• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
LIU Jun, WANG Ying, SU Ai-na, LIU Fu-liang, ZHANG Lin. Determination of Chlorine Stable Isotopes in Groundwater Inorganics by Continuous Flow Isotope Mass Spectrometry Method and Analysis of Influence Factors[J]. Rock and Mineral Analysis, 2022, 41(1): 80-89. DOI: 10.15898/j.cnki.11-2131/td.202108090094
Citation: LIU Jun, WANG Ying, SU Ai-na, LIU Fu-liang, ZHANG Lin. Determination of Chlorine Stable Isotopes in Groundwater Inorganics by Continuous Flow Isotope Mass Spectrometry Method and Analysis of Influence Factors[J]. Rock and Mineral Analysis, 2022, 41(1): 80-89. DOI: 10.15898/j.cnki.11-2131/td.202108090094

Determination of Chlorine Stable Isotopes in Groundwater Inorganics by Continuous Flow Isotope Mass Spectrometry Method and Analysis of Influence Factors

More Information
  • Received Date: August 08, 2021
  • Revised Date: September 26, 2021
  • Accepted Date: November 04, 2021
  • Published Date: January 27, 2022
  • HIGHLIGHTS
    (1) The injection method was improved in the experiment, which can reduce the sample volatilization and solve the low pressure problem of reference gas.
    (2) The key parameters affecting the accuracy were light, temperature, continuous helium gas, and split ratio.
    (3) The repeatability and stability test of the method was carried out, and the accuracy of the method satisfied the requirement of ±0.2‰.
    BACKGROUNDStable chlorine isotope, as an effective tracer, can indicate the water evolution and explore the changes of the geological environment. It has a wide application prospect in earth science. The continuous flow isotope ratio mass spectrometry (CF-IRMS) method has been widely used in the determination of stable isotopes due to the advantages of smaller sample size and higher sensitivity. As a volatile gas, methyl chloride easily escapes during the reaction and the test pipeline, causing sample loss. How to achieve the separation and purification of CH3Cl and improve the conversion rate of CH3Cl of the samples in the reaction and analysis is the key to successful determination of stable chlorine isotopes by CF-IRMS.
    OBJECTIVESTo understand the influencing factors for the determination of CH3Cl by CF-IRMS.
    METHODSThe international standard material of chlorine isotope (ISL-354) was chosen as the standard material. The determination method of chlorine stable isotope content in groundwater was studied by using stable isotope ratio mass spectrometer (IRMS) analysis system combined with gas chromatography (GC) separation technology. Three types of samples from analytical pure, standard, and groundwater were chosen.
    RESULTSBy adopting the combined sampling method of GC manual injection and dual-channel reference gas injection, the loss of methyl chloride during the reaction and testing process was reduced, the concentration of methyl chloride during the online analysis was guaranteed, and better test accuracy was obtained. The results showed that the standard deviation of the 37Cl/35Cl ratio of the samples determined by this method was within the range of 0.20‰. The error of the results from different laboratories was less than 0.035‰, which satisfied the requirement of 0.5‰ reproducibility of geological samples. Parameters such as light, temperature, sulfate removal, continuous helium flow and split ratio were the major factors affecting the test accuracy in the experiment. The influence of these parameters should be strictly controlled in the experiment to ensure the accuracy of this method.
    CONCLUSIONSThis method has the advantages of simple pretreatment, small sample consumption, large number of test samples and short test period, which can improve the efficiency of the analytical methods of the chlorine stable isotope of groundwater inorganics.

