• DOAJ
  • Scopus
  • Core Journal of China
  • Chinese Science Citation Database (CSCD)
  • Chinese Scientific and Technical Paper and Citation Database (CSTPCD)
Xing-chao ZHANG, Chao LIU, Yi HUANG, Fang HUANG, Hui-min YU. The Effect of Dry-Ashing Method on Copper Isotopic Analysis of Soil Samples with Organic Matter[J]. Rock and Mineral Analysis, 2018, 37(4): 347-355. DOI: 10.15898/j.cnki.11-2131/td.201803290033
Citation: Xing-chao ZHANG, Chao LIU, Yi HUANG, Fang HUANG, Hui-min YU. The Effect of Dry-Ashing Method on Copper Isotopic Analysis of Soil Samples with Organic Matter[J]. Rock and Mineral Analysis, 2018, 37(4): 347-355. DOI: 10.15898/j.cnki.11-2131/td.201803290033

The Effect of Dry-Ashing Method on Copper Isotopic Analysis of Soil Samples with Organic Matter

More Information
  • Received Date: March 28, 2018
  • Revised Date: April 26, 2018
  • Accepted Date: June 10, 2018
  • Published Date: June 30, 2018
  • HIGHLIGHTS
    (1) The effect of dry-ashing method on copper isotopic analysis of soil samples was investigated in this study.
    (2) The dry-ashing process can cause copper volatilization loss and isotope fractionation in soil samples. This fractionation process is affected by the ashing temperature and the nature of the sample.
    (3) Wet-digestion method is more reliable to prepare samples for Cu isotope analysis.
    BACKGROUNDWhen analyzing copper isotopes in soil samples, organic matter can cause serious interference on chemical purification and analysis processes. Therefore, the complete removal of organic matter from the soil is critical to obtain high-precision copper isotope data without changing the copper isotope composition of the sample.
    OBJECTIVESTo carry out the condition experiments before using the dry-ashing method, because the method may influence the compositions of volatile elements, such as Cu, in soil samples.
    METHODSSoil samples containing organic matter were treated by dry-ashing and then digested by the high-pressure wet digestion method. The copper isotope composition was measured by Multi-collector Inductively Coupled Plasma-Mass Spectrometry after purification. Through the comparison of the results of the two treatment methods, the extent of influence of the dry-ashing method on the copper isotopic composition of soil samples was investigated.
    RESULTSThe results demonstrate that the wet-digestion method can provide more precise results, while the dry-ashing method can significantly fractionate Cu isotopes of soil samples. The deviation of δ 65Cu values varies from -0.61‰ to 3.46‰ for the dry-ashing method, which was caused by volatilization loss of Cu. Moreover, the degree of influence is controlled by a few factors such as sample nature and ashing temperature.
    CONCLUSIONSThe dry-ashing method is not an appropriate method for soil sample digestion. The wet-digestion method is a better choice to prepare samples for Cu isotopic analysis.

