Citation: | ZHANG Zhaoxin,CAO Ningning,LI Linji,et al. In situ Adsorption Technology for Remediation of Cr(Ⅵ) Contaminated Soil[J]. Rock and Mineral Analysis,2024,43(2):302−314. DOI: 10.15898/j.ykcs.202307090090 |
The commonly used remediation technologies for Cr(Ⅵ) contaminated soil, such as guest soil, reduction, solidification, microbiology, etc., have drawbacks such as high cost, slow efficiency, and secondary oxidation of Cr(Ⅵ). To solve these problems, a Cr(Ⅵ) contaminated soil remediation technology was developed. Firstly, polypyrrole was loaded onto the surface of attapulgite through
[1] |
褚琳琳, 王静云, 金晓霞, 等. 碱溶液提取-离子交换-电感耦合等离子体质谱法测定土壤中六价铬[J]. 岩矿测试, 2022, 41(5): 826−835.
Chu L L, Wang J Y, Jin X X, et al. Determination of hexavalent chromium in soil by inductively coupled plasma-mass spectrometry with alkaline digestion-ion exchange[J]. Rock and Mineral Analysis, 2022, 41(5): 826−835.
|
[2] |
Ertani A, Mietto A, Borin M, et al. Chromium in agricultural soils and crops: A review[J]. Water, Air, & Soil Pollution, 2017, 228: 1-12.
|
[3] |
Hausladen D M, Alexander-Ozinskas A, McClain C, et al. Hexavalent chromium sources and distribution in California groundwater[J]. Environmental Science & Technology, 2018, 52(15): 8242−8251.
|
[4] |
Coetzee J J, Bansal N, Chirwa E M N. Chromium in environment, its toxic effect from chromite-mining and ferrochrome industries, and its possible bioremediation[J]. Exposure and Health, 2020, 12: 51−62. doi: 10.1007/s12403-018-0284-z
|
[5] |
石勇丽, 夏辉, 曹宁宁, 等. 碱液提取-树脂除盐结合电感耦合等离子体发射光谱法测定土壤中Cr(Ⅵ)[J]. 分析科学学报, 2021, 37(6): 771−776.
Shi Y L, Xia H, Cao N N, et al. Determination of Cr(Ⅵ) in soil by lye extraction-resin desalination combined with ICP-OES[J]. Journal of Analytical Science, 2021, 37(6): 771−776.
|
[6] |
Kerur S S, Bandekar S, Hanagadakar M S, et al. Removal of hexavalent chromium-industry treated water and wastewater: A review[J]. Materials Today:Proceedings, 2021, 42: 1112−1121. doi: 10.1016/j.matpr.2020.12.492
|
[7] |
Monga A, Fulke A B, Dasgupta D. Recent developments in essentiality of trivalent chromium and toxicity of hexavalent chromium: Implications on human health and remediation strategies[J]. Journal of Hazardous Materials Advances, 2022, 7: 100113. doi: 10.1016/j.hazadv.2022.100113
|
[8] |
Sharma P, Singh S P, Parakh S K, et al. Health hazards of hexavalent chromium [Cr(Ⅵ)] and its microbial reduction[J]. Bioengineered, 2022, 13(3): 4923−4938. doi: 10.1080/21655979.2022.2037273
|
[9] |
Marinho B A, Cristóvão R O, Boaventura R A R, et al. As(Ⅲ) and Cr(Ⅵ) oxyanion removal from water by advanced oxidation/reduction processes—A review[J]. Environmental Science and Pollution Research, 2019, 26: 2203−2227. doi: 10.1007/s11356-018-3595-5
|
[10] |
邓日欣, 罗伟嘉, 韩奕彤, 等. 膨润土负载纳米铁镍同步修复地下水中三氯乙烯和六价铬复合污染[J]. 岩矿测试, 2018, 37(5): 541−548.
Deng R X, Luo W J, Han Y T, et al. Simultaneous removal of TCE and Cr(Ⅵ) in groundwater by using bentonite-supported nanoscale Fe/Ni[J]. Rock and Mineral Analysis, 2018, 37(5): 541−548.
|
[11] |
Suzuki T, Kawai K, Moribe M, et al. Recovery of Cr as Cr(Ⅲ) from Cr(Ⅵ)-contaminated kaolinite clay by electrokinetics coupled with a permeable reactive barrier[J]. Journal of Hazardous Materials, 2014, 278: 297−303. doi: 10.1016/j.jhazmat.2014.05.086
|
[12] |
Xia S, Song Z, Jeyakumar P, et al. Characteristics and applications of biochar for remediating Cr(Ⅵ)-contaminated soils and wastewater[J]. Environmental Geochemistry and Health, 2020, 42: 1543−1567. doi: 10.1007/s10653-019-00445-w
|
[13] |
杨文晓, 张丽, 毕学, 等. 六价铬污染场地土壤稳定化修复材料研究进展[J]. 环境工程, 2020, 38(6): 16−23.
