Citation: | CHEN Junru,SHEN Yating,LIU Fei. Research Progress on Influencing Factors and Mechanisms of Chromium Valence State Transformation in Soil[J]. Rock and Mineral Analysis,2025,44(1):35−50. DOI: 10.15898/j.ykcs.202401180007 |
Chromium (Cr) pollution in soil is a global environmental problem, and hexavalent chromium [Cr(Ⅵ)] has become a focus of attention due to its high toxicity and carcinogenicity. Cr in soil mainly exists in the form of Cr(Ⅲ) and Cr(Ⅵ), and the transformation between the two is influenced by factors such as soil pH, redox potential (Eh), natural redox agents, organic matter, and microorganisms. This article provides an overview of the global pollution status and sources of Cr in soil, as well as the different valence states and toxicity characteristics of Cr in soil. It also analyzes the redox mechanisms of chromium valence state transformation in soil affected by different factors, as well as the interactions between different factors. In addition, through a deep understanding of the factors affecting the valence state of Cr, advanced remediation techniques represented by biochar and nanomaterials have emerged. These methods can effectively reduce Cr(Ⅵ) to less toxic Cr(Ⅲ), thereby reducing ecological and environmental risks. Therefore, they are a potentially valuable remediation material and technique. However, the feasibility and effectiveness of large-scale applications still need further verification. The BRIEF REPORT is available for this paper at http://www.ykcs.ac.cn/en/article/doi/10.15898/j.ykcs.202401180007.
[1] |
Sharma A, Kapoor D, Wang J, et al. Chromium bioaccumulation and its impacts on plants: An overview[J]. Plants-Basel, 2020, 9(1): 100. doi: 10.3390/plants9010100
|
[2] |
Pourret O, Hursthouse A. It’s time to replace the term “Heavy Metals”with “Potentially Toxic Elements” when reporting environmental research[J]. International Journal of Environmental Research and Public Health, 2019, 16(22): 4446. doi: 10.3390/ijerph16224446
|
[3] |
Rashid A, Schutte B J, Ulery A, et al. Heavy metal contamination in agricultural soil: Environmental pollutants affecting crop health[J]. Agronomy-Basel, 2023, 13(6): 1521. doi: 10.3390/agronomy13061521
|
[4] |
Rinklebe J, Antoniadis V, Shaheen S M, et al. Health risk assessment of potentially toxic elements in soils along the Central Elbe River, Germany[J]. Environment International, 2019, 126: 76−88. doi: 10.1016/j.envint.2019.02.011
|
[5] |
林晓梅, 曹玉莹, 赵上勇, 等. 激光诱导击穿光谱技术对土壤中重金属元素Cr的定量分析[J]. 光谱学与光谱分析, 2021, 41(3): 875−879 doi: 10.3964/j.issn.1000-0593(2021)-0875-05
Lin X M, Cao Y Y, Zhao S Y, et al. Quantitative analysis of Cr in soil by laser-induced breakdown spectroscopy[J]. Spectroscopy and Spectral Analysis, 2021, 41(3): 875−879. doi: 10.3964/j.issn.1000-0593(2021)-0875-05
|
[6] |
Mortada W I, El-Naggar A, Mosa A, et al. Biogeochemical behaviour and toxicology of chromium in the soil-water-human nexus: A review[J]. Chemosphere, 2023, 331: 138804. doi: 10.1016/j.chemosphere.2023.138804
|
[7] |
Prado C, Ponce S C, Pagano E, et al. Differential physiological responses of two Salvinia species to hexavalent chromium at a glance[J]. Aquatic Toxicology, 2016, 175: 213−221. doi: 10.1016/j.aquatox.2016.03.027
|
[8] |
Wei Y, Usman M, Farooq M, et al. Removing hexavalent chromium by nano zero-valent iron loaded on attapulgite[J]. Water Air and Soil Pollution, 2022, 233(2): 48. doi: 10.1007/s11270-022-05513-z
|
[9] |
Mongaa A, Fulkea A B, Dasguptab D. Recent developments in essentiality of trivalent chromium and toxicity of hexavalent chromium: Implications on human health and remediation strategies[J]. Journal of Hazardous Materials Advances, 2022, 7: 100113. doi: 10.1016/j.hazadv.2022.100113
