• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
GAO Jian-fei, XU Yan-ming, FAN Chang-fu, HU Bin, LI Yan-he. Analysis of Sulfur Isotope Composition of Gypsum Samples by Elemental Analyzer-Isotope Mass Spectrometry[J]. Rock and Mineral Analysis, 2020, 39(1): 53-58. DOI: 10.15898/j.cnki.11-2131/td.201908120128
Citation: GAO Jian-fei, XU Yan-ming, FAN Chang-fu, HU Bin, LI Yan-he. Analysis of Sulfur Isotope Composition of Gypsum Samples by Elemental Analyzer-Isotope Mass Spectrometry[J]. Rock and Mineral Analysis, 2020, 39(1): 53-58. DOI: 10.15898/j.cnki.11-2131/td.201908120128

Analysis of Sulfur Isotope Composition of Gypsum Samples by Elemental Analyzer-Isotope Mass Spectrometry

More Information
  • Received Date: August 11, 2019
  • Revised Date: September 20, 2019
  • Accepted Date: October 20, 2019
  • Published Date: December 31, 2019
  • HIGHLIGHTS
    (1) Gypsum powder mixed with V2O5 was wrapped in a tin cup, and the sulfur isotope compositions were directly determined by continuous flow EA-IRMS method.
    (2) The feasibility of direct online analysis of calcium sulfate samples using EA-IRMS was verified through sulfur isotope results of 13 gypsum samples.
    (3) Compared with the conventional method, the direct online analysis had the advantages of fast analysis, small sample amount and simple operation.
    BACKGROUNDThe conventional method for the measurement of sulfur isotopes in sulfate includes mainly barite conversion coupled with dual-inlet SO2 methods. These methods are facile and reliable. However, the large amounts of samples, the length of time needed, the laborious experimental work, and complicated preprocessing are impractical for the development direction of micro-analysis.
    OBJECTIVESTo develop a method for determination of sulfur isotope compositions in gypsum directly through continuous flow elemental analyzer-isotope mass spectrometry (EA-IRMS).
    METHODSTwo different preparation methods were used. (1) Direct measurement of sulfur isotopes was carried out by mixing calcium sulfate powder with V2O5 in a tin cup using EA-IRMS. (2) Calcium sulfate was fully dissolved in deionized water. The precipitation reagent BaCl2 was added to the liquid in which the calcium sulfate sample was dissolved. After the precipitated barium sulfate was filtered out, it was washed 2 to 3 times with deionized water. Samples were dried and mixed with V2O5 in a sealed tin cup and then determined by mass spectrometry.
    RESULTSThe δ34S values of 13 gypsum samples ranged from -20‰ to -30‰, and the results from replicate measurements were compared for these two methods, yielding the absolute difference in δ values were 0.0-0.2 permil, indicating that the sulfur isotope ratios of the same sample were basically identical.
    CONCLUSIONSCompared with the conventional analysis method, the application of 'no pretreatment' to analyze the sulfur isotopes of gypsum was conducted successfully. Adding V2O5 to samples directly, during the process of instantaneous combustion, the oxygen in calcium sulfate are substituted by the external oxygen in V2O5 and oxygen gas, and the obtained oxygen of SO2 gas is uniform. Therefore, sulfur isotope ratios of SO2 can completely represent those of the calcium sulfate, making it unnecessary for oxygen isotope correction. The direct online analysis of sulfur isotopes in calcium sulfate samples using EA-IRMS is verified to be feasible.
  • Ohmoto H, Kakegawa T, Donald R L, et al.3.4-billion-year-old biogenic pyrites from Barberton, South Africa:Sulfur isotope evidence[J].Science, 1993, 262:555-557. doi: 10.1126/science.11539502
    Ohmoto H, Goldhaber M B.Sulfur and Carbon Isotopes[M]//Barnes H L.Geochemistry of Hydrothermal Ore Deposits (3rd Edition).New York: John Wiley and Sons, 1997: 517-611.
    Ono S.Multiple-sulphur isotope biosignatures[J].Space Science Reviews, 2008, 135(1-4):203-220. doi: 10.1007/s11214-007-9267-2
    Partridge M A, Golding S D, Baublys K, et al.Pyrite paragenesis and multiple sulfur isotope distribution in Late Archean and Early Paleoproterozoic hamersley basin sediments[J].Earth and Planetary Science Letters, 2008, 272(1-2):0-49. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=95c4aec554daddf38e4372b5399893a7
    Bowins R J, Crocket J H.Sulfur and carbon isotopes in Archean banded iron formations:Implications for sulfur sources[J].Chemical Geology, 1994, 111:307-323. doi: 10.1016/0009-2541(94)90097-3
    Kakegawa T, Ohmoto H.Sulfur isotope evidence for the origin of 3.4 to 3.1Ga pyrite at the Princeton gold mine, Barberton Greenstone Belt, South Africa[J].Precambrian Research, 1999, 96:209-224. doi: 10.1016/S0301-9268(99)00006-6
    刘成林, 王弭力, 焦鹏程.新疆罗布泊盐湖氢氧锶硫同位素地球化学及钾矿成矿物质来源[J].矿床地质, 1999, 18(3):268-275. doi: 10.3969/j.issn.0258-7106.1999.03.009