  • Nier O, Hanson E E. A mass-spectrographic analysis of the ions produced in HCl under electron impact[J]. Physical Review, 1936, 50: 722-726. doi: 10.1103/PhysRev.50.722
    Langvad T. Separation of chlorine isotope by ion- exchange chromatography[J]. Acta Chemica Scandinavica, 1954, 8(3): 526-527.
    Hill J W, Fry A. Chlorine isotope effects in the reactions of benzyl and substituted benzyl chlorides with various nucleophiles[J]. Journal of the American Chemical Society, 1962, 84.
    Taylor J W, Grimsrud E P. Chlorine isotopic ratios by negative ion mass spectrometry[J]. Analytical Chemistry, 1969, 41(6): 805-810. doi: 10.1021/ac60275a002
    Kaufman R S, Long A, Bentley H, et al. Natural chlorine isotope variations[J]. Nature, 1984, 309: 338-340. doi: 10.1038/309338a0
    Xiao Y K, Zhang C G. High precision isotopic measure-ment of chlorine by thermal ionization mass spectrometry of the Cs2Cl+ ion[J]. International Journal of Mass Spectrometry and Ion Processes, 1992, 116: 183-192. doi: 10.1016/0168-1176(92)80040-8
    Shouakar-Stash O, Drimmie R J, Frape S K. Determination of inorganic chlorine stable isotopes by continuous flow isotope ratio mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2005, 19(2): 121-127. doi: 10.1002/rcm.1762
    Van Acker M R M D, Shahar A, Young E D, et al. GC/multiple collector-ICPMS method for chlorine stable isotope analysis of chlorinated aliphatic hydrocarbons[J]. Analytical Chemistry, 2006, 78(13): 4663-4667. doi: 10.1021/ac0602120
    Sakaguchi-Söder K, Jager J, Grund H, et al. Monitoring and evaluation of de-chlorination processes using compound-specific chlorine isotope analysis[J]. Rapid Communications in Mass Spectrometry, 2007, 21(18): 3077-3084. doi: 10.1002/rcm.3170
    Eastoe C J, Long A, Land L S, et al. Stable chlorine isotopes in halite and brine from the Gulf Coast Basin: Brine genesis and evolution[J]. Chemical Geology, 2001, 176(1-4): 343-360. doi: 10.1016/S0009-2541(00)00374-0
    Eggenkamp H G M, Louvat P, Agrinier P, et al. The bromine and chlorine isotope composition of primary halite deposits and their significance for the secular isotope composition of seawater[J]. Geochimica et Cosmochimica Acta, 2019, 264: 13-29. doi: 10.1016/j.gca.2019.08.005
    Pinti D L, Shouakar-Stash O, Castro M C, et al. The bromine and chlorine isotopic composition of the mantleas revealed by deep geothermal fluids[J]. Geochimica et Cosmochimica Acta, 2020, 276: 14-30. doi: 10.1016/j.gca.2020.02.028
    Yu H T, Ma T, Du Y, et al. Genesis of formation water in the northern sedimentary basin of South China Sea: Clues from hydrochemistry and stable isotopes (D, 18O, 37Cl and 81Br)[J]. Journal of Geochemical Exploration, 2019, 196: 57-65. doi: 10.1016/j.gexplo.2018.08.005
    Eggenkamp H G M, Louvat P, Griffioen J, et al. Chlorine and bromine isotope evolution within a fully developed Upper Permian natural salt sequence[J]. Geochimica et Cosmochimica Acta, 2019, 245: 316-326. doi: 10.1016/j.gca.2018.11.010
    Du Y, Ma T, Chen L Z, et al. Chlorine isotopic constraint on contrastive genesis of representative coastal and inland shallow brine in China[J]. Journal of Geochemical Exploration, 2016, 170: 21-29. doi: 10.1016/j.gexplo.2016.07.024
    Eastoe C J. Stable chlorine isotopes in arid non-marine basins: Instances and possible fractionation mechanisms[J]. Applied Geochemistry, 2016, 74: 1-12. doi: 10.1016/j.apgeochem.2016.08.015
    He Z K, Ma C M, Zhou A G, et al. Using hydrochemical and stable isotopic (δ2H, δ18O, δ11B, and δ37Cl) data to understand groundwater evolution in an unconsolidated aquifer system in the southern coastal area of Laizhou Bay, China[J]. Applied Geochemistry, 2018, 90: 129-141. doi: 10.1016/j.apgeochem.2018.01.003
    Chen L Z, Ma T, Du Y, et al. Hydrochemical and isotopic (2H, 18O and 37Cl) constraints on evolution of geothermal water in coastal plain of southwestern Guangdong Province, China[J]. Journal of Volcanology and Geothermal Research, 2016, 318: 45-54. doi: 10.1016/j.jvolgeores.2016.03.003
    Liu X, Wei H Z, Williams-Jones A E, et al. Chlorine isotope fractionation during serpentinization and hydrothermal mineralization: A density functional theory study[J]. Chemical Geology, 2021, 581: 120406. doi: 10.1016/j.chemgeo.2021.120406
    Alekseeva L P, Alekseev S V. Geochemistry of ground ice, saline groundwater, and brines in the Cryoartesian Basins of the northeastern Siberian platform[J]. Russian Geology and Geophysics, 2018, 59: 144-156. doi: 10.1016/j.rgg.2018.01.012
    Hasegawa T, Nakata K, Mahara Y, et al. Characterization of a diffusion-dominant system using chloride and chlorine isotopes (36Cl, 37Cl) for the confining layer of the Great Artesian Basin, Australia[J]. Geochimica et Cosmochimica Acta, 2016, 192: 279-294. doi: 10.1016/j.gca.2016.08.002
    Szocs T, Frape S, Gwynne R, et al. Chlorine stable isotope and helium isotope studies contributing to the understanding of the hydro-geochemical characteristics of old groundwater[J]. Procedia Earth and Planetary Science, 2017, 17: 877-880. doi: 10.1016/j.proeps.2017.01.004
    查向平, 龚冰, 郑永飞. 低质量数元素同位素在线连续流同位素比值质谱分析的质量控制和数据标准化[J]. 岩矿测试, 2014, 33(4): 453-467. doi: 10.3969/j.issn.0254-5357.2014.04.002

