Citation: | YANG Qing. Accurate Determination of Polycyclic Aromatic Hydrocarbons in Soil Remedied with Sodium Persulfate[J]. Rock and Mineral Analysis, 2022, 41(3): 404-411. DOI: 10.15898/j.cnki.11-2131/td.202110130148 |
Polycyclic aromatic hydrocarbons (PAHs) are a series of carcinogenic, mutagenic and teratogenic hydrocarbons with high octanol-water partition coefficients, which are easily adsorbed by soil particles and affect the environment and human health. Sodium persulfate (Na2S2O8) oxidation method to remediate PAHs in organic contaminated soil is a more commonly used method in recent years both domestically and internationally. However, at the present stage, the urgent problem to be solved in measuring the content of PAHs in the remediation soil and evaluating the effect of soil remediation is that if sodium persulfate remains in the soil, the oxidation reaction of PAHs may be further accelerated due to the high extraction temperature in the sample pretreatment process.
To develop an accurate method to determine PAHs in soil after remediation.
The effects of no reductant and pre-added reductant-Soxhlet extraction on the recoveries of 16 polycyclic aromatic hydrocarbons and 6 substitutes in soil after remediation were investigated using gas chromatography-mass spectrometry (GC-MS).
The results showed that the method of pre-added reductant (Vitamin C) was better than no reductant. The PAHs recoveries of pre-added reductant and no reductant were 76.2%-110.0% and 6.0%-72.4%, respectively.
The comparative analysis showed that adding reducing agent before sample extraction could effectively eliminate the influence of residual sodium persulfate and improve the accuracy of PAHs determination results in soil after remediation. This study provides a new method for the accurate determination of PAHs in soil after remediation.
[1] |
孙书堂, 严倩, 黎宁, 等. 铁丝原位自转化-固相微萃取新涂层应用于萃取环境水样中多环芳烃的性能研究[J]. 岩矿测试, 2020, 39(3): 408-416. doi: 10.15898/j.cnki.11-2131/td.202002030014
Sun S T, Yan Q, Li N, et al. In situ self-transforming membrane as solid phase microextraction coating extraction of PAHs in environmental water samples[J]. Rock and Mineral Analysis, 2020, 39(3): 408-416. doi: 10.15898/j.cnki.11-2131/td.202002030014
|
[2] |
Yang J, Qadeer A, Liu M, et al. Occurrence, source, and partition of PAHs, PCBs, and OCPs in the multiphase system of an urban lake, Shanghai[J]. Applied Geochemistry, 2019, 106: 17-25. doi: 10.1016/j.apgeochem.2019.04.023
|
[3] |
李玉芳, 潘萌, 顾涛, 等. 北京哺乳期女性及婴幼儿多环芳烃暴露风险变化特征[J]. 岩矿测试, 2020, 39(4): 578-586. doi: 10.15898/j.cnki.11-2131/td.201912040167
Li Y F, Pan M, Gu T, et al. Exposure of mother and infants to polycyclic aromatic hydrocarbons during lactation, Beijing[J]. Rock and Mineral Analysis, 2020, 39(4): 578-586. doi: 10.15898/j.cnki.11-2131/td.201912040167
|
[4] |
邹杰明, 冯慧, 邹华. 零价铁修复多环芳烃污染土壤的研究[J]. 环境科学与技术, 2021, 44(S1): 95-100. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS2021S1015.htm