|
[10] |
den Braver-Sewradj S P, van Benthem J, Staal Y C M, et al. Occupational exposure to hexavalent chromium. Part Ⅱ. Hazard assessment of carcinogenic effects[J]. Regulatory Toxicology and Pharmacology, 2021, 126: 105045. doi: 10.1016/j.yrtph.2021.105045
|
[11] |
Yan X, Yan Z H, Zhu X Z, et al. Comparing different strategies for Cr(Ⅵ) bioremediation: Bioaugmentation, biostimulation, and bioenhancement[J]. Sustainability, 2023, 15(16): 12522. doi: 10.3390/su151612522
|
[12] |
Sayed D, Alturki A A, Farag H, et al. A novel rotating fixed bed batch reactor for hexavalent chromium reduction[J]. Journal of Ecological Engineering, 2022, 23(11): 273−280. doi: 10.12911/22998993/154061
|
[13] |
Kang Z, Gao H, Ma X, et al. Fe-Ni/MWCNTs nano-composites for hexavalent chromium reduction in aqueous environment[J]. Molecules, 2023, 28(11): 4412. doi: 10.3390/molecules28114412
|
[14] |
Guo H, Chen Y, Hu H, et al. High hexavalent chromium concentration in groundwater from a deep aquifer in the Baiyangdian Basin of the North China Plain[J]. Environmental Science & Technology, 2020, 54(16): 10068−10077. doi: 10.1021/acs.est.0c02357
|
[15] |
Deng L Y, Liu F, Ding Z C, et al. Effect of natural organic matter on Cr(Ⅵ) reduction by reduced nontronite[J]. Chemical Geology, 2023, 615: 121198. doi: 10.1016/j.chemgeo.2022.121198
|
[16] |
Enbaia S, Eswayah A, Hondow N, et al. Detoxification, active uptake, and intracellular accumulation of chromium species by a methane-oxidizing bacterium[J]. Applied and Environmental Microbiology, 2021, 87(2): e00947−e00920. doi: 10.1128/AEM.00947-20
|
[17] |
Pei Y, Yang Y, Chen L, et al. Remediation of chromium-contaminated soil in semi-arid areas by combined chemical reduction and stabilization[J]. Environmental Pollutants and Bioavailability, 2023, 35(1): 2157332. doi: 10.1080/26395940.2022.2157332
|
[18] |
Li S, Xie Y, Jiang S, et al. Biochar decreases Cr toxicity and accumulation in sunflower grown in Cr(Ⅵ)-polluted soil[J]. Toxics, 2023, 11(9): 787. doi: 10.3390/toxics11090787
|
[19] |
Gezahegn A M, Feyessa F F, Tekeste E A, et al. Chromium laden soil, water, and vegetables nearby tanning industries: Speciation and spatial distribution[J]. Journal of Chemistry, 2021, 2021: 5531349. doi: 10.1155/2021/5531349
|
[20] |
Caporale A G, Agrelli D, Rodríguez-González P, et al. Hexavalent chromium quantification by isotope dilution mass spectrometry in potentially contaminated soils from South Italy[J]. Chemosphere, 2019, 233: 92−100. doi: 10.1016/j.chemosphere.2019.05.212
|
[21] |
Zhong W, Bai W, Li G. Reduction of hexavalent chromium from soil of the relocated factory area with rice straw hydrothermal carbon modified by nano zero-valent iron (nZVI)[J]. International Journal of Environmental Research and Public Health, 2023, 20(4): 3089. doi: 10.3390/ijerph20043089
|
[22] |
Liu Y, Li Y, Hu Y C, et al. Adsorption characteristics and transport behavior of Cr(Ⅵ) in shallow aquifers surrounding a chromium ore processing residue (copr) dumpsite[J]. Journal of Chemistry, 2019, 2019: 4932837. doi: 10.1155/2019/4932837
|
[23] |
Zhang K, Yang J, Wang Y, et al. All-region human health risk assessment of Cr(Ⅵ) in a coal chemical plant based on Kriging[J]. Polish Journal of Environmental Studies, 2020, 29(1): 429−439. doi: 10.15244/pjoes/99226
|
[24] |
Zhang K, Qiang C D, Liu J. Spatial distribution characteristics of heavy metals in the soil of coal chemical industrial areas[J]. Journal of Soils and Sediments, 2018, 18(5): 2044−2052. doi: 10.1007/s11368-018-1972-9
|
[25] |
Li Y, Pan S, Wang L, et al. Soil chromium accumulation in industrial regions across China: Pollution and health risk assessment, spatial pattern, and temporal trend (2002—2021)[J]. Toxics, 2023, 11(4): 363. doi: 10.3390/toxics11040363