    Zha X P, Gong B, Zheng Y F. Data normalization and quality control of light element stable isotope analyses by means of continuous flow isotope ratio mass spectrometry[J]. Rock and Mineral Analysis, 2014, 33(4): 453-467. doi: 10.3969/j.issn.0254-5357.2014.04.002
    查向平, 龚冰, 郑永飞. 高灵敏度元素分析仪-连续流同位素质谱法对硅酸盐岩中碳及碳同位素组成的精确测定[J]. 岩矿测试, 2017, 36(4): 327-339. doi: 10.15898/j.cnki.11-2131/td.201611190174

    Zha X P, Gong B, Zheng Y F. Precise measurement of carbon concentration and isotopic ratios in silicate rocks by a high sensitivity elemental analyzer coupled with a continuous flow isotope mass spectrometry[J]. Rock and Mineral Analysis, 2017, 36(4): 327-339. doi: 10.15898/j.cnki.11-2131/td.201611190174
    高建飞, 徐衍明, 范昌福, 等. 元素分析仪-气体同位素质谱法分析硫酸钙样品的硫同位素组成[J]. 岩矿测试, 2020, 39(1): 53-58. doi: 10.15898/j.cnki.11-2131/td.201908120128

    Gao J F, Xu Y M, Fan C F, et al. Analysis of sulfur isotope composition of gypsum samples by elemental analyzer-isotope mass spectrometry[J]. Rock and Mineral Analysis, 2020, 39(1): 53-58. doi: 10.15898/j.cnki.11-2131/td.201908120128
    周爱国, 李小倩, 刘存富, 等. 氯代挥发性有机物(VOCs)氯同位素测试技术及其在地下水污染中的应用研究进展[J]. 地球科学进展, 2008, 23(4): 342-349. doi: 10.3321/j.issn:1001-8166.2008.04.003

    Zhou A G, Li X Q, Liu C F, et al. Review of analytical methods for chlorine isotopes in chlorinated volatile organic compounds and application in groundwater contamination[J]. Advances in Earth Science, 2008, 23(4): 342-349. doi: 10.3321/j.issn:1001-8166.2008.04.003
    张原, 祁士华. 稳定氯同位素分析技术及其在有机氯污染物研究中的应用[J]. 化学进展, 2012, 24(12): 2384-2390. https://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ201212012.htm