Yang W X, Zhang L, Bi X, et al. Research advancement of stabilization materials for hexavalent chromium(Ⅵ) contaminated site soils[J]. Environmental Engineering, 2020, 38(6): 16−23.
|
[14] |
刘益风, 李洁, 申源源, 等. 重庆某六价铬污染场地土壤修复工程案例[J]. 广州化工, 2019, 47(12): 111−114. doi: 10.3969/j.issn.1001-9677.2019.12.040
Liu Y F, Li J, Shen Y Y, et al. Soil remediation engineering instances of a hexavalent chromium contaminated site in Chongqing[J]. Guangzhou Chemical Industry, 2019, 47(12): 111−114. doi: 10.3969/j.issn.1001-9677.2019.12.040
|
[15] |
安茂国, 赵庆令, 谭现锋, 等. 化学还原-稳定化联合修复铬污染场地土壤的效果研究[J]. 岩矿测试, 2019, 38(2): 204−211
An M G, Zhao Q L, Tan X F, et al. Research on the effect of chemical reduction-stabilization combined remediation of contaminated soil[J]. Rock and Mineral Analysis, 2019, 38(2): 204−211.
|
[16] |
曹宁宁, 李林记, 石勇丽, 等. 土壤六价铬污染修复技术研究进展与应用探讨[J]. 磷肥与复肥, 2023, 38(4): 42−48. doi: 10.3969/j.issn.1007-6220.2023.04.014
Cao N N, Li L J, Shi Y L, et al. Research progress and application discussion on remediation technology of Cr(Ⅵ) contaminated soil[J]. Phosphate & Compound Fertilize, 2023, 38(4): 42−48. doi: 10.3969/j.issn.1007-6220.2023.04.014
|
[17] |
Liu L, Li X, Wang X, et al. Metolachlor adsorption using walnut shell biochar modified by soil minerals[J]. Environmental Pollution, 2022, 308: 119610. doi: 10.1016/j.envpol.2022.119610
|
[18] |
Qiu M, Liu L, Ling Q, et al. Biochar for the removal of contaminants from soil and water: A review[J]. Biochar, 2022, 4(1): 19. doi: 10.1007/s42773-022-00146-1
|
[19] |
Li A, Ge W, Liu L, et al. Synthesis and application of amine-functionalized MgFe2O4-biochar for the adsorption and immobilization of Cd(Ⅱ) and Pb(Ⅱ)[J]. Chemical Engineering Journal, 2022, 439: 135785. doi: 10.1016/j.cej.2022.135785
|
[20] |
Li Y, Gao Y, Zhang Q, et al. Flexible and free-standing pristine polypyrrole membranes with a nanotube structure for repeatable Cr(Ⅵ) ion removal[J]. Separation and Purification Technology, 2021, 258: 117981. doi: 10.1016/j.seppur.2020.117981
|
[21] |
Mahmud H N M E, Huq A K O, Yahya R B. The removal of heavy metal ions from wastewater/aqueous solution using polypyrrole-based adsorbents: A review[J]. RSC Advances, 2016, 6(18): 14778−14791. doi: 10.1039/C5RA24358K
|
[22] |
Xiang L, Niu C G, Tang N, et al. Polypyrrole coated molybdenum disulfide composites as adsorbent for enhanced removal of Cr(Ⅵ) in aqueous solutions by adsorption combined with reduction[J]. Chemical Engineering Journal, 2021, 408: 127281. doi: 10.1016/j.cej.2020.127281
|
[23] |
张凯. 凹凸棒土棒晶束解离研究[D]. 郑州: 郑州大学, 2019.
Zhang K. Researches of crystal-bundles dissociation of palygorskite[D]. Zhengzhou: Zhengzhou University, 2019.
|
[24] |
化全县, 郝志远, 张凯, 等. 水热酸处理解离凹凸棒土晶束的研究[J]. 应用化工, 2020, 49(8): 1904−1908. doi: 10.3969/j.issn.1671-3206.2020.08.008
Hua Q X, Hao Z Y, Zhang K, et al. Study on attapulgite crystal bundles dissociation by hydrothermal acid technology[J]. Applied Chemical Industry, 2020, 49(8): 1904−1908. doi: 10.3969/j.issn.1671-3206.2020.08.008
|
[25] |
陈泳. 具有选择吸附作用的聚吡咯/凹凸棒复合材料吸附性能[D]. 兰州: 兰州理工大学, 2018.