|
[26] |
Xiang J, Xu P, Chen W, et al. Pollution characteristics and health risk assessment of heavy metals in agricultural soils over the past five years in Zhejiang, Southeast China[J]. International Journal of Environmental Research and Public Health, 2022, 19(22): 14642. doi: 10.3390/ijerph192214642
|
[27] |
Wu D, Liu H, Wu J, et al. Bi-directional pollution characteristics and ecological health risk assessment of heavy metals in soil and crops in Wanjiang Economic Zone, Anhui Province, China[J]. International Journal of Environmental Research and Public Health, 2022, 19(15): 9669. doi: 10.3390/ijerph19159669
|
[28] |
Wu Z, Zhang D, Xia T, et al. Characteristics, sources and risk assessments of heavy metal pollution in soils of typical chlor-alkali residue storage sites in Northeastern China[J]. PLOS One, 2022, 17(9): e0273434. doi: 10.1371/journal.pone.0273434
|
[29] |
Li X, Zhang J, Ma J, et al. Status of chromium accumulation in agricultural soils across China (1989—2016)[J]. Chemosphere, 2020, 256: 127036. doi: 10.1016/j.chemosphere.2020.127036
|
[30] |
Kanagaraj G, Elango L. Chromium and fluoride contamination in groundwater around leather tanning industries in Southern India: Implications from stable isotopic ratio δ53Cr/δ52Cr, geochemical and geostatistical modelling[J]. Chemosphere, 2019, 220: 943−953. doi: 10.1016/j.chemosphere.2018.12.105
|
[31] |
Chrysochoou M, Theologou E, Bompoti N, et al. Occurrence, origin and transformation processes of geogenic chromium in soils and sediments[J]. Current Pollution Reports, 2016, 2(4): 224−235. doi: 10.1007/s40726-016-0044-2
|
[32] |
Kierczak J, Pietranik A, Pedziwiatr A. Ultramafic geoecosystems as a natural source of Ni, Cr, and Co to the environment: A review[J]. Science of the Total Environment, 2021, 755: 142620. doi: 10.1016/j.scitotenv.2020.142620
|
[33] |
Briffa J, Sinagra E, Blundell R. Heavy metal pollution in the environment and their toxicological effects on humans[J]. Heliyon, 2020, 6(9): e04691. doi: 10.1016/j.heliyon.2020.e04691
|
[34] |
Coetzee J J, Bansal N, Chirwa E M N. Chromium in environment, its toxic effect from chromite-mining and ferrochrome industries, and its possible bioremediation[J]. Exposure and Health, 2020, 12(1): 51−62. doi: 10.1007/s12403-018-0284-z
|
[35] |
Pushkar B, Sevak P, Parab S, et al. Chromium pollution and its bioremediation mechanisms in bacteria: A review[J]. Journal of Environmental Management, 2021, 287: 112279. doi: 10.1016/j.jenvman.2021.112279
|
[36] |
贾琼琳, 韩俊艳, 何丹. 土壤中重金属铬污染及其治理方法的研究进展[C]//中国环境科学学会2021年科学技术年会——环境工程技术创新与应用分会场. 北京: 中国环境科学学会, 2021: 354−357, 380.
Jia Q L, Han J Y, He D. Research progress of heavy metal chromium pollution in soil and its control methods[C]//China Environmental Science Society 2021 Science and Technology Annual Conference—Environmental Engineering Technology Innovation and Application Sub-forum. Beijing: Chinese Society for Environmental Sciences, 2021: 354−357, 380.
|
[37] |
Gupta D K, Chatterjee S, Datta S, et al. Role of phosphate fertilizers in heavy metal uptake and detoxification of toxic metals[J]. Chemosphere, 2014, 108: 134−144. doi: 10.1016/j.chemosphere.2014.01.030
|
[38] |
耿源濛, 张传兵, 张勇, 等. 我国城市污泥中重金属的赋存形态与生态风险评价[J]. 环境科学, 2021, 42(10): 4834−4843. doi: 10.13227/j.hjkx.202101145
Geng Y M, Zhang C B, Zhang Y, et al. Speciation and ecological risk assessment of heavy metal(loid)s in the municipal sewage sludge of China[J]. Environmental Science, 2021, 42(10): 4834−4843. doi: 10.13227/j.hjkx.202101145
|
[39] |
白宇明, 李永利, 周文辉, 等. 典型工业城市土壤重金属元素形态特征及生态风险评估[J]. 岩矿测试, 2022, 41(4): 632−641. doi: 10.15898/j.cnki.11-2131/td.202109030113