    Zhang Y, Qi S H. Techniques of stable chlorine isotope analysis and relevant applications in research of organochlorine pollutants[J]. Progress in Chemistry, 2012, 24(12): 2384-2390. https://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ201212012.htm
    甘义群, 于凯, 周爱国, 等. 基于GasBench-IRMS的挥发性氯代烃碳氯同位素指纹特征分析[J]. 地质科技情报, 2013, 32(6): 110-115. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201306018.htm

    Gan Y Q, Yu K, Zhou A G, et al. Isotopic fingerprint analysis of carbon and chlorine of volatile chlorinated hydrocarbons based on GasBench-IRMS[J]. Geological Science and Technology Information, 2013, 32(6): 110-115. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201306018.htm
    桂建业, 张晶, 张辰凌, 等. 反应电离质谱法测定有机单体氯同位素的研究[J]. 分析化学, 2019, 47(2): 237-243. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201902012.htm

    Gui J Y, Zhang J, Zhang C L, et al. Approach to compound-specific isotope analysis of chlorine with reaction mass spectrometry and its exploration[J]. Chinese Journal of Analytical Chemistry, 2019, 47(2): 237-243. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201902012.htm
    刘存富, 王佩仪, 周炼. 高精度测定稳定氯同位素的制样方法[J]. 地质科技情报, 1995, 14(1): 94-98. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ501.017.htm

    Liu C F, Wang P Y, Zhou L. Preparative method of high-precision measurement of chlorine stable isotope[J]. Geological Science and Technology Information, 1995, 14(1): 94-98. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ501.017.htm
    Liu Y D, Zhou A G, Gan Y Q, et al. An online method to determine chlorine stable isotope composition by continuous flow isotope ratio mass spectrometry (CF-IRMS) coupled with a GasBench Ⅱ[J]. Journal of Central South University, 2013, 20(1): 193-198. doi: 10.1007/s11771-013-1476-0
    李小倩, 方玲, 刘运德, 等. 高氯酸盐稳定氯、氧同位素测试新技术[J]. 地质科技情报, 2015, 34(4): 200-204. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201504030.htm

    Li X Q, Fang L, Liu Y D, et al. New measurement technique for stable chlorine and oxygen isotopic compositions of perchlorate[J]. Geological Science and Technology Information, 2015, 34(4): 200-204. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201504030.htm
    Xiao Y K, Zhou Y M, Wang Q Z, et al. A secondary isotopic reference material of chlorine from selected seawater[J]. Chemical Geology, 2002, 182(2-4): 655-661. doi: 10.1016/S0009-2541(01)00349-7
    Wei H Z, Jiang S Y, Xiao Y K, et al. Precise deter-mination of the absolute isotopic abundance ratio and the atomic weight of chlorine in three international reference materials by positive thermal ionization mass spectrometer Cs2Cl+-graphite method[J]. Analytical Chemistry, 2012, 84(23): 10350-10358. doi: 10.1021/ac302498q
    周秋石, 王瑞. 氯同位素地球化学研究进展[J]. 地学前缘, 2020, 27(3): 42-67. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202003005.htm

    Zhou Q S, Wang R. Advances in chlorine isotope geochemistry[J]. Earth Sciences Frontiers, 2020, 27(3): 42-67. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202003005.htm
    Rosenbaum J M, Cliff R A, Coleman M L. Chlorine stable isotopes: A comparison of dual inlet and thermal ionization mass spectrometric measurement[J]. Analytical Chemistry, 2000, 72(10): 2261-2264. doi: 10.1021/ac991297q
    Godon A, Jendrzejewski N, Eggenkamp H G M, et al. A cross-calibration of chlorine isotopic measurements and suitability of seawater as the international reference material[J]. Chemical Geology, 2004, 207(1/2): 1-12.
    张媛媛, 贺行良, 孙书文, 等. 元素分析仪-同位素比值质谱仪测定海洋沉积物有机碳稳定同位素方法初探[J]. 岩矿测试, 2012, 31(4): 627-631. doi: 10.3969/j.issn.0254-5357.2012.04.012