    Liu C L, Wang M L, Jiao P C.Hydrogen, oxygen, strontium and sulfur isotopic geochemistry and potash-forming material sources of LOP salt lake, Xinjiang[J].Mineral Deposits, 1999, 18(3):268-275. doi: 10.3969/j.issn.0258-7106.1999.03.009
    张华, 刘成林, 王立成, 等.老挝他曲盆地钾盐矿床蒸发岩硫同位素特征及成钾指示意义[J].地质论评, 2014, 60(4):851-857. http://d.old.wanfangdata.com.cn/Periodical/dzlp201404014

    Zhang H, Liu C L, Wang L C, et al.Characteristics of evaporites sulfur isotope from Potash Deposit in Thakhek Basin, Laos, and its implication for potash formation[J].Geological Review, 2014, 60(4):851-857. http://d.old.wanfangdata.com.cn/Periodical/dzlp201404014
    任顺利, 李延河, 曾普胜, 等.膏盐层在云南会泽和毛坪铅锌矿成矿中的作用:硫同位素证据[J].地质学报, 2018, 92(5):1041-1055. doi: 10.3969/j.issn.0001-5717.2018.05.010

    Ren S L, Li Y H, Zeng P S, et al.Effect of sulfate evaporate salt layer in mineralization of the Huize and Maoping lead-zinc deposits in Yunnan:Evidence from sulfur isotope[J].Acta Geologica Sinica, 2018, 92(5):1041-1055. doi: 10.3969/j.issn.0001-5717.2018.05.010
    Strauss H.Geological evolution from isotope proxy signals-sulfur[J].Chemical Geology, 1999, 161(1):89-101. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0210439375/
    Ahmad K, Davies C.A model of basin evolution in the Qa'Al-Azraq, Jordan using sulfur isotope analysis to distinguish sources of sulfur and gypsum[J].Carbonates & Evaporites, DOI: 10.1107/s13146-017-0138-2.
    李庆宽, 樊启顺, 山发寿, 等.海陆相蒸发岩硫同位素值变化和地球化学应用[J].盐湖研究, 2018, 26(1):73-80. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yhyj201801011

    Li Q K, Fan Q S, Shan F S, et al.The variation of sulfur isotope in marine-continental evaporites and its geochemical applications[J].Journal of Salt Lake Research, 2018, 26(1):73-80. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yhyj201801011
    Kazuya T, Yoichi N, Yuko M, et al.High-sensitivity sulfur isotopic measurements for Antarctic ice core analyses[J].Rapid Communications in Mass Spectrometry, 2018, 32:1991-1998. doi: 10.1002/rcm.8275
    李延河, 段超, 韩丹, 等.膏盐层氧化障在长江中下游玢岩铁矿成矿中的作用[J].岩石学报, 2014, 30(5):1355-1368. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201405012