Bai Y M, Li Y L, Zhou W H, et al. Speciation characteristics and ecological risk assessment of heavy metal elements in soils of typical industrial city[J]. Rock and Mineral Analysis, 2022, 41(4): 632−641. doi: 10.15898/j.cnki.11-2131/td.202109030113
|
[40] |
Ali W, Mao K, Zhang H, et al. Comprehensive review of the basic chemical behaviours, sources, processes, and endpoints of trace element contamination in paddy soil-rice systems in rice-growing countries[J]. Journal of Hazardous Materials, 2020, 397: 122720. doi: 10.1016/j.jhazmat.2020.122720
|
[41] |
Bai J, Xun P, Morris S, et al. Chromium exposure and incidence of metabolic syndrome among American young adults over a 23-year follow-up: The CARDIA trace element study[J]. Scientific Reports, 2015, 5: 15606. doi: 10.1038/srep15606
|
[42] |
Sharma P, Singh S P, Parakh S K, et al. Health hazards of hexavalent chromium (Cr(Ⅵ)) and its microbial reduction[J]. Bioengineered, 2022, 13(3): 4923−4938. doi: 10.1080/21655979.2022.2037273
|
[43] |
Ulhassan Z, Gill R A, Huang H, et al. Selenium mitigates the chromium toxicityin Brassicca napus L. by ameliorating nutrients uptake, amino acids metabolism and antioxidant defense system[J]. Plant Physiology and Biochemistry, 2019, 145: 142−152. doi: 10.1016/j.plaphy.2019.10.035
|
[44] |
Kundu D, Dey S, Raychaudhuri S S. Chromium(Ⅵ) induced stress response in the plant Plantago ovata Forsk in vitro[J]. Genes and Environment, 2018, 40: 21. doi: 10.1186/s41021-018-0109-0
|
[45] |
Aziz S, Altaf J, Khalil A, et al. Human cancer risk due to chromium and its bioaccumulation in physids in Central Punjab, Pakistan[J]. Environmental Science and Pollution Research, 2023, 30(29): 74223−74235. doi: 10.1007/s11356-023-27664-0
|
[46] |
Banu S K, Stanley J A, Taylor R J, et al. Sexually dimorphic impact of chromium accumulation on human placental oxidative stress and apoptosis[J]. Toxicological Sciences, 2018, 161(2): 375−387. doi: 10.1093/toxsci/kfx224
|
[47] |
Guo S, Xiao C, Zhou N, et al. Speciation, toxicity, microbial remediation and phytoremediation of soil chromium contamination[J]. Environmental Chemistry Letters, 2020, 19(2): 1413−1431. doi: 10.1007/s10311-020-01114-6
|
[48] |
Ertani A, Mietto A, Borin M, et al. Chromium in agricultural soils and crops: A review[J]. Water Air and Soil Pollution, 2017, 228(5): 190. doi: 10.1007/s11270-017-3356-y
|
[49] |
Wani K I, Naeem M, Aftab T. Chromium in plant-soil nexus: Speciation, uptake, transport and sustainable remediation techniques[J]. Environmental Pollution, 2022, 315: 120350. doi: 10.1016/j.envpol.2022.120350
|
[50] |
Xiao L, Guan D, Chen Y, et al. Distribution and availability of heavy metals in soils near electroplating factories[J]. Environmental Science and Pollution Research, 2019, 26(22): 22596−22610. doi: 10.1007/s11356-019-04706-0
|
[51] |
Xiao W, Ye X, Yang X, et al. Effects of alternating wetting and drying versus continuous flooding on chromium fate in paddy soils[J]. Ecotoxicology and Environmental Safety, 2015, 113: 439−445. doi: 10.1016/j.ecoenv.2014.12.030
|
[52] |
Shahid M, Shamshad S, Rafiq M, et al. Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review[J]. Chemosphere, 2017, 178: 513−533. doi: 10.1016/j.chemosphere.2017.03.074
|
[53] |
Liang J, Huang X, Yan J, et al. A review of the formation of Cr(Ⅵ) via Cr(Ⅲ) oxidation in soils and groundwater[J]. Science of the Total Environment, 2021, 774: 145762. doi: 10.1016/j.scitotenv.2021.145762
|
[54] |
Li B, Yang J X, Sun W T, et al. Carbonization of plant residues decreased their capability of reducing hexavalent chromium in soils[J]. Water Air and Soil Pollution, 2019, 230(12): 300. doi: 10.1007/s11270-019-4353-0
|
[55] |