  • Mathur R, Titley S, Barra F, et al.Exploration potential of Cu isotope fractionation in porphyry copper deposits[J].Journal of Geochemical Exploration, 2009, 102:1-6. doi: 10.1016/j.gexplo.2008.09.004
    Asael D, Matthews A, Bar-Matthews M, et al.Copper isotope fractionation in sedimentary copper mineralization (Timna Valley, Israel)[J].Chemical Geology, 2007, 243:238-254. doi: 10.1016/j.chemgeo.2007.06.007
    Larson P B, Maher K, Ramos F C, et al.Copper isotope ratios in magmatic and hydrothermal ore-forming environments[J].Chemical Geology, 2003, 201:337-350. doi: 10.1016/j.chemgeo.2003.08.006
    Huang J, Huang F, Wang Z, et al.Copper isotope frac-tionation during partial melting and melt percolation in the upper mantle:Evidence from Massif peridotites in Ivrea-Verbano Zone, Italian Alps[J].Geochimica et Cosmochimica Acta, 2017, 211:48-63. doi: 10.1016/j.gca.2017.05.007
    Li W Q, Jackson S E, Pearson N J, et al.The Cu isotopic signature of granites from the Lachlan fold belt, SE Australia[J].Chemical Geology, 2009, 258:38-49. doi: 10.1016/j.chemgeo.2008.06.047
    Bigalke M, Weyer S, Wilcke W.Stable Cu isotope frac-tionation in soils during oxic weathering and podzolization[J].Geochimica et Cosmochimica Acta, 2011, 75:3119-3134. doi: 10.1016/j.gca.2011.03.005
    Vance D, Archer C, Bermin J, et al.The copper isotope geochemistry of rivers and the oceans[J].Earth and Planetary Science Letters, 2008, 274:204-213. doi: 10.1016/j.epsl.2008.07.026
    Gonzalez R O, Strekopytov S, Amato F, et al.New insights from zinc and copper isotopic compositions into the sources of atmospheric particulate matter from two major European cities[J].Environmental Science & Technology, 2016, 50:9816-9824. http://www.ncbi.nlm.nih.gov/pubmed/27508898
    Thapalia A, Borrok D M, van Metre P C, et al.Zn and Cu isotopes as tracers of anthropogenic contamination in a sediment core from an urban lake[J].Environmental Science & Technology, 2010, 44:1544-1550. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0215604902
    Télouk P, Puisieux A, Fujii T, et al.Copper isotope effect in serum of cancer patients:A pilot study[J].Metallomics, 2015, 7:299-308. doi: 10.1039/C4MT00269E
    Navarrete J U, Borrok D M, Viveros M, et al.Copper iso-tope fractionation during surface adsorption and intracellular incorporation by bacteria[J].Geochimica et Cosmochimica Acta, 2011, 75:784-799. doi: 10.1016/j.gca.2010.11.011
    Mathur R, Titley S, Hart G, et al.The history of the Uni-ted States cent revealed through copper isotope fractionation[J].Journal of Archaeological Science, 2009, 36:430-433. doi: 10.1016/j.jas.2008.09.029
    Moynier F, Albarède F, Herzog G.Isotopic composition of zinc, copper, and iron in Lunar samples[J].Geochimica et Cosmochimica Acta, 2006, 70:6103-6117. doi: 10.1016/j.gca.2006.02.030
    Luck J M, Othman D B, Albarède F.Zn and Cu isotopic variations in chondrites and iron meteorites:Early Solar nebula reservoirs and parent-body processes[J].Geochimica et Cosmochimica Acta, 2005, 69:5351-5363. doi: 10.1016/j.gca.2005.06.018
    Vance D, Matthews A, Keech A, et al.The behaviour of Cu and Zn isotopes during soil development:Controls on the dissolved load of rivers[J].Chemical Geology, 2016, 445:36-53. doi: 10.1016/j.chemgeo.2016.06.002
    Liu S A, Teng F Z, Li S, et al.Copper and iron isotope fractionation during weathering and pedogenesis:Insights from saprolite profiles[J].Geochimica et Cosmochimica Acta, 2014, 146:59-75. doi: 10.1016/j.gca.2014.09.040
    Grybos M, Davranche M, Gruau G, et al.Is trace metal release in wetland soils controlled by organic matter mobility or Fe-oxyhydroxides reduction?[J].Journal of Colloid and Interface Science, 2007, 314:490-501. doi: 10.1016/j.jcis.2007.04.062
    Maréchal C N, Télouk P, Albarède F.Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry[J].Chemical Geology, 1999, 156:251-273. doi: 10.1016/S0009-2541(98)00191-0
    Mason T F, Weiss D J, Horstwood M, et al.High-precision Cu and Zn isotope analysis by plasma source mass spectrometry.Part 1.Spectral interferences and their correction[J].Journal of Analytical Atomic Spectrometry, 2004, 19:209-217. doi: 10.1039/b306958c
    Mason T F, Weiss D J, Horstwood M, et al.High-precision Cu and Zn isotope analysis by plasma source mass spectrometry.Part 2.Correcting for mass discrimination effects[J].Journal of Analytical Atomic Spectrometry, 2004, 19:218-226. doi: 10.1039/b306953b
    Bermin J, Vance D, Archer C, et al.The determination of the isotopic composition of Cu and Zn in seawater[J].Chemical Geology, 2006, 226:280-297. doi: 10.1016/j.chemgeo.2005.09.025
    Peel K, Weiss D, Chapman J, et al.A simple combined sample-standard bracketing and inter-element correction procedure for accurate mass bias correction and precise Zn and Cu isotope ratio measurements[J].Journal of Analytical Atomic Spectrometry, 2008, 23:103-110. doi: 10.1039/B710977F
    Sossi P A, Halverson G P, Nebel O, et al.Combined se-paration of Cu, Fe and Zn from rock matrices and improved analytical protocols for stable isotope determination[J].Geostandards and Geoanalytical Research, 2015, 39:129-149. doi: 10.1111/ggr.2015.39.issue-2
    Zhu X, O'nions R, Guo Y, et al.Determination of natural Cu-isotope variation by plasma-source mass spectrometry:Implications for use as geochemical tracers[J].Chemical Geology, 2000, 163:139-149. doi: 10.1016/S0009-2541(99)00076-5
    Larner F, Rehkämper M, Coles B J, et al.A new separation procedure for Cu prior to stable isotope analysis by MC-ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2011, 26:1627-1632. doi: 10.1039/c1ja10067j
    Liu S A, Li D, Li S, et al.High-precision copper and iron isotope analysis of igneous rock standards by MC-ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2014, 29:122-133. doi: 10.1039/C3JA50232E
    Albarède F, Telouk P, Blichert-Toft J, et al.Precise and accurate isotopic measurements using multiple-collector ICPMS[J].Geochimica et Cosmochimica Acta, 2004, 68:2725-2744. doi: 10.1016/j.gca.2003.11.024
    Yang L.Accurate and precise determination of isotopic ratios by MC-ICP-MS:A review[J].Mass Spectrometry Reviews, 2009, 28:990-1011. doi: 10.1002/mas.v28:6
    Douthitt C B.The evolution and applications of multi-collector ICPMS (MC-ICPMS)[J].Analytical & Bioanalytical Chemistry, 2008, 390:437-440. http://www.ncbi.nlm.nih.gov/pubmed/17938893
    Fontaine G H, Hattendorf B, Bourdon B, et al.Effects of operating conditions and matrix on mass bias in MC-ICPMS[J].Journal of Analytical Atomic Spectrometry, 2009, 24:637-648. doi: 10.1039/b816948a
    Barling J, Weis D.An isotopic perspective on mass bias and matrix effects in multi-collector inductively-coupled-plasma mass spectrometry[J].Journal of Analytical Atomic Spectrometry, 2012, 27:653-662. doi: 10.1039/c2ja10382f
    李世珍, 朱祥坤, 吴龙华, 等.干法灰化和湿法消解植物样品的铜锌铁同位素测定对比研究[J].地球学报, 2011, 32(6):116-122. http://d.old.wanfangdata.com.cn/Periodical/dqxb201106014