Chen Y. The adsorption properties of polypyrrole/attapulgite composites with selective adsorption[D]. Lanzhou: Lanzhou University of Technology, 2018.
|
[26] |
Wang L, Muhammad H, Laipan M, et al. Enhanced removal of Cr(Ⅵ) and Mo(Ⅵ) from polluted water using L-cysteine doped polypyrrole/bentonite composite[J]. Applied Clay Science, 2022, 217: 106387. doi: 10.1016/j.clay.2021.106387
|
[27] |
Yu H, Chen H, Zhang P, et al. In situ self-sacrificial synthesis of polypyrrole/biochar composites for efficiently removing short- and long-chain perfluoroalkyl acid from contaminated water[J]. Journal of Environmental Management, 2023, 344: 118745. doi: 10.1016/j.jenvman.2023.118745
|
[28] |
Chen S, Yue Q, Gao B, et al. Equilibrium and kinetic adsorption study of the adsorptive removal of Cr(Ⅵ) using modified wheat residue[J]. Journal of Colloid and Interface Science, 2010, 349(1): 256−264. doi: 10.1016/j.jcis.2010.05.057
|
[29] |
Zhang K, Dai Z, Zhang W, et al. EDTA-based adsorbents for the removal of metal ions in wastewater[J]. Coordination Chemistry Reviews, 2021, 434: 213809. doi: 10.1016/j.ccr.2021.213809
|
[30] |
Zhao S, Li Z, Wang H, et al. Effective removal and expedient recovery of As(Ⅴ) and Cr(Ⅵ) from soil by layered double hydroxides coated waste textile[J]. Separation and Purification Technology, 2021, 263: 118419. doi: 10.1016/j.seppur.2021.118419
|
[31] |
Yang D, Wang L, Li Y, et al. Pseudocapacitive deionization of high concentrations of hexavalent chromium using NiFe-layered double hydroxide/polypyrrole asymmetric electrode[J]. Separation and Purification Technology, 2024, 328: 125004. doi: 10.1016/j.seppur.2023.125004
|
[32] |
Ren Z, Xu X, Wang X, et al. FTIR, Raman, and XPS analysis during phosphate, nitrate and Cr(Ⅵ) removal by amine cross-linking biosorbent[J]. Journal of Colloid and Interface Science, 2016, 468: 313−323. doi: 10.1016/j.jcis.2016.01.079
|
[33] |
Deng L, Liu F, Ding Z, et al. Effect of natural organic matter on Cr(Ⅵ) reduction by reduced nontronite[J]. Chemical Geology, 2023, 615: 121198. doi: 10.1016/j.chemgeo.2022.121198
|
[34] |
Ambika S, Kumar M, Pisharody L, et al. Modified biochar as a green adsorbent for removal of hexavalent chromium from various environmental matrices: Mechanisms, methods, and prospects[J]. Chemical Engineering Journal, 2022, 439: 135716. doi: 10.1016/j.cej.2022.135716
|
[35] |
Zhang Y, Liu J, Wu X, et al. Ultrasensitive detection of Cr(Ⅵ)(Cr2O72−/CrO42−) ions in water environment with a fluorescent sensor based on metal-organic frameworks combined with sulfur quantum dots[J]. Analytica Chimica Acta, 2020, 1131: 68−79. doi: 10.1016/j.aca.2020.07.026
|
[36] |
Xu Y, Chen J, Chen R, et al. Adsorption and reduction of chromium(Ⅵ) from aqueous solution using polypyrrole/calcium rectorite composite adsorbent[J]. Water Research, 2019, 160: 148−157. doi: 10.1016/j.watres.2019.05.055
|
[37] |
Ko Y J, Choi K, Lee S, et al. Strong chromate-adsorbent based on pyrrolic nitrogen structure: An experimental and theoretical study on the adsorption mechanism[J]. Water Research, 2018, 145: 287−296. doi: 10.1016/j.watres.2018.08.033
|
[38] |
Qiu L, Wang Y, Sui R, et al. Preparation of a novel metal-free polypyrrole-red phosphorus adsorbent for efficient removal of Cr(Ⅵ) from aqueous solution[J]. Environmental Research, 2023, 224: 115458. doi: 10.1016/j.envres.2023.115458
|
[39] |
Zhou F, Li Y, Wang S, et al. Turning waste into valuables: In situ deposition of polypyrrole on the obsolete mask for Cr(Ⅵ) removal and desalination[J]. Separation and Purification Technology, 2023, 306: 122643. doi: 10.1016/j.seppur.2022.122643
|
[40] |
Xing J, Zhu C, Chowdhury I, et al. Electrically switched ion exchange based on polypyrrole and carbon nanotube nanocomposite for the removal of chromium(Ⅵ) from aqueous solution[J]. Industrial & Engineering Chemistry Research, 2018, 57(2): 768−774.
|
[41] |
Shi Y, Feng J, Zhang Z, et al. Simultaneous removal of Cr(Ⅵ) anions and metal cations by EDTA-crosslinking-chitosan/polypyrrole composites[J]. Separation and Purification Technology, 2023, 327: 124926. doi: 10.1016/j.seppur.2023.124926
|
1. |
陈俊茹,沈亚婷,刘菲. 土壤中铬价态转化的影响因素与作用机制研究进展. 岩矿测试. 2025(01): 35-50 .
![]() |