Zhang Z, Ren J, Liang J, et al. New insight into the natural detoxification of Cr(Ⅵ) in Fe-rich surface soil: Crucial role of photogenerated silicate-bound Fe(Ⅱ)[J]. Environmental Science & Technology, 2023, 57(50): 21370−21381. doi: 10.1021/acs.est.3c05767
|
[56] |
Hao Y, Ma H, Wang Q, et al. Complexation behaviour and removal of organic-Cr(Ⅲ) complexes from the environment: A review[J]. Ecotoxicology and Environmental Safety, 2022, 240: 113676. doi: 10.1016/j.ecoenv.2022.113676
|
[57] |
Bokare A D, Choi W. Advanced oxidation process based on the Cr(Ⅲ)/Cr(Ⅵ) redox cycle[J]. Environmental Science & Technology, 2011, 45(21): 9332−9338. doi: 10.1021/es2021704
|
[58] |
Jiang B, Gong Y, Gao J, et al. The reduction of Cr(Ⅵ) to Cr(Ⅲ) mediated by environmentally relevant carboxylic acids: State-of-the-art and perspectives[J]. Journal of Hazardous Materials, 2019, 365: 205−226. doi: 10.1016/j.jhazmat.2018.10.070
|
[59] |
Zheng C, Yang Z, Si M, et al. Application of biochars in the remediation of chromium contamination: Fabrication, mechanisms, and interfering species[J]. Journal of Hazardous Materials, 2021, 407: 124376. doi: 10.1016/j.jhazmat.2020.124376
|
[60] |
Shi Y, Shan R, Lu L, et al. High-efficiency removal of Cr(Ⅵ) by modified biochar derived from glue residue[J]. Journal of Cleaner Production, 2020, 254: 119935. doi: 10.1016/j.jclepro.2019.119935
|
[61] |
Li H, Wang J, Zhao B, et al. The role of major functional groups: Multi-evidence from the binding experiments of heavy metals on natural fulvic acids extracted from lake sediments[J]. Ecotoxicology and Environmental Safety, 2018, 162: 514−520. doi: 10.1016/j.ecoenv.2018.07.038
|
[62] |
Xu J, Dai Y, Shi Y, et al. Mechanism of Cr(Ⅵ) reduction by humin: Role of environmentally persistent free radicals and reactive oxygen species[J]. Science of the Total Environment, 2020, 725: 138413. doi: 10.1016/j.scitotenv.2020.138413
|
[63] |
Zhang J, Yin H, Wang H, et al. Reduction mechanism of hexavalent chromium by functional groups of undissolved humic acid and humin fractions of typical black soil from Northeast China[J]. Environmental Science and Pollution Research, 2018, 25(17): 16913−16921. doi: 10.1007/s11356-018-1878-5
|
[64] |
Xu Z, Xu X, Zhang Y, et al. Pyrolysis-temperature depended electron donating and mediating mechanisms of biochar for Cr(Ⅵ) reduction[J]. Journal of Hazardous Materials, 2020, 388: 121794. doi: 10.1016/j.jhazmat.2019.121794
|
[65] |
Wang X, Xu J, Liu J, et al. Mechanism of Cr(Ⅵ) removal by magnetic greigite/biochar composites[J]. Science of the Total Environment, 2020, 700: 134414. doi: 10.1016/j.scitotenv.2019.134414
|
[66] |
Odinga E S, Waigi M G, Gudda F O, et al. Occurrence, formation, environmental fate and risks of environmentally persistent free radicals in biochars[J]. Environment International, 2020, 134: 105172. doi: 10.1016/j.envint.2019.105172
|
[67] |
Fan Z, Zhang Q, Gao B, et al. Removal of hexavalent chromium by biochar supported nZVI composite: Batch and fixed-bed column evaluations, mechanisms, and secondary contamination prevention[J]. Chemosphere, 2019, 217: 85−94. doi: 10.1016/j.chemosphere.2018.11.009
|
[68] |
陈壮, 梁媛, 赵奔, 等. 改性生物炭对Cr(Ⅵ)的吸附特性研究[J]. 复旦学报(自然科学版), 2021, 60(6): 779−788. doi: 10.15943/j.cnki.fdxb-jns.2021.06.007
Chen Z, Liang Y, Zhao B, et al. Adsorption characteristics and mechanism of modified biochar to Cr(Ⅵ)[J]. Journal of Fudan University (Natural Science), 2021, 60(6): 779−788. doi: 10.15943/j.cnki.fdxb-jns.2021.06.007
|
[69] |
Li K, Huang Z, Zhu S, et al. Removal of Cr(Ⅵ) from water by a biochar-coupled g-C3N4 nanosheets composite and performance of a recycled photocatalyst in single and combined pollution systems[J]. Applied Catalysis B-Environmental, 2019, 243: 386−396. doi: 10.1016/j.apcatb.2018.10.052
|
[70] |
