope Determination in Water Samples of a Karst Area by Wet Oxidation Method[J]. Rock and Mineral Analysis,2024,43(6):914−927. DOI: 10.15898/j.ykcs.202405130108
Citation: YANG Hui,WU Xia,YU Jianguo,et al. Influencing Factors of Dissolved Organic Carbon Isotope Determination in Water Samples of a Karst Area by Wet Oxidation Method[J]. Rock and Mineral Analysis,2024,43(6):914−927. DOI: 10.15898/j.ykcs.202405130108

Influencing Factors of Dissolved Organic Carbon Isotope Determination in Water Samples of a Karst Area by Wet Oxidation Method

More Information
  • Received Date: May 12, 2024
  • Revised Date: September 27, 2024
  • Accepted Date: October 10, 2024
  • Available Online: October 28, 2024
  • Published Date: October 28, 2024
  • HIGHLIGHTS
    (1) Phosphoric acid was added to the water sample in a karst area for acidification, and sweeping for an appropriate period; the test accuracy was better than 0.40‰ for the sample with DOC content greater than 2mg/L.
    (2) The pressure of the sample gas in the equilibrium headspace vial plays a significant role in enhancing the intensity of the δ13DOC signal and reducing the bias of the testing results.
    (3) The blank peak area, a significant factor produced by low-background pure water, is crucial in affecting the testing results of water samples with low DOC content.

    Due to the high content of HCO3 , low content of DOC and complex composition in the karst water, the current wet oxidation method for the determination of δ13CDOC needs to be improved. The study examined the impact of different pure waters, headspace bottle atmospheric equilibrium methods, DOC content, and the removal of bicarbonate (HCO3 ) in water on δ13CDOC values. The experimental results show significant differences in the 44CO2 peak areas produced by different blank pure waters, with the most prominent peak area being 3.8 times the smallest. Using a gas-tight syringe for atmospheric equilibrium enhances the sample signal strength and ensures the optimal internal precision of the sample test results. Acidifying the water samples to pH<3 with phosphoric acid eliminates the influence of HCO3 in karst waters. A nitrogen-blowing apparatus at a 250mL/min flow rate for 5−10min removes the free CO2 present after acidification. Under the above experimental conditions, the deviation between the test results and the calibrated reference values for karst water samples with DOC content greater than 2mg/L is better than 0.40‰ after blank correction. The difference in the measured results of δ13CDOC in karst water samples measured by the wet oxidation method compared to the total organic carbon analyzer-stable isotope mass spectrometer online method was less than 0.30‰. The BRIEF REPORT is available for this paper at http://www.ykcs.ac.cn/en/article/doi/10.15898/j.ykcs.202405130108.

  • [1]
    宋昂, 彭文杰, 何若雪, 等. 好氧不产氧光合细菌反馈作用下的五里峡水库坝前水体化学特征研究[J]. 岩矿测试, 2017, 36(2): 171−179. doi: 10.15898/j.cnki.11-2131/td.2017.02.011.

    Song A, Peng W J, He R X, et al. Hydrochemistry characteristics in front of the Wulixia Reservoir Dam associated with feedback from aerobic anoxygenic phototrophic bacteria[J]. Rock and Mineral Analysis, 2017, 36(2): 171−179. doi: 10.15898/j.cnki.11-2131/td.2017.02.011.
    [2]
    朱帅, 曹建华, 杨慧, 等. 岩溶区植被与岩石地球化学背景间相互作用机制研究进展[J]. 岩矿测试, 2023, 42(1): 59−71. doi: 10.15898/j.cnki.11-2131/td.202108090095

    Zhu S, Cao J H, Yang H, et al. A review of the interaction mechanism and law between vegetation and rock geochemical background in karst areas[J]. Rock and Mineral Analysis, 2023, 42(1): 59−71. doi: 10.15898/j.cnki.11-2131/td.202108090095
    [3]
    粟蓉, 申凯文, 尹希杰, 等. TOC-IRMS联用在线高温氧化测定溶解有机碳稳定同位素组成的方法研究[J]. 应用海洋学学报, 2023, 42(2): 339−345. doi: 10.3969/J.ISSN.2095-4972.2023.02.016

