Citation: | ZHANG Sui’an,YANG Zhongrui,DUAN Yuyu,et al. Free Iron Determination in Soil by Flame Atomic Absorption Spectrometry[J]. Rock and Mineral Analysis,2024,43(4):614−621. DOI: 10.15898/j.ykcs.202305110067 |
Free iron oxide in soil is a product of weathering, migration, and transformation of soil parent materials. Its form, activation, and aging degree can reflect the soil forming process and environment. It is also the main carrier of soil variable charge and an important mineral bonding substance in soil, which can directly reflect the formation environment, formation process, and climate change of the soil. Therefore, accurate determination of free iron in soil has important practical significance. At present, free iron is measured using ultraviolet spectrophotometry. The experimental process for free iron is long, requiring the reduction of high valent iron to low valent iron. In addition, it requires a color development time of up to 24h, which is time-consuming and cannot meet the needs of large-scale sample testing. Flame atomic absorption spectrometry method is used to determine free iron in soil, and the influence of experimental conditions on the determination of free iron is studied. By optimizing the amount of sodium bicarbonate, reaction temperature, reaction time, and cleaning times during the sample determination process, a method for determining free iron in soil is established. The optimal experimental conditions are determined as follows: weigh 0.5g of sample, add 20mL of sodium citrate solution and 2mL of sodium bicarbonate solution, and cleaned once each at a reaction temperature of 75−80℃ for 15min. The detection limit (3
[1] |
孙丹丹, 刘学, 杨继松, 等. 黄河三角洲农田退耕年限对土壤不同形态氧化铁含量及其分布的影响[J]. 生态学杂志, 2023, 42(10): 2359−2367. doi: 10.13292/j.1000-4890.202310.028
Sun D D, Liu X, Yang J S, et al. Effects of returning years from farmland to wetland on the content and distribution of soil iron oxides in the Yellow River Delta[J]. Chinese Journal of Ecology, 2023, 42(10): 2359−2367. doi: 10.13292/j.1000-4890.202310.028
|
[2] |
贾重建, 卢瑛, 熊凡, 等. 珠江三角洲平原不同种植年限土壤铁氧化物特征研究[J]. 土壤学报, 2017, 54(4): 894−904. doi: 10.11766/trxb201611160502
Jia C J, Lu Y, Xiong F, et al. Characteristics of iron oxide in soils different in cultivation age in The Pearl River Delta Plain[J]. Acta Pedologica Sinica, 2017, 54(4): 894−904. doi: 10.11766/trxb201611160502
|
[3] |
Chen C M, Hall S J, Coward L, et al. Iron-mediated organic matter decomposition in humid soils can counteract protection[J]. Nature Communications, 2020, 168(10): 707−717. doi: 10.1038/s41467-020-16071-5
|
[4] |
Rezapour S, Azhah H, Momtaz H R, et al. Changes in forms and distribution pattern of soil iron oxides due to long-term cropping in the northwest of Iran[J]. Environmental Earth Sciences, 2015, 73(11): 7257−7286. doi: 10.1007/s12665-014-3933-y