Peng X X, Gai S, Cheng K, et al. Roles of humic substances redox activity on environmental remediation[J]. Journal of Hazardous Materials, 2022, 435: 129070. doi: 10.1016/j.jhazmat.2022.129070
|
[71] |
Zhu S, Huang X, Yang X, et al. Enhanced transformation of Cr(Ⅵ) by heterocyclic-N within nitrogen-doped biochar: Impact of surface modulatory persistent free radicals (PFRs)[J]. Environmental Science & Technology, 2020, 54(13): 8123−8132. doi: 10.1021/acs.est.0c02713
|
[72] |
Fang G, Liu C, Wang Y, et al. Photogeneration of reactive oxygen species from biochar suspension for diethyl phthalate degradation[J]. Applied Catalysis B-Environmental, 2017, 214: 34−45. doi: 10.1016/j.apcatb.2017.05.036
|
[73] |
Yu Y, An Q, Jin L, et al. Unraveling sorption of Cr(Ⅵ) from aqueous solution by FeCl3 and ZnCl2-modified corn stalks biochar: Implicit mechanism and application[J]. Bioresource Technology, 2020, 297: 122466. doi: 10.1016/j.biortech.2019.122466
|
[74] |
Geng A, Xu L, Gan L, et al. Using wood flour waste to produce biochar as the support to enhance the visible-light photocatalytic performance of BiOBr for organic and inorganic contaminants removal[J]. Chemosphere, 2020, 250: 126291. doi: 10.1016/j.chemosphere.2020.126291
|
[75] |
Wang T, Liu S, Mao W, et al. Novel Bi2WO6 loaded N-biochar composites with enhanced photocatalytic degradation of rhodamine B and Cr(Ⅵ)[J]. Journal of Hazardous Materials, 2020, 389: 121827. doi: 10.1016/j.jhazmat.2019.121827
|
[76] |
Alsaiari M. Biomass-derived active carbon (AC) modified TiO2 photocatalyst for efficient photocatalytic reduction of chromium(Ⅵ) under visible light[J]. Arabian Journal of Chemistry, 2021, 14(8): 103258. doi: 10.1016/j.arabjc.2021.103258
|
[77] |
Jalili B, Sadegh-Zadeh F, Jabari-Giashi M, et al. Lead bioimmobilization in contaminated mine soil by Aspergillus niger SANRU[J]. Journal of Hazardous Materials, 2020, 393: 122375. doi: 10.1016/j.jhazmat.2020.122375
|
[78] |
Hussain S, Maqbool Z, Shahid M, et al. Simultaneous removal of reactive dyes and hexavalent chromium by a metal tolerant pseudomonas sp. Ws-d/183 harboring plant growth promoting traits[J]. International Journal of Agriculture and Biology, 2020, 23(2): 241−252. doi: 10.17957/IJAB/15.1282
|
[79] |
Tariq M, Waseem M, Rasool M H, et al. Isolation and molecular characterization of the indigenous Staphylococcus aureus strain K1 with the ability to reduce hexavalent chromium for its application in bioremediation of metal-contaminated sites[J]. Peerj, 2019, 7: e7726. doi: 10.7717/peerj.7726
|
[80] |
Pattnaik S, Dash D, Mohapatra S, et al. Improvement of rice plant productivity by native Cr(VI) reducing and plant growth promoting soil bacteria Enterobacter cloacae[J]. Chemosphere, 2020, 240: 124895. doi: 10.1016/j.chemosphere.2019.124895
|
[81] |
Sha C Y, Wu J, Wu J Q, et al. Effects of different fertilizers on soil microbial diversity during long-term fertilization of a corn field in Shanghai, China[J]. Diversity-Basel, 2023, 15(1): 78. doi: 10.3390/d15010078
|
[82] |
Jin Q, Zhang Y, Wang Q, et al. Effects of potassium fulvic acid and potassium humate on microbial biodiversity in bulk soil and rhizosphere soil of Panax ginseng[J]. Microbiological Research, 2022, 254: 126914. doi: 10.1016/j.micres.2021.126914
|
[83] |
Tang X, Huang Y, Li Y, et al. Study on detoxification and removal mechanisms of hexavalent chromium by microorganisms[J]. Ecotoxicology and Environmental Safety, 2021, 208: 111699. doi: 10.1016/j.ecoenv.2020.111699
|
[84] |
Gu B H, Chen J. Enhanced microbial reduction of Cr(Ⅵ) and U(Ⅵ) by different natural organic matter fractions[J]. Geochimica et Cosmochimica Acta, 2003, 67(19): 3575−3582. doi: 10.1016/S0016-7037(3)00162-5
|
[85] |