    Li S Z, Zhu X K, Wu L H, et al.A comparative study of plant sample preperation by bry ashing and wet digestion for isotopic determination of Cu, Zn and Fe[J].Acta Geoscientica Sinica, 2011, 32(6):116-122. http://d.old.wanfangdata.com.cn/Periodical/dqxb201106014
    Jenkins E.Phytolith taphonomy:A comparison of dry ashing and acid extraction on the breakdown of conjoined phytoliths formed in Triticum Durum[J].Journal of Archaeological Science, 2009, 36:2402-2407. doi: 10.1016/j.jas.2009.06.028
    Sahrawat K, Ravi K G, Rao J.Evaluation of triacid and dry ashing procedures for determining potassium, calcium, magnesium, iron, zinc, manganese, and copper in plant materials[J].Communications in Soil Science and Plant Analysis, 2002, 33:95-102. doi: 10.1081/CSS-120002380
    Enders A, Lehmann J.Comparison of wet-digestion and dry-ashing methods for total elemental analysis of biochar[J].Communications in Soil Science and Plant Analysis, 2012, 43:1042-1052. doi: 10.1080/00103624.2012.656167
    乔爱香, 曹磊, 江冶, 等.干法灰化和微波消解-电感耦合等离子体发射光谱法测定植物样品中22个主次量元素[J].岩矿测试, 2010, 29(1):29-33. doi: 10.3969/j.issn.0254-5357.2010.01.007