Zou J M, Feng H, Zou H. Remediation of polycyclic aromatic hydrocarbons contaminated soil with zero valent iron[J]. Environmental Science & Technology, 2021, 44(S1): 95-100. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS2021S1015.htm
|
[5] |
李丽, 张兴, 王亚军, 等. 过硫酸钠对黄土高原石油类污染土壤的处理[J]. 环境科学与技术, 2020, 43(12): 159-165. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS202012022.htm
Li L, Zhang X, Wang Y J, et al. Treatment of petroleum hydrocarbons in loess by sodium persulfate[J]. Environmental Science & Technology, 2020, 43(12): 159-165. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS202012022.htm
|
[6] |
周佳靖, 柳修楚, 郭瑾, 等. 纳米氧化铁与氧化剂对多环芳烃污染农田土壤修复和蔬菜健康风险的影响[J]. 环境污染与防治, 2021, 43(2): 223-228. https://www.cnki.com.cn/Article/CJFDTOTAL-HJWR202102017.htm
Zhou J J, Liu X C, Guo J, et al. Effects of nano-Fe2O3 and oxidants on soil remediation and health risk of polycyclic aromatic hydrocarbon in vegetable from contaminated farmland[J]. Environmental Pollution & Control, 2021, 43(2): 223-228. https://www.cnki.com.cn/Article/CJFDTOTAL-HJWR202102017.htm
|
[7] |
Wang S, Zhou N. Removal of carbamazepine from aqueous solution using sono-activated persulfate process[J]. Ultrasonics Sonochemistry, 2016, 29: 156-162. doi: 10.1016/j.ultsonch.2015.09.008
|
[8] |
吴丽颖, 王炳煌, 张圆春, 等. 凝胶球负载零价铁活化过硫酸盐降解偶氮染料废水[J]. 化工进展, 2017, 36(6): 2318-2324. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201706052.htm
Wu L Y, Wang B H, Zhang Y C, et al. Degradation of reactive black 5 (RBK5) by gelatin balls loading iron activating sodium persulfate[J]. Chemical Industry and Engineering Progress, 2017, 36(6): 2318-2324. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201706052.htm
|
[9] |
Liu Y, Lang J, Wang T, et al. Enhanced degradation of isoproturon in soil through persulfate activation by Fe-based layered double hydroxide: Different reactive species comparing with activation by homogenous Fe(Ⅱ)[J]. Environmental Science and Pollution Research, 2018, 25(26): 26394-26404. doi: 10.1007/s11356-018-2637-3
|
[10] |
潘栋宇, 侯梅芳, 刘超男, 等. 多环芳烃污染土壤化学修复技术的研究进展[J]. 安全与环境工程, 2018, 25(3): 54-60. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ201803009.htm
Pan D Y, Hou M F, Liu C N, et al. Review of chemical remediation technology of polycyclic aromatic hydrocarbons contaminated soil[J]. Safety and Environmental Engineering, 2018, 25(3): 54-60. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ201803009.htm
|
[11] |
侯思颖, 邓一荣, 陆海建, 等. 铁活化过硫酸盐原位修复有机污染土壤研究进展[J]. 环境工程, 2021, 39(4): 194-200. https://www.cnki.com.cn/Article/CJFDTOTAL-HJGC202104029.htm
Hou S Y, Deng Y R, Lu H J, et al. Research progress on iron activated persulfate in situ remediation of organic contaminated soil[J]. Environmental Engineer, 2021, 39(4): 194-200. https://www.cnki.com.cn/Article/CJFDTOTAL-HJGC202104029.htm
|
[12] |
周婵媛, 蒙眺, 杨春艳, 等. 管内填充磁性碳纳米管固相萃取-气相色谱/质谱法测定环境样品中多环芳烃[J]. 分析试验室, 2021, 40(9): 1015-1020. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY202109005.htm
Zhou C Y, Meng Z, Yang C Y, et al. Solid-phase extraction based in tube filled-magnetic carbon nanotubes coupled with GC-MS for analysis of polycyclic aromatic hydrocarbons in environmental samples[J]. Chinese Journal of Analysis Laboratory, 2021, 40(9): 1015-1020. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY202109005.htm