Chen Y, Wu H, Sun P, et al. Remediation of chromium-contaminated soil based on bacillus cereus WHX-1 immobilized on biochar: Cr(Ⅵ) transformation and functional microbial enrichment[J]. Frontiers in Microbiology, 2021, 12: 641913. doi: 10.3389/fmicb.2021.641913
|
[86] |
Huang X N, Min D, Liu D F, et al. Formation mechanism of organo-chromium(Ⅲ) complexes from bioreduction of chromium(Ⅵ) by Aeromonas hydrophila[J]. Environment International, 2019, 129: 86−94. doi: 10.1016/j.envint.2019.05.016
|
[87] |
Tan H, Wang C, Zeng G, et al. Bioreduction and biosorption of Cr(Ⅵ) by a novel Bacillus sp. CRB-B1 strain[J]. Journal of Hazardous Materials, 2020, 386: 121628. doi: 10.1016/j.jhazmat.2019.121628
|
[88] |
Zhuang L, Li Q, Chen J, et al. Carbothermal preparation of porous carbon-encapsulated iron composite for the removal of trace hexavalent chromium[J]. Chemical Engineering Journal, 2014, 253: 24−33. doi: 10.1016/j.cej.2014.05.038
|
[89] |
Shaheen S M, Niazi N K, Hassan N E E, et al. Wood-based biochar for the removal of potentially toxic elements in water and wastewater: A critical review[J]. International Materials Reviews, 2019, 64(4): 216−247. doi: 10.1080/09506608.2018.1473096
|
[90] |
Liu W, Jin L, Xu J, et al. Insight into pH dependent Cr(Ⅵ) removal with magnetic Fe3S4[J]. Chemical Engineering Journal, 2019, 359: 564−571. doi: 10.1016/j.cej.2018.11.192
|
[91] |
Lee S, Roh Y, Koh D C. Oxidation and reduction of redox-sensitive elements in the presence of humic substances in subsurface environments: A review[J]. Chemosphere, 2019, 220: 86−97. doi: 10.1016/j.chemosphere.2018.11.143
|
[92] |
Zhu S, Huang X, Wang D, et al. Enhanced hexavalent chromium removal performance and stabilization by magnetic iron nanoparticles assisted biochar in aqueous solution: Mechanisms and application potential[J]. Chemosphere, 2018, 207: 50−59. doi: 10.1016/j.chemosphere.2018.05.046
|
[93] |
Gustafsson J P, Persson I, Oromieh A G, et al. Chromium(Ⅲ) complexation to natural organic matter: Mechanisms and modeling[J]. Environmental Science & Technology, 2014, 48(3): 1753−1761. doi: 10.1021/es404557e
|
[94] |
刘爱科, 顾梦琪, 魏书斋, 等. 蒽醌-2,6-二磺酸(AQDS)强化厌氧降解直接蓝15[J]. 净水技术, 2019, 38(2): 63−68. doi: 10.15890/j.cnki.jsjs.2019.02.011
Liu A K, Gu M Q, Wei S Z, et al. Enhanced anaerobic degradation of direct blue 15 by anthraquinone-2,6-disulfonate (AQDS)[J]. Water Purification Technology, 2019, 38(2): 63−68. doi: 10.15890/j.cnki.jsjs.2019.02.011
|
[95] |
Tomaszewski E J, Ginder-Vogel M. Decreased electron transfer between Cr(Ⅵ) and AH2DS in the presence of goethite[J]. Journal of Environmental Quality, 2018, 47(1): 139−146. doi: 10.2134/jeq2017.08.0316
|
[96] |
Langer M, Jamal M U, Conklin A, et al. Chromium removal in the presence of NOM during Fe(Ⅱ) reductive precipitation for drinking water treatment[J]. Water, 2022, 14(18): 2903. doi: 10.3390/w14182903
|
[97] |
Wittbrodt P R, Palmer C D. Effect of temperature, ionic strength, background electrolytes, and Fe(Ⅲ) on the reduction of hexavalent chromium by soil humic substances[J]. Environmental Science & Technology, 1996, 30(8): 2470−2477. doi: 10.1021/es950731c
|
[98] |
Song C X, Sun S Q, Wang J T, et al. Applying fulvic acid for sediment metals remediation: Mechanism, factors, and prospect[J]. Frontiers in Microbiology, 2023, 13: 1084097. doi: 10.3389/fmicb.2022.1084097
|
[99] |
Bao Z J, Feng H Y, Tu W Y, et al. Method and mechanism of chromium removal from soil: A systematic review[J]. Environmental Science and Pollution Research, 2022, 29(24): 35501−35517. doi: 10.1007/s11356-022-19452-z
|
[100] |
Zulfiqar U, Haider F U, Ahmad M, et al. Chromium toxicity, speciation, and remediation strategies in soil-plant interface: A critical review[J]. Frontiers in Plant Science, 2023, 13: 1081624. doi: 10.3389/fpls.2022.1081624