|
[5] |
魏昌龙, 赵玉国, 邬登巍, 等. 基于光谱分析的土壤游离铁预测研究[J]. 土壤, 2014, 46(4): 678−683. doi: 10.13758/j.cnki.tr.2014.04.016
Wei C L, Zhao Y G, Wu D W, et al. Prediction of soil free iron oxide content based on spectral analysis[J]. Soils, 2014, 46(4): 678−683. doi: 10.13758/j.cnki.tr.2014.04.016
|
[6] |
张治伟, 朱章雄, 傅瓦利, 等. 岩溶山地土壤氧化铁形态及其与成土环境的关系[J]. 环境科学, 2012, 33(6): 2013−2020. doi: 10.13227/j.hjkx.2012.06.014
Zhang Z W, Zhu Z X, Fu W L, et al. Morphology of soil iron oxides and its correlation with soil-forming process and forming conditions in a karst mountain[J]. Environmental Science, 2012, 33(6): 2013−2020. doi: 10.13227/j.hjkx.2012.06.014
|
[7] |
李孝良, 陈效民, 周炼川, 等. 喀斯特石漠化地区土壤Fe组成及其发生学意义[J]. 地质通报, 2010, 29(5): 745−751. doi: 10.3969/j.issn.1671-2552.2010.05.015
Li X L, Chen X M, Zhou L C, et al. Characteristics of soil iron and its pedogenetic significance in the process of karst rocky desertification in Southwestern China[J]. Geological Bulletin of China, 2010, 29(5): 745−751. doi: 10.3969/j.issn.1671-2552.2010.05.015
|
[8] |
刘玉晶, 陆晓辉, 罗丹, 等. 贵州喀斯特山区典型土壤氧化铁特征及其与土壤类型分异关系[J]. 土壤通报, 2021, 52(3): 505−514. doi: 10.19336/j.cnki.trtb.2020100901
Liu Y J, Lu X H, Luo D, et al. Characteristics of iron oxides and their relationship with soil types in the karst mountainous areas of Guizhou[J]. Chinese Journal of Soil Science, 2021, 52(3): 505−514. doi: 10.19336/j.cnki.trtb.2020100901
|
[9] |
牛庚, 孙德安, 韦昌富, 等. 游离氧化铁对红黏土持水特性的影响[J]. 岩土工程学报, 2018, 40(12): 2318−2324. doi: 10.11779/CJGE201812021
Niu G, Sun D A, Wei C F, et al. Effects of free iron oxide on water retention behavior of lateritic clay[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2318−2324. doi: 10.11779/CJGE201812021
|
[10] |
刘莉, 颜荣涛, 牛富俊, 等. 游离氧化铁对红黏土力学特性的影响[J]. 桂林理工大学学报, 2021, 41(4): 810−816. doi: 10.3969/j.issn.1674-9057.2021.04.012
Liu L, Yan R T, Niu F J, et al. Effect of free iron oxide on the strength and deformation characteristics of red clay[J]. Journal of Guilin University of Technology, 2021, 41(4): 810−816. doi: 10.3969/j.issn.1674-9057.2021.04.012
|
[11] |
杨东伟, 章明奎, 张鹏启, 等. 平原区水田改林地后土壤黏土矿物及氧化铁的变化[J]. 土壤, 2020, 52(3): 567−574. doi: 10.13758/j.cnki.tr.2020.03.021
Yang D W, Zhang M K, Zhang P Q, et al. Changes of soil clay minerals and iron oxides after paddy field converted into forest land in plain areas[J]. Soils, 2020, 52(3): 567−574. doi: 10.13758/j.cnki.tr.2020.03.021
|
[12] |
孙东年, 韩张雄, 杨树俊, 等. DCB浸提-电感耦合等离子体光谱法测定土壤中游离态铁[J]. 化学工程师, 2023, 37(2): 21−24. doi: 10.16247/j.cnki.23-1171/tq.20230221
Sun D N, Han Z X, Yang S J, et al. Rapid determination of free iron in soils by ICP-OES with DCB extraction[J]. Chemical Engineer, 2023, 37(2): 21−24. doi: 10.16247/j.cnki.23-1171/tq.20230221
|
[13] |