    Zhang Y Y, He X L, Sun S W, et al. A preliminary study on the determination of organic carbon stable isotope of marine sediment by element analyzer-isotope ratio mass spectrometer[J]. Rock and Mineral Analysis, 2012, 31(4): 627-631. doi: 10.3969/j.issn.0254-5357.2012.04.012
  • Related Articles

    [1]JI Ang. Development of X-ray Fluorescence Spectrometry in the 30 Years[J]. Rock and Mineral Analysis, 2012, 31(3): 383-398.
    [2]MA Tian-fang, LI Xiao-li, CHEN Yong-jun, DENG Zhen-pin, LI Guo-hui. Interchangeable Analysis of Method on the X-ray Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2011, 30(4): 486-490.
    [3]LI Xiaoli, AN Shuqing, XU Tiemin, YANG Lifeng, LI Guohui, ZHU Jianfeng. Determination of Major and Minor Components in Coal Ash Samples by X-ray Fluorescence Spectrometry with Fused Bead Sample Preparation[J]. Rock and Mineral Analysis, 2009, 28(4): 385-387.
    [4]ZHANG Jian-bo, LIN Li, LIU Zai-mei. Determinations of Major and Minor Components in Titanium Concentrates by X-ray Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2009, 28(2): 188-190.
    [5]Determination of 31 Components in Soil Samples by X-ray Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2007, 26(6): 490-492.
    [6]Determination of Calcium Fluoride in Fluorspar by X-ray Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2007, 26(5): 419-420.
    [7]X-ray Fluorescence Spectrometric Analysis of Wollastonite[J]. Rock and Mineral Analysis, 2007, 26(3): 245-247.
    [8]Analysis of ZL205A Alloy by X-Ray Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2003, (4): 303-306.
    [9]Composition Analysis by X ray EDS and Magnetic Susceptibility Test of Gems and Jades[J]. Rock and Mineral Analysis, 1996, (3): 226-228.
    [10]X-Ray Fluorescence Spectrometry Integrated Analysis System[J]. Rock and Mineral Analysis, 1995, (1): 61-65.
  • Cited by

    Periodical cited type(7)

    1. 王玥,程然然,孟信刚. 气相色谱法测定新烟碱类农药研究进展. 现代农业科技. 2022(08): 89-94 .
    2. 李鸿,吕丽兰,杜国冬,甘志勇,李乾坤,陆覃昱,秦玉燕,吴静娜,时鹏涛,梁宏合. 水生蔬菜重金属污染及农药残留状况调查. 广西农学报. 2022(02): 18-24 .
    3. 秦佳琪,王焱,周同宁,张亚红,朱美霖. 不同地区枸杞中农药残留及膳食风险评估. 宁夏农林科技. 2022(03): 43-49+58 .
    4. 王彦祖,李白. 农药污染对我国生态环境的影响及对策分析. 皮革制作与环保科技. 2022(15): 77-79 .
    5. 陈永艳,吕佳,张岚,叶必雄,金宁. 在线固相萃取-超高效液相色谱-三重四极杆质谱法测定水源水和饮用水中107种典型农药及代谢产物. 色谱. 2022(12): 1064-1075 .
    6. 马健生,王卓,张泽宇,刘强,李丽君. 哈尔滨市地下水中29种抗生素分布特征研究. 岩矿测试. 2021(06): 944-953 . 本站查看
    7. 高冉,饶竹,郭晓辰. 地下水中91种农药多残留气相色谱-质谱分析方法研究及应用. 岩矿测试. 2021(06): 973-986 . 本站查看

    Other cited types(7)

Catalog

    Article views (410) PDF downloads (20) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return