|
[101] |
张兆鑫, 曹宁宁, 李林记, 等. 原位吸附技术修复六价铬污染土壤[J]. 岩矿测试, 2024, 43(2): 302−314. doi: 10.15898/j.ykcs.202307090090
Zhang Z X, Cao N N, Li L J, et al. In situ adsorption technology for remediation of Cr(Ⅵ) contaminated soil[J]. Rock and Mineral Analysis, 2024, 43(2): 302−314. doi: 10.15898/j.ykcs.202307090090
|
[102] |
杨梦楠, 孙晗, 曹海龙, 等. 生物炭-壳聚糖磁性复合吸附剂的制备及去除地下水中铅和铜[J]. 岩矿测试, 2023, 42(3): 563−575. doi: 10.15898/j.ykcs.202208230155
Yang M N, Sun H, Cao H L, et al. Preparation and application of biochar-chitosan magnetic composite adsorbent for removal of lead and copper from groundwater[J]. Rock and Mineral Analysis, 2023, 42(3): 563−575. doi: 10.15898/j.ykcs.202208230155
|
[103] |
Peng H, Gao P, Chu G, et al. Enhanced adsorption of Cu(Ⅱ) and Cd(Ⅱ) by phosphoric acid-modified biochars[J]. Environmental Pollution, 2017, 229: 846−853. doi: 10.1016/j.envpol.2017.07.004
|
[104] |
Mandal S, Sarkar B, Bolan N, et al. Enhancement of chromate reduction in soils by surface modified biochar[J]. Journal of Environmental Management, 2017, 186: 277−284. doi: 10.1016/j.jenvman.2016.05.034
|
[105] |
Murad H A, Ahmad M, Bundschuh J, et al. A remediation approach to chromium-contaminated water and soil using engineered biochar derived from peanut shell[J]. Environmental Research, 2022, 204: 112125. doi: 10.1016/j.envres.2021.112125
|
[106] |
Aparicio J D, Lacalle R G, Artetxe U, et al. Successful remediation of soils with mixed contamination of chromium and lindane: Integration of biological and physico-chemical strategies[J]. Environmental Research, 2021, 194: 110666. doi: 10.1016/j.envres.2020.110666
|
[107] |
Su H, Fang Z, Tsang P E, et al. Remediation of hexavalent chromium contaminated soil by biochar-supported zero-valent iron nanoparticles[J]. Journal of Hazardous Materials, 2016, 318: 533−540. doi: 10.1016/j.jhazmat.2016.07.039
|
[108] |
Ahmed T, Noman M, Ijaz M, et al. Current trends and future prospective in nanoremediation of heavy metals contaminated soils: A way forward towards sustainable agriculture[J]. Ecotoxicology and Environmental Safety, 2021, 227: 112888. doi: 10.1016/j.ecoenv.2021.112888
|
[109] |
Mondal P, Anweshan A, Purkait M K. Green synthesis and environmental application of iron-based nanomaterials and nanocomposite: A review[J]. Chemosphere, 2020, 259: 127509. doi: 10.1016/j.chemosphere.2020.127509
|
[110] |
Wei Y Z, Chu R, Zhang Q H, et al. Nano zero-valent iron loaded corn-straw biochar for efficient removal of hexavalent chromium: Remediation performance and interfacial chemical behaviour[J]. RSC Advances, 2022, 12(41): 26953−26965. doi: 10.1039/d2ra04650d
|
1. |
郑鹏,孙倩芸,李锋丽,黄春荣,隋峰,郭波. 山东省土壤中六价铬检测能力验证结果分析. 质量安全与检验检测. 2024(02): 31-34 .
![]() | |
2. |
张兆鑫,曹宁宁,李林记,刘素青,李佳昊,曹翠,李和平,张凯,石勇丽. 原位吸附技术修复六价铬污染土壤. 岩矿测试. 2024(02): 302-314 .
![]() | |
3. |
张吴,徐义邦,高明,姜云娜,秦文. 碱液提取全基体进样-电感耦合等离子体串联质谱(ICP-MS/MS)法测定土壤中的六价铬. 中国无机分析化学. 2024(09): 1242-1247 .
![]() | |
4. |
张随安,杨中瑞,段玉宇,杨凯淇,胡智杰,杨春,侯莎. 火焰原子吸收光谱法测定土壤中游离铁含量. 岩矿测试. 2024(04): 614-621 .
![]() | |
5. |
朱金来. 应用碱性微波提取-ICP/MS法测定土壤中六价铬. 能源与环境. 2024(04): 141-143 .
![]() | |
6. |
李小辉,胡新颖,胡家祯,孙慧莹,袁润蕾,于亚辉,王曼曼. 碱溶液消解-电感耦合等离子体质谱法测定土壤中6价铬. 现代化工. 2024(12): 240-243 .
![]() | |
7. |
林顶,杨天福,纪玉萍,孔芳琼. 固相萃取-分光光度法测定复杂土壤基质中六价铬的方法研究. 云南地质. 2024(S1): 101-105 .
![]() | |
8. |
褚琳琳,王筱洁,吴月,张德怀,金晓霞. 碱溶液提取-离子交换-火焰原子吸收光谱法测定土壤中六价铬的含量. 理化检验-化学分册. 2023(08): 966-969 .
![]() | |
9. |
杨俊,赵广道,张佳佳,陈波,王金云,刘玉纯. 水浴磁力搅拌碱消解-火焰原子吸收分光光度法测定土壤中铬(Ⅵ). 化学分析计量. 2023(09): 73-77 .
![]() | |
10. |
兰绿灯,李佳玉,谭清月,贾海峰,孙猛,王峰. 内标校正-电感耦合等离子体原子发射光谱法测定土壤与固体废物中铬(Ⅵ). 冶金分析. 2023(10): 54-59 .
![]() | |
11. |
徐文艺. 微波消解-离子交换-电感耦合等离子体质谱法测定土壤中的六价铬. 安徽化工. 2023(06): 128-132 .
![]() | |
12. |
庞春燕. 土壤中六价铬的测定研究现状. 皮革制作与环保科技. 2022(19): 103-105 .
![]() |