    Qiao A X, Cao L, Jiang Y, et al.Inductively coupled plasma-atomic emission spectrometric determination of 22 major and minor elements in plant samples with sample pretreatment methods of dry ashing and microwave digestion[J].Rock and Mineral Analysis, 2010, 29(1):29-33. doi: 10.3969/j.issn.0254-5357.2010.01.007
    Lodders K.Solar system abundances and condensation temperatures of the elements[J].Astrophysical Journal, 2003, 591:1220-1247. doi: 10.1086/apj.2003.591.issue-2
    侯振辉, 王晨香.电感耦合等离子体质谱法测定地质样品中35种微量元素[J].中国科学技术大学学报, 2007, 37(8):940-944. doi: 10.3969/j.issn.0253-2778.2007.08.019

    Hou Z H, Wang C X.Determination of 35 trace elements in geological samples by inductively coupled plasma mass spectrometry[J].Jouenal of University of Science and Technology of China, 2007, 37(8):940-944. doi: 10.3969/j.issn.0253-2778.2007.08.019
    Moeller K, Schoenberg R, Pedersen R B, et al.Calibra-tion of the new certified reference materials ERM-AE633 and ERM-AE647 for copper and IRMM-3702 for zinc isotope amount ratio determinations[J]. Geostandards and Geoanalytical Research, 2012, 36:177-199. doi: 10.1111/ggr.2012.36.issue-2
    Moynier F, Koeberl C, Beck P, et al.Isotopic fractiona-tion of Cu in Tektites[J].Geochimica et Cosmochimica Acta, 2010, 74:799-807. doi: 10.1016/j.gca.2009.10.012
    Dekov V M, Rouxel O, Asael D, et al.Native Cu from the oceanic crust:Isotopic insights into native metal origin[J].Chemical Geology, 2013, 359:136-149. doi: 10.1016/j.chemgeo.2013.10.001
    Young E D, Galy A, Nagahara H.Kinetic and equilibri-um mass-dependent isotope fractionation laws in nature and their geochemical and cosmochemical significance[J].Geochimica et Cosmochimica Acta, 2002, 66:1095-1104. doi: 10.1016/S0016-7037(01)00832-8
    Bowen H.The determination of copper and zinc in biolo-gical material by activation analysis[J].The International Journal of Applied Radiation and Isotopes, 1959, 4:214-220. doi: 10.1016/0020-708X(59)90196-6
  • Cited by

    Periodical cited type(2)

    1. 吴凯,高娟琴,解古巍,杨伟伟,罗丽荣,李善鹏. 鄂尔多斯盆地三叠系延长组长7段页岩气储层特征及其勘探开发前景. 石油实验地质. 2024(06): 1298-1311 .
    2. 严礼宇,郑义,王成明,虞鹏鹏. 流体包裹体方法在页岩气研究中的应用. 地质力学学报. 2019(S1): 103-107 .

    Other cited types(1)

Catalog

    Article views (2111) PDF downloads (51) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return