    Su R, Shen K W, Yin X J, et al. On-line high temperature oxidation determination of stable carbon isotope composition of dissolved organic carbon by TOC-IRMS analysis[J]. Journal of Applied Oceanography, 2023, 42(2): 339−345. doi: 10.3969/J.ISSN.2095-4972.2023.02.016
    [4]
    章程, 肖琼, 孙平安, 等. 岩溶碳循环及碳汇效应研究与展望[J]. 地质科技通报, 2022, 41(5): 190−198. doi: 10.19509/j.cnki.dzkq.2022.0193

    Zhang C, Xiao Q, Sun P A, et al. Progress on karst carbon cycle and carbon sink effect study and perspective[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 190−198. doi: 10.19509/j.cnki.dzkq.2022.0193
    [5]
    蒋忠诚, 章程, 罗为群, 等. 我国岩溶地区碳汇研究进展与展望[J]. 中国岩溶, 2022, 41(3): 345−355. doi: 10.11932/karst20220302

    Jiang Z C, Zhang C, Luo W Q, et al. Research progress and prospect of carbon sink in karst region of China[J]. Carsologica Sinica, 2022, 41(3): 345−355. doi: 10.11932/karst20220302
    [6]
    章程. 岩溶动力学理论与现代岩溶学发展[J]. 中国岩溶, 2022, 41(3): 378−383. doi: 10.11932/karst20220305

    Zhang C. Theory of karst dynamics and development of modern karst science[J]. Carsologica Sinica, 2022, 41(3): 378−383. doi: 10.11932/karst20220305
    [7]
    章程, 肖琼, 苗迎, 等. 广西桂林漓江典型河段水化学昼夜动态变化及其对岩溶碳循环的影响[J]. 地球学报, 2018, 39(5): 613−621. doi: 10.3975/cagsb.2018.042001

    Zhang C, Xiao Q, Miao Y, et al. Day and night aqueous chemical changes and their impact on karst carbon cycle at typical monitoring sites of the Lijiang River, Guilin, Guangxi[J]. Acta Geoscientica Sinica, 2018, 39(5): 613−621. doi: 10.3975/cagsb.2018.042001
    [8]
    黄芬, 吴夏, 杨慧, 等. 桂林毛村地下河流域岩溶关键带碳循环研究[J]. 广西科学, 2018, 25(5): 515−523. doi: 10.13656/j.cnki.gxkx.20181008.001

    Huang F, Wu X, Yang H, et al. Study on carbon cycle of karst critical zone in Maocun subterranean river basin of Guilin[J]. Guangxi Science, 2018, 25(5): 515−523. doi: 10.13656/j.cnki.gxkx.20181008.001
    [9]
    黄奇波, 覃小群, 刘朋雨, 等. 山西柳林泉域岩溶地下水溶解无机碳特征及控制因素[J]. 地质论评, 2019, 65(4): 961−972. doi: 10.16509/j.georeview.2019.04.012

    Huang Q B, Qin X Q, Liu P Y, et al. Characteristics and control factors of dissolved inorganic carbon in karst groundwater in Liuling Spring catchment, Lüliang, Shanxi[J]. Geological Review, 2019, 65(4): 961−972. doi: 10.16509/j.georeview.2019.04.012
    [10]
    李强, 黄雅丹, 何若雪, 等. 岩溶水体惰性有机碳含量及其存在机理[J]. 岩矿测试, 2018, 37(5): 475−478. doi: 10.15898/j.cnki.11-2131/td.201807250088

    Li Q, Huang Y D, He R X. et al. The concentration of recalcitrant dissolved organic carbon in the karst hydrosphere and its existing mechanism[J]. Rock and Mineral Analysis, 2018, 37(5): 475−478. doi: 10.15898/j.cnki.11-2131/td.201807250088
    [11]
    何若雪, 李强, 于奭, 等. 异养细菌作用下岩溶水体惰性有机碳变化及其环境影响因素分析[J]. 地球学报, 2022, 43(4): 438−448. doi: 10.3975/cagsb.2022.022202

    He R X, Li Q, Yu S. Variation of recalcitrant dissolved organic carbon in karst water under the influence of heterotrophic bacteria and its environmental controlling factors[J]. Acta Geoscientica Sinica, 2022, 43(4): 438−448. doi: 10.3975/cagsb.2022.022202
    [12]
    de Montety V, Martin J B, Cohen M J, et al. Influence of diel biogeochemical cycles on carbonate equilibrium in a karst river[J]. Chemical Geology, 2011, 283: 31−43. doi: 10.1016/j.chemgeo.2010.12.025
    [13]
    章程. 岩溶作用时间尺度与碳汇稳定性[J]. 中国岩溶, 2011, 30(4): 368−371. doi: 10.3969/j.issn.1001-4810.2011.04.003

    Zhang C. Time-scale of karst processes and the carbon sink stability[J]. Carsologica Sinica, 2011, 30(4): 368−371. doi: 10.3969/j.issn.1001-4810.2011.04.003
    [14]
    刘再华. 岩石风化碳汇研究的最新进展和展望[J]. 科学通报, 2012, 57(2/3): 95−102. doi: 10.1360/972011-1640

    Liu Z H. New progress and prospects in the study of rock-weathering-related carbon sinks[J]. Chinese Science Bulletin, 2012, 57(2/3): 95−102. doi: 10.1360/972011-1640
    [15]
    王华, 张春来, 杨会, 等. 利用稳定同位素技术研究广西桂江流域水体中碳的来源[J]. 地球学报, 2011, 32(6): 691−698. doi: 10.3975/cagsb.2011.06.06

    Wang H, Zhang C L, Yang H, et al. The application of stable carbon isotope to the study of carbon sources in Guijiang Watershed, Guangxi[J]. Acta Geoscientica Sinica, 2011, 32(6): 691−698. doi: 10.3975/cagsb.2011.06.06
    [16]
    黄奇波, 覃小群, 唐萍萍, 等. 桂江流域河流有机碳特征[J]. 地质科技情报, 2014, 33(2): 148−153.

    Huang Q B, Qin X Q, Tang P P. Characteristics of riverine organic carbon in Guijiang Watershed, Guangxi[J]. Geological Science and Technology Information, 2014, 33(2): 148−153.
    [17]
    Lang S Q, Bernasconi S M, Gretchen L F. Stable isotope analysis of organic carbon in small (µg C) samples and dissolved organic matter using a GasBench preparation device[J]. Rapid Communications Mass Spectrometry, 2011, 26(1): 9−16. doi: 10.1002/rcm.5287
    [18]
    王骏博. 溶解有机碳同位素测定方法研究及其在九龙江的应用[D]. 厦门: 国家海洋局第三海洋研究所, 2015.

    Wang J B. Method of determining carbon isotope of dissolved organic carbon and application in Jiulong River[D]. Xiamen: The Third Institute of Oceanography Ministry of Natural Resources, 2015.
    [19]
    Werner R A, Bruch B A, Brand W A. ConFlo Ⅲ—An interface for high precision δ13C and δ15N analysis with an extended dynamic range[J]. Rapid Communications Mass Spectrometry, 1999, 13: 1237−1241. doi: 10.1002/(SICI)1097-0231(19990715)13:13<1237::AID-RCM633>3.0.CO;2-C
    [20]
    Groot P A. Handbook for stable isotope analytical techniques (Vol. 2)[M]. Amsterdam: Elsevier, 2009.
    [21]
    Werner R A, Bruch B A, Brand W A, et al. Measurement of δ13C and δ15N isotopic composition on nanomolar quantities of C and N[J]. Analytical Chemistry, 2009, 81(2): 755−763. doi: 10.1021/ac801370c
    [22]
    Moran J J, Newburn M K, Alexander M L, et al. Laser ablation isotope ratio mass spectrometry for enhanced sensitivity and spatial resolution in stable isotope analysis[J]. Rapid Communications Mass Spectrometry, 2011, 25(9): 1282−1290. doi: 10.1002/rcm.4985
    [23]
    申凯文. 高温氧化法和湿氧化法测试水样溶解有机碳及同位素对比研究[D]. 厦门: 厦门大学, 2020.

    Shen K W. Comparative study on dissolved organic carbon and isotopes in water samples by high temperature oxidation and wet oxidation[D]. Xiamen: Xiamen University, 2020.
    [24]
    Panetta R J, Ibrahim M, Gelinas Y. Coupling a high temperature analytic oxidation total organic carbon analyzer to an isotope ratio mass spectrometer to measure natural abundance δ13C−dissolved organic carbon in marine and freshwater samples[J]. Analytical Chemistry, 2008, 80(13): 5232−5239. doi: 10.1021/ac702641z
    [25]
    Troyer I D, Bouillon S, Barker S, et al. Stable isotope analysis of dissolved organic carbon in soil solutions using a catalytic combustion total organic carbon analyzer−isotope ratio mass spectrometer with a cryofocusing interface[J]. Rapid Commination in Mass Spectrometry, 2010, 24(3): 365−374. doi: 10.1002/rcm.4403
    [26]
    姜光辉, 于奭, 常勇. 利用水化学方法识别岩溶水文系统中的径流[J]. 吉林大学学报(地球科学版), 2011, 41(5): 1535−1541.

    Jiang G H, Yu S, Chang Y. Identification of runoff in karst drainage system using hydrochemical method[J]. Journal of Jilin University (Earth Science Edition), 2011, 41(5): 1535−1541.
    [27]
    黄奇波, 覃小群, 刘朋雨, 等. 硫酸对乌江中上游段岩溶水化学及δ13CDIC的影响[J]. 环境科学, 2015, 36(9): 3220−3229. doi: 10.13227/j.hjkx.2015.09.013

    Huang Q B, Qin X Q, Liu P Y, et al. Influence of sulfuric acid to karst hydrochemical and δ13CDIC in the upper and middle reaches of the Wujiang River[J]. Environmental Science, 2015, 36(9): 3220−3229. doi: 10.13227/j.hjkx.2015.09.013
    [28]
    叶慧君, 张瑞雪, 吴攀, 等. 基于主成分分析的岩溶水水化学组成及影响因素研究——以贵州水城盆地为例[J]. 中国岩溶, 2017, 36(2): 215−225. doi: 10.11932/karst20170209

    Ye H K, Zhang R X, Wu P. et al. Hydrogeochemical characterization of groundwater and surface water and their influencing factors based on principal component analysis: An example in the Shuicheng Basin of Guizhou[J]. Carsologica Sinica, 2017, 36(2): 215−225. doi: 10.11932/karst20170209
    [29]
    熊佰炼, 张进忠, 彭韬, 等. 典型岩溶地区岩溶泉溶解性碳浓度变化及其通量估算[J]. 环境科学, 2018, 39(11): 4991−4998. doi: 10.13227/j.hjkx.201803118

    Xiong B L, Zhang J Z, Peng T, et al. Concentration variations and flux estimation of dissolved carbon in karst spring of a typical karst area[J]. Environmental Science, 2018, 39(11): 4991−4998. doi: 10.13227/j.hjkx.201803118
    [30]
    杨会, 王华, 吴夏, 等. 样品采集和保存方法对水中溶解无机碳同位素分馏的影响[J]. 中国岩溶, 2015, 34(6): 642−647. doi: 10.11932/karst201506014

    Yang H, Wang H, Wu X, et al. The influence of different pretreatment methods on the δ13C value of dissolved inorganic carbon in water[J]. Carsologica Sinica, 2015, 34(6): 642−647. doi: 10.11932/karst201506014
    [31]
    罗振宇, 杨琰, 李计, 等. 石漠化治理区表层岩溶泉流量衰减分析及无机碳通量估算: 以重庆酉阳龙潭槽谷老泉为例[J]. 中国岩溶, 2023, 42(2): 337−350. doi: 10.11932/karst2023y011

    Luo Z Y, Yang Y, Li J, et al. Flow attenuation analysis and inorganic carbon flux estimation of surface karst spring in rocky desertification control area: A case study at Laoquan Spring in the Longtan Trough Valley, Youyang County, Chongqing City, China[J]. Carsologica Sinica, 2023, 42(2): 337−350. doi: 10.11932/karst2023y011
    [32]
    杨丽阳. 河流-河口系统溶解有机物的动态及其影响因素[D]. 厦门: 厦门大学, 2012: 22.

    Yang L Y. Dynamics and influencing factors of dissolved organic matter in river-estuarine system[D]. Xiamen: Xiamen University, 2012: 22.
    [33]
    王骏博. 溶解有机碳同位素测定方法研究及其在九龙江的应用[D]. 厦门: 国家海洋局第三海洋研究所, 2015.

    Wang J B. A method of determine in g carbon isotope of dissolved organic carbon and application in Jiulong River[D]. Xiamen: The Third Institute of Oceanography, Ministry of Natural Resources, 2015.
    [34]
    Chen L, Tan L, Zhao M. Karst carbon sink processes and effects: A review[J]. Quaternary International, 2023, 652: 63−73. doi: 10.1016/j.quaint.2023.02.009
    [35]
    Kragh T, Sondergaard M, Borch N H. The effect of zooplankton on the dynamics and molecular composition of carbohydrates during an experimental algal bloom[J]. Journal of Limnology, 2006, 65(1): 52−58. doi: 10.4081/jlimnol.2006.52
    [36]
    周殷竹, 郭华明, 逯海. 高砷地下水中溶解性有机碳和无机碳稳定同位素特征[J]. 现代地质, 2015, 29(2): 252−259. doi: 10.3969/j.issn.1000-8527.2015.02.005

    Zhou Y Z, Guo H M, Lu H. Stable isotope characteristics of dissolved organic carbon and inorganic carbon in high arsenic groundwater[J]. Geoscience, 2015, 29(2): 252−259. doi: 10.3969/j.issn.1000-8527.2015.02.005
    [37]
    赵海娟, 肖琼, 吴夏, 等. 漓江地表水体有机碳来源[J]. 环境科学, 2017, 38(8): 3200−3208. doi: 10.13227/i.hikx.201701176

    Zhao H J, Xiao Q, Wu X, et al. Source of organic carbon in the surface water of Lijiang River[J]. Environmental Science, 2017, 38(8): 3200−3208. doi: 10.13227/i.hikx.201701176
    [38]
    肖琼, 赵海娟, 章程, 等. 岩溶区地表水体惰性有机碳研究[J]. 第四纪研究, 2020, 40(4): 1058−1069. doi: 10.11928/i.issn.1001-7410.2020.04.19

    Xiao Q, Zhao H J, Zhang C, et al. Study of the recalcitrant dissolved organic carbon in karst surface water[J]. Quaternary Sciences, 2020, 40(4): 1058−1069. doi: 10.11928/i.issn.1001-7410.2020.04.19
    [39]
    Jonsson A, Meili M, Bergström A K, et al. Whole-lake mineralization of allochthonous and autochthonous organic carbon in a large humic lake (Örträsket, N. Sweden)[J]. Limnology and Oceanography, 2001, 46(7): 1691−1700. doi: 10.4319/lo.2001.46.7.1691
    [40]
    Newton R J, Jones S E, Eiler A, et al. A guide to the natural history of freshwater lake bacteria[J]. Microbiology and Molecular Biology Reviews, 2011, 75(1): 14−49. doi: 10.1128/MMBR.00028-10
  • Related Articles

    [1]LIU Jun, WANG Ying, SU Ai-na, LIU Fu-liang, ZHANG Lin. Determination of Chlorine Stable Isotopes in Groundwater Inorganics by Continuous Flow Isotope Mass Spectrometry Method and Analysis of Influence Factors[J]. Rock and Mineral Analysis, 2022, 41(1): 80-89. DOI: 10.15898/j.cnki.11-2131/td.202108090094
    [2]GAO Jian-fei, XU Yan-ming, FAN Chang-fu, HU Bin, LI Yan-he. Analysis of Sulfur Isotope Composition of Gypsum Samples by Elemental Analyzer-Isotope Mass Spectrometry[J]. Rock and Mineral Analysis, 2020, 39(1): 53-58. DOI: 10.15898/j.cnki.11-2131/td.201908120128
    [3]HAO Xin-li, HAN Si-hang, YANG Lei, DAI Yi-zhu, HUANG Lu-yao, WANG Jing-zheng. Effect of Organic Matter in Water Samples on the Hydrogen Stable Isotope Ratio Determination by Thermal Conversion/Elemental Analysis-Isotope Ratio Mass Spectrometry[J]. Rock and Mineral Analysis, 2019, 38(5): 503-509. DOI: 10.15898/j.cnki.11-2131/td.201811150121
    [4]Gui-shan JIN, Han-bin LIU, Juan HAN, Jun-jie LI, Jian-feng ZHANG, Jia ZHANG, Xiao SHI. Determination of Oxygen Isotopic Composition in Barium Sulfate by Online Pyrolysis Method with Nickel-plated Carbon as Reductant[J]. Rock and Mineral Analysis, 2019, 38(4): 365-372. DOI: 10.15898/j.cnki.11-2131/td.201809090103
    [5]Jian-feng ZHANG, Han-bin LIU, Xiao SHI, Gui-shan JIN, Jun-jie LI, Jia ZHANG, Juan HAN, Dong-qiao GUO, Fang-wen ZHONG. Study on Influence Factors for Determination of Oxygen Isotopic Composition of Silicates and Oxide Minerals by BrF5 Method[J]. Rock and Mineral Analysis, 2019, 38(1): 45-54. DOI: 10.15898/j.cnki.11-2131/td.201805170062
    [6]Xing-chao ZHANG, Chao LIU, Yi HUANG, Fang HUANG, Hui-min YU. The Effect of Dry-Ashing Method on Copper Isotopic Analysis of Soil Samples with Organic Matter[J]. Rock and Mineral Analysis, 2018, 37(4): 347-355. DOI: 10.15898/j.cnki.11-2131/td.201803290033
    [7]Ning WANG, Qing-zeng ZHU, Man-man XIE, Zhi-jia SONG, Dao-cong WANG, Qiu-huan JIA, Kuang CEN, Guo-qiang CHU, Qing SUN. An Improved Urea Adduction Method for Analyzing Carbon Isotope of ppm-level n-alkanes in Soil and Plant Samples[J]. Rock and Mineral Analysis, 2015, 34(4): 471-479. DOI: 10.15898/j.cnki.11-2131/td.2015.04.016
    [8]DU Guang-peng, WANG Xu, ZHANG Fu-song. Influence of the air background in GasBench Ⅱ vials on the measurements of C and O isotope of carbonates and a preliminary study of blank correction strategy[J]. Rock and Mineral Analysis, 2010, 29(6): 631-638.
    [9]Separation of Lead in River Sediments Using AG-MP-1M Anion Exchange Resin and Measurement of Lead Isotope Composition by Thermal Ionization Mass Spectrometry[J]. Rock and Mineral Analysis, 2008, 27(1): 9-11.
    [10]Determination of Trace Rhenium in Geological Samples using Isotope Dilution-Inductively Coupled Plasma Mass Spectrometry[J]. Rock and Mineral Analysis, 2006, 25(2): 125-128.
  • Other Related Supplements

Catalog

    Article views (89) PDF downloads (13) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return