|
[13] |
谭华东, 张汇杰, 武春媛. GC-MS结合微量QuEChERS法快速测定土壤中16种多环芳烃[J]. 中国测试, 2020, 46(1): 64-70. https://www.cnki.com.cn/Article/CJFDTOTAL-SYCS202001012.htm
Tan H D, Zhang H J, Wu C Y. Rapid determination of 16 polycyclic aromatic hydrocarbons in soil by gas chromatography-tandem mass spectrometry coupled with micro-QuEChERS[J]. China Measurement & Test, 2020, 46(1): 64-70. https://www.cnki.com.cn/Article/CJFDTOTAL-SYCS202001012.htm
|
[14] |
王翔, 赵南京, 俞志敏, 等. 土壤有机污染物激光诱导荧光光谱检测方法研究进展[J]. 光谱学与光谱分析, 2018, 38(3): 857-863. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201803040.htm
Wang X, Zhao N J, Yu Z M, et al. Detection method progress and development trend of organic pollutants in soil using laser-induced fluorescence spectroscopy[J]. Spectroscopy and Spectral Analysis, 2018, 38(3): 857-863. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201803040.htm
|
[15] |
温海滨, 胡玉玲, 李攻科. 磁性微孔聚合物富集/表面增强拉曼光谱法测定水与土壤中多环芳烃[J]. 分析测试学报, 2017, 36(10): 1214-1218. doi: 10.3969/j.issn.1004-4957.2017.10.008
Wen H B, Hu Y L, Li G K. Determination of polycyclic aromatic hydrocarbons in environmental water and soil samples by magnetic microporous polymer enrichment coupled with surface-enhanced Raman spectroscopy[J]. Journal of Instrumental Analysis, 2017, 36(10): 1214-1218. doi: 10.3969/j.issn.1004-4957.2017.10.008
|
[16] |
Yen C H, Chen K F, Kao C M, et al. Application of persulfate to remediate petroleum hydrocarbon-contaminated soil: Feasibility and comparison with common oxidants[J]. Journal of Hazardous Materials, 2011, 186: 2097-2102. doi: 10.1016/j.jhazmat.2010.12.129
|
[17] |
Do S H, Kwon Y J, Kong S H. Effect of metal oxides on the reactivity of persulfate/Fe(Ⅱ) in the remediation of diesel-contaminated soil and sand[J]. Journal of Hazardous Materials, 2010, 182: 933-936. doi: 10.1016/j.jhazmat.2010.06.068
|
[18] |
Ge D, Dong Y, Zhang W, et al. A novel Fe2+/persulfate/tannic acid process with strengthened efficacy on enhancing waste activated sludge dewaterability and mechanism insight[J]. Science of the Total Environment, 2020, 733: 139146. doi: 10.1016/j.scitotenv.2020.139146
|
[19] |
Liu J, Yang Q, Wang D, et al. Enhanced dewaterability of waste activated sludge by Fe(Ⅱ)-activated peroxymonosulfate oxidation[J]. Bioresource Technology, 2016, 206: 134-140. doi: 10.1016/j.biortech.2016.01.088
|
[20] |
Liang C, Bruell C J, Marley M C, et al. Persulfate oxidation for in situ remediation of TCE. Ⅰ. Activated by ferrous ion with and without a persulfate-thiosulfate redox couple[J]. Chemosphere, 2004, 55(9): 1213-1223. doi: 10.1016/j.chemosphere.2004.01.029
|
[21] |
龙安华, 雷洋, 张晖. 活化过硫酸盐原位化学氧化修复有机污染土壤和地下水[J]. 化学进展, 2014, 26(5): 898-908. https://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ201405018.htm
Long A H, Lei Y, Zhang H. In situ chemical oxidation of organic contaminated soil and groundwater using activated persulfate process[J]. Progress in Chemistry, 2014, 26(5): 898-908. https://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ201405018.htm