王大娟, 杨根兰, 向喜琼, 等. 邻菲啰啉分光光度法测定红层砂岩中Fe(Ⅱ)和全铁的方法探讨[J]. 岩矿测试, 2020, 39(2): 216−224. doi: 10.15898/j.cnki.11-2131/td.201906200088
Wang D J, Yang G L, Xiang X Q, et al. Determination of Fe(Ⅱ) and total iron in red sandstone by o-phenanthroline spectrophotometry[J]. Rock and Mineral Analysis, 2020, 39(2): 216−224. doi: 10.15898/j.cnki.11-2131/td.201906200088
|
[14] |
傅翠梨, 陈文瑞, 郭阿明, 等. 邻菲啰啉光度法测定高岭土中可溶铁和非可溶铁[J]. 岩矿测试, 2012, 31(4): 621−626. doi: 10.15898/j.cnki.11-2131/td.2012.04.009
Fu C L, Chen W R, Guo A M, et al. Determination of soluble and insoluble iron in kaolin by phenanthroline spectrophotometry[J]. Rock and Mineral Analysis, 2012, 31(4): 621−626. doi: 10.15898/j.cnki.11-2131/td.2012.04.009
|
[15] |
潘涵香, 胡超勇, 王红梅, 等. 邻二氮菲分光光度法测定碳酸盐相中微量亚铁[J]. 岩矿测试, 2007, 26(3): 198−200. doi: 10.15898/j.cnki.11-2131/td.2007.03.006
Pan H X, Hu C Y, Wang H M, et al. Determination of trace Fe(Ⅱ) in carbonate phase by spectrophotometry with 1, 10-phenanthroline[J]. Rock and Mineral Analysis, 2007, 26(3): 198−200. doi: 10.15898/j.cnki.11-2131/td.2007.03.006
|
[16] |
程米亮, 赵利启, 杨长丕, 等. 邻菲罗啉分光光度法测定电解液中铁的方法改进[J]. 化工设计通讯, 2021, 47(8): 99−100. doi: 10.3969/j.issn.1003-6490.2021.08.048
Cheng M L, Zhao L Q, Yang C P, et al. An improved spectrophotometric method for the determination of iron in electrolyte with 1, 10-phenanthroline[J]. Chemical Engineering Design Communications, 2021, 47(8): 99−100. doi: 10.3969/j.issn.1003-6490.2021.08.048
|
[17] |
程芳婷, 罗细珍, 孙立忠. 常用的铁离子含量分析方法探讨[J]. 工业水处理, 2007, 27(1): 61−63. doi: 10.3969/j.issn.1005-829X.2007.01.019
Cheng F T, Luo X Z, Sun L Z. Discussion of common methods for the determination of iron[J]. Industrial Water Treatment, 2007, 27(1): 61−63. doi: 10.3969/j.issn.1005-829X.2007.01.019
|
[18] |
韩林宝, 代群威, 党政, 等. 厌氧环境下邻菲罗啉分光光度法测定纤维水镁石中Fe(Ⅱ)与Fe(Ⅲ)[J]. 冶金分析, 2018, 38(5): 25−29. doi: 10.13228/j.boyuan.issn1000-7571.010264
Han L B, Dai Q E, Dang Z, et al. Determination of Fe(Ⅱ) and Fe(Ⅲ) in fiber brucite by phenanthroline spectrophotometry under anaerobic condition[J]. Metallurgical Analysis, 2018, 38(5): 25−29. doi: 10.13228/j.boyuan.issn1000-7571.010264
|
[19] |
苏洋. 邻菲罗啉光度法测定钒铝合金中铁[J]. 冶金分析, 2019, 39(2): 77−80. doi: 10.13228/j.boyuan.issn1000-7571.010492
Su Y. Determination of iron in vanadium-aluminum alloy by phenanthroline spectrophotometry[J]. Metallurgical Analysis, 2019, 39(2): 77−80. doi: 10.13228/j.boyuan.issn1000-7571.010492
|
[20] |
马红宇, 赵静, 张利文. 分光光度法测定乳化含硫污水中铁含量[J]. 中国无机分析化学, 2021, 11(5): 72−76. doi: 10.3969/j.issn.2095-1035.2021.05.012
Ma H Y, Zhao J, Zhang L W. Determination of iron content in emulsified sulfur-containing sewage by spectrophotometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2021, 11(5): 72−76. doi: 10.3969/j.issn.2095-1035.2021.05.012
|
[21] |
张榕, 段宁, 降林华, 等. 紫外可见分光光度法直接测定高浓度六价铬溶液的光程优化研究[J]. 光谱学与光谱分析, 2023, 43(6): 829−1837. doi: 10.3964/j.issn.1000-0593(2023)06-1829-09
Zhang R, Duan N, Jiang L H, et al. Study on optical path optimization for direct determination of spectrophotometry of high concentration hexavalent chromium solution by ultraviolet visible spectroscopy[J]. Spectroscopy and Spectral Analysis, 2023, 43(6): 829−1837. doi: 10.3964/j.issn.1000-0593(2023)06-1829-09
|
[22] |
彭杰, 向红英, 周清, 等. 土壤氧化铁的高光谱响应研究[J]. 光谱学与光谱分析, 2013, 33(2): 502−506. doi: 10.3964/j.issn.1000-0593(2013)02-0502-05
Peng J, Xiang H Y, Zhou Q, et al. Influence of soil iron oxide on VNIR diffuse reflectance spectroscopy[J]. Spectroscopy and Spectral Analysis, 2013, 33(2): 502−506. doi: 10.3964/j.issn.1000-0593(2013)02-0502-05
|
[23] |
严煜, 韩乃旭, 卢水淼, 等. 工业在线-电感耦合等离子体发射光谱法分析湿法冶炼硫酸锌溶液中铜镉钴铁[J]. 岩矿测试, 2022, 41(1): 153−159. doi: 10.15898/j.cnki.11-2131/td.202107200080
Yan Y, Han N X, Lu S M, et al. Industrial on-line ICP-OES analysis of copper, cadmium, cobalt and iron in hydrometallurgical zinc sulfate solution[J]. Rock and Mineral Analysis, 2022, 41(1): 153−159. doi: 10.15898/j.cnki.11-2131/td.202107200080
|
[24] |
陈新, 罗琼, 胡建民. 石墨炉原子吸收光谱法测定麦麸颗粒中镉[J]. 中国无机分析化学, 2023, 13(7): 684−688. doi: 10.3969/j.issn.2095-1035.2023.07.003
Chen X, Luo Q, Hu J M, et al. Determination of cadmium in wheat bran pellets by graphite furnace atomic absorption spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(7): 684−688. doi: 10.3969/j.issn.2095-1035.2023.07.003
|
[25] |
汪磊, 蒙益林, 耿小颖. 火焰原子吸收光谱法测定氧化石墨烯中铁和钾的含量[J]. 理化检验(化学分册), 2022, 58(9): 1088−1092. doi: 10.11973/lhjy-hx202209018
Wang L, Meng Y L, Geng X Y, et al. Determination of iron and potassium in graphene oxide by flame atomic absorption spectrometry[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2022, 58(9): 1088−1092. doi: 10.11973/lhjy-hx202209018
|
[26] |
马毅红, 蒙兰粉, 尹艺青. 离子液体双水相体系分离-火焰原子吸收光谱法测定铁尾矿中铁[J]. 冶金分析, 2012, 32(9): 36−39. doi: 10.13228/j.issn.1000-7571.2012.09.003
Ma Y H, Meng L F, Yin Y Q. Determination of iron in iron tailings by ionic liquid aqueous two-phase system separation-flame atomic absorption spectrometry[J]. Metallurgical Analysis, 2012, 32(9): 36−39. doi: 10.13228/j.issn.1000-7571.2012.09.003
|
[27] |
张伟琦, 谢涛, 孙稚菁, 等. 微波消解火焰原子吸收光谱法测定土壤中六价铬[J]. 环境科学研究, 2023, 36(1): 44−53. doi: 10.13198/j.issn.1001-6929.2022.11.27
Zhang W Q, Xie T, Sun Z J, et al. Developments of the method of microwave digestion and flame atomic absorption spectrometry for determination of hexavalent chromium in soils[J]. Research of Environmental Sciences, 2023, 36(1): 44−53. doi: 10.13198/j.issn.1001-6929.2022.11.27
|
[28] |
杨琳, 李雪蕾, 王相舒, 等. 浊点萃取-火焰原子吸收光谱法测定土壤中的有效态钴[J]. 岩矿测试, 2013, 59(8): 775−779. doi: 10.15898/j.cnki.11-2131/td.2013.05.017
Yang L, Li X L, Wang X S, et al. Determination of available cobalt in soils by flame atomic absorption