    Li Y H, Duan C, Han D, et al.Effect of sulfate evaporate salt layer for formation of porphyrite iorn ores in the Middle-Lower Yangtze River area[J].Acta Petrologica Sinica, 2014, 30(5):1355-1368. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201405012
    Thode H G, Macnamara J, Collins C B.Narural variations in the isotopic content of sulphur and their signification[J].Canadian Journal of Research, 1949, Canadab-27:361-373. https://www.ncbi.nlm.nih.gov/pubmed/18130453
    卞霄鹏, 刘晨晖, 朱志勇, 等.硫酸盐硫同位素的MC-ICP-MS测定方法研究[J].矿物岩石地球化学通报, 2016, 35(3):465-472. doi: 10.3969/j.issn.1007-2802.2016.03.009

    Bian X P, Liu C H, Zhu Z Y, et al.Sulfur isotope measurement of sulfates by using high-resolution MC-ICP-MS[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 35(3):465-472. doi: 10.3969/j.issn.1007-2802.2016.03.009
    Giesemann A, Jaeger H J, Norman A L, et al.Online sulfur-isotope determination using an elemental analyzer coupled to a mass spectrometer[J].Analytical Chemistry, 1994, 66(18):2816-2819. doi: 10.1021/ac00090a005
    Baublys1 K A, Goldingl S D, Youngl E, et al.Simultaneous determination of δ33SV-CDT and δ34SV-CDT using masses 48, 49 and 50 on a continuous flow isotope ratio mass spectrometer[J]. Rapid Communications in Mass Spectrometry, 2004, 18:2765-2769. doi: 10.1002/rcm.1681
    Fourel F, Martineau F, Seris M, et al.Simultaneous N, C, S stable isotope analyses using a new purge and trap elemental analyzer and an isotope ratio mass spectrometer[J].Rapid Communications in Mass Spectrometry, 2014, 28(23):2587-2594. doi: 10.1002/rcm.7048
    Grassineau N V, Mattey D P, Lowry D.Sulfur isotope analysis of sulfide and sulfate minerals by continuous flow-isotope ratio mass spectrometry[J].Analysis Chemistry, 2001, 73:220-225. doi: 10.1021/ac000550f
    Grassineau N V.High-precision EA-IRMS analysis of S and C isotopes in geological materials[J].Applied Geochemistry, 2006, 21:756-765. doi: 10.1016/j.apgeochem.2006.02.015
    Studley S A, Ripley E M, Elswick E R, et al.Analysis of sulfides in whole rock matrices by elemental analyzer-continuous flow isotope ratios mass spectrometry[J].Chemical Geology, 2002, 192:141-148. doi: 10.1016/S0009-2541(02)00162-6
    金贵善, 刘汉彬, 张建锋, 等.硫化物中硫同位素组成的EA-IRMS分析方法[J].铀矿地质, 2014, 30(3):187-192. doi: 10.3969/j.issn.1000-0658.2014.03.010

    Jin G S, Liu H B, Zhang J F, et al.EA-IRMS system measurement of stable sulfur isotope in sulphide[J].Uranium Geology, 2014, 30(3):187-192. doi: 10.3969/j.issn.1000-0658.2014.03.010
    韩娟, 刘汉彬, 金贵善, 等.硫同位素组成的样品提取和制备[J].地质学报, 2015, 89(增刊):82-84. http://d.old.wanfangdata.com.cn/Conference/8771780

    Han J, Liu H B, Jin G S, et al.Sample extraction and preparation of sulfur isotope composition[J].Acta Geological Sinica, 2015, 89(Supplement):82-84. http://d.old.wanfangdata.com.cn/Conference/8771780
    Fourel F, Martineau F, Seris M, et al.Simultaneous N, C, S stable isotope analyses using a new purge and trap elemental analyzer and an isotope ratio mass spectrometer[J].Rapid Communications in Mass Spectrometry, 2014, 28(23):2587-2594. doi: 10.1002/rcm.7048
    Fry B, Silva S R, Kendall C, et al.Oxygen isotope corrections for online δ34S analysis[J].Rapid Communications in Mass Spectrometry, 2002, 16:854-858. doi: 10.1002/rcm.651
    韩娟, 刘汉彬, 金贵善, 等.样品质量对EA-IRMS法测量硫同位素组成的影响[J].铀矿地质, 2018, 34(3):166-173. doi: 10.3969/j.issn.1000-0658.2018.03.006

    Han J, Liu H B, Jin G S, et al.Sample mass influence on the measurement of sulfur isotopic composition by EA-IRMS method[J].Uranium Geology, 2018, 34(3):166-173. doi: 10.3969/j.issn.1000-0658.2018.03.006
    白瑞梅, 李金城.热解硫酸钡制备硫同位素分析试样二氧化硫[J].岩矿测试, 1998, 17(1):40-43. doi: 10.3969/j.issn.0254-5357.1998.01.006

    Bai R M, Li J C.Thermal decomposition of barium sulfate for preparation of sulfur dioxide used in sulfur isotope analysis[J].Rock and Mineral Analysis, 1998, 17(1):40-43. doi: 10.3969/j.issn.0254-5357.1998.01.006
  • Cited by

    Periodical cited type(18)

    1. 赵芳芳,诸堃,文芳. 超级微波消解-电感耦合等离子体发射光谱测银矿石中的银. 四川地质学报. 2024(01): 167-170 .
    2. 赵凯,芦新根,肖千鹏,张晶晶,谭书宇. 镍锍试金法富集地质样品中铂、钯、铑、铱. 化学分析计量. 2024(05): 66-71 .
    3. 郭家凡,陈笑语,孙勇,仲伟路,朱少璇,王琳. 镍锍试金富集-电感耦合等离子体质谱法测定地质样品中超痕量铂族元素. 岩矿测试. 2024(05): 693-702 . 本站查看
    4. 王夺. 镍锍试金-微波消解法联合测定汽车三元催化剂中铑. 有色矿冶. 2023(02): 59-61+49 .
    5. 刘芳美,甘聪,廖彬玲,罗小兵,赖秋祥. 锍镍试金富集-电感耦合等离子体质谱法测定铜阳极泥中微量元素铱铑. 岩矿测试. 2023(02): 298-306 . 本站查看
    6. 周彧琛,曲少鹏,吴俊,贾正勋,马景治. 改性三聚氰胺泡塑富集-电感耦合等离子体质谱(ICP-MS)法测定矿样中的钯. 中国无机分析化学. 2023(07): 735-740 .
    7. 李杰阳. 复杂多金属铜硫矿物中金含量的测定. 云南冶金. 2022(01): 110-115 .
    8. 陈永红,韩冰冰,洪博,芦新根,孟宪伟. 2019—2020年中国银分析测定的进展. 黄金. 2022(02): 104-110 .
    9. 杨昆. 铜镍硫化物矿物中铂族元素的分析研究. 化工管理. 2022(08): 13-15 .
    10. 张广安,张福元. 火试金灰皿在乙酸-H_2O体系中铅的浸出动力学. 过程工程学报. 2022(06): 774-781 .
    11. 樊蕾,王甜甜,姚明星,孙启亮,郭晓瑞. 锑铜试金-石墨炉原子吸收光谱法测定地球化学样品中痕量钌. 冶金分析. 2022(08): 35-41 .
    12. 胡振隆. 金矿的样品制备与分析方法研究进展. 世界有色金属. 2022(11): 187-189 .
    13. 刘向磊,孙文军,文田耀,王腾飞,王凯凯,刘宗超. 地质样品中贵金属分析方法现状及展望. 冶金分析. 2022(12): 23-35 .
    14. 王楠,周宇,任士远,陈明丽,刘西. 分离富集技术在痕量贵金属分析中的应用与进展. 冶金分析. 2022(12): 12-22 .
    15. 郭家凡,来新泽,王琳,胡家祯,高志军,来佳仪. 火试金反应原理及熔渣影响因素探究. 冶金分析. 2022(12): 1-11 .
    16. 贾欣欣. 地质样品中金的测定研究. 世界有色金属. 2020(06): 164-165 .
    17. 张强. 地质矿石样品中金、银含量测定方法的探讨. 世界有色金属. 2020(10): 157-158 .
    18. 张明,杨生鸿,朱琳,安国荣,韩永辉. 铜镍硫化物矿物中铂族元素的分析研究. 化工矿产地质. 2020(04): 343-347 .

    Other cited types(1)

Catalog

    Article views (2169) PDF downloads (52) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return