|
[22] |
严红林, 左世伟, 孙长宇, 等. 柠檬酸/Fe2+活化过硫酸钠对石油烃污染土壤的修复[J]. 石油化工, 2021, 50(9): 910-914. doi: 10.3969/j.issn.1000-8144.2021.09.008
Yan H L, Zuo S W, Sun C Y, et al. Remediation of petroleum hydrocarbon contaminated soil with sodium persulfate activated by citric acid and Fe2+[J]. Petrochemical Technology, 2021, 50(9): 910-914. doi: 10.3969/j.issn.1000-8144.2021.09.008
|
[23] |
肖鹏飞, 姜思佳. 活化过硫酸盐氧化法修复有机污染土壤的研究进展[J]. 化工进展, 2018, 37(12): 345-356. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201812042.htm
Xiao P F, Jiang S J. Research progress in remediation of organic contaminated soil by activated persulfate oxidation[J]. Chemical Industry and Engineering Progress, 2018, 37(12): 345-356. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201812042.htm
|
[24] |
Monteagudo J M, El-Taliawy H, Durán A, et al. Sono-activated persulfate oxidation of diclofenac: Degradation, kinetics, pathway and contribution of the different radicals involved[J]. Journal of Hazardous Materials, 2018, 357: 457-465. doi: 10.1016/j.jhazmat.2018.06.031
|
[25] |
Peng H, Zhang W, Liu L, et al. Degradation performance and mechanism of decabromodiphenyl ether (BDE209) by ferrous-activated persulfate in spiked soil[J]. Chemical Engineering Journal, 2017, 307: 750-755. doi: 10.1016/j.cej.2016.08.129
|
[26] |
Zhen G, Lu X, Zhao Y, et al. Enhanced dewaterability of sewage sludge in the presence of Fe(Ⅱ)-activated persulfate oxidation[J]. Bioresource Technology, 2012, 116: 259-265. doi: 10.1016/j.biortech.2012.01.170
|
[27] |
Tan C, Gao N, Deng Y, et al. Heat-activated persulfate oxidation of diuron in water[J]. Chemical Engineering Journal, 2012, 203: 294-300. doi: 10.1016/j.cej.2012.07.005
|
[28] |
Yukselen-Aksoy Y, Reddy K R. Effect of soil composition on electrokinetically enhanced persulfate oxidation of polychlorobiphenyls[J]. Electrochimica Acta, 2012, 86: 164-169. doi: 10.1016/j.electacta.2012.03.049
|
[29] |
徐开泰, 林匡飞, 陆强, 等. 热活化过硫酸钠降解土壤体系中的菲[J]. 环境工程, 2018, 36(1): 188-194. https://www.cnki.com.cn/Article/CJFDTOTAL-HJGC201801038.htm
Xu K T, Lin K F, Lu Q, et al. Degradation of phenanthrene in soil via thermally activated sodium persulfate[J]. Environmental Engineer, 2018, 36(1): 188-194. https://www.cnki.com.cn/Article/CJFDTOTAL-HJGC201801038.htm
|
[30] |
李永涛, 罗进, 岳东. 热活化过硫酸盐氧化修复柴油污染土壤[J]. 环境污染与防治, 2017, 39(10): 1143-1146. https://www.cnki.com.cn/Article/CJFDTOTAL-HJWR201710021.htm
Li Y T, Luo J, Yue D. Thermo activated persulfate oxidation for remediation of diesel oil contaminated soil[J]. Environmental Pollution & Control, 2017, 39(10): 1143-1146. https://www.cnki.com.cn/Article/CJFDTOTAL-HJWR201710021.htm
|
[31] |
戚淑芳, 张杰, 王莹, 等. 以抗坏血酸作还原滴定剂电位滴定法测定铁矿石中全铁[J]. 冶金分析, 2011, 31(5): 63-66. doi: 10.3969/j.issn.1000-7571.2011.05.015
Qi S F, Zhang J, Wang Y, et al. Determination of total iron in iron ore by potentiometric titration with ascorbic acid as reducing titrant[J]. Metallurgical Analysis, 2011, 31(5): 63-66. doi: 10.3969/j.issn.1000-7571.2011.05.015
|
[32] |
中国环境监测总站. 环境水质监测质量保证手册[M]. 北京: 化学工业出版, 1989.
China National Environmental Monitoring Centre. Quality assurance manual for environmental water quality monitoring[M]. Beijing: Chemical Industry Press, 1989.
|
1. |
宋骏杰,许奕敏,李伟平,谢荣焕,刘桂建. 还原菌Staphylococcus sp.修复六价铬污染土壤的中试研究. 安全与环境学报. 2024(04): 1581-1586 .
![]() | |
2. |
张兆鑫,曹宁宁,李林记,刘素青,李佳昊,曹翠,李和平,张凯,石勇丽. 原位吸附技术修复六价铬污染土壤. 岩矿测试. 2024(02): 302-314 .
![]() | |
3. |
张伟琦,谢涛,孙稚菁,王茂林,蔡喜运. 微波消解火焰原子吸收光谱法测定土壤中六价铬. 环境科学研究. 2023(01): 44-53 .
![]() | |
4. |
黄文涛,王孙崯,邓呈逊,梁广秋,侍子刚,程功弼. 还原稳定化材料在铬污染土壤修复中的应用进展. 环境科技. 2023(02): 66-70+76 .
![]() | |
5. |
李佩珊,冯志刚,黄冲,刘威,张兰英. Cr(Ⅵ)污染土壤的还原钝化修复研究. 南华大学学报(自然科学版). 2023(01): 16-23 .
![]() | |
6. |
裴一青,杨一鸣,杨艺鹏,宋玲彦. 半干旱区铬污染土壤还原-稳定化修复试验研究. 西北民族大学学报(自然科学版). 2023(03): 6-15 .
![]() | |
7. |
陶玲,仝云龙,余方可,杨万辉,王艺蓉,王丽,任珺. 碱改性凹凸棒石对土壤中镉化学形态及环境风险的影响. 岩矿测试. 2022(01): 109-119 .
![]() | |
8. |
林康,文志刚,王念,卢雨萱,夏华南,聂艳. 铬污染土壤修复技术研究进展. 绿色科技. 2022(04): 49-53 .
![]() | |
9. |
张敏,马乾方,唐姗姗,杨晓强,郭园园,王岩. 钙镁磷肥和沸石粉对制革污泥免烧骨料性能的改善. 西部皮革. 2022(11): 22-25 .
![]() | |
10. |
任学昌,张曦,时秋红,张玉杰,陈仁华. FeSO_4联合固化剂修复铬污染土壤的稳定化研究. 安全与环境学报. 2022(04): 2231-2240 .
![]() | |
11. |
陈龙,李启婷,钱坤鹏. 重金属铬污染土壤的修复技术研究进展. 应用化工. 2022(10): 3058-3062 .
![]() | |
12. |
赵庆令,李清彩,谭现锋,安茂国,陈娟,毛秀丽. 微波碱性体系消解-电感耦合等离子体发射光谱法测定固体废物中的六价铬. 岩矿测试. 2021(01): 103-110 .
![]() | |
13. |
宋文,成少平,迟晓杰,艾艳君,谷海红. 重金属污染土壤修复遥感监测研究进展. 矿产综合利用. 2021(04): 21-28 .
![]() | |
14. |
章长松. 河道疏浚底泥堆土镉污染修复技术分析. 煤田地质与勘探. 2021(05): 200-208 .
![]() | |
15. |
李瑛. 土壤环境中重金属铬污染现状及智能监测方法. 石化技术. 2021(11): 152-153 .
![]() | |
16. |
何雨江,陈德文,张成,袁广祥. 土壤重金属铬污染修复技术的研究进展. 安全与环境工程. 2020(03): 126-132 .
![]() | |
17. |
徐红纳,靳立国,由丽梅,程艳. 一阶导数分光光度法同时测定水样中Cr(Ⅲ)和Cr(Ⅵ). 岩矿测试. 2020(05): 785-792 .
![]() | |
18. |
傅小丽,曾德升. 我国土壤污染修复治理技术研究进展. 热带农业工程. 2020(06): 66-68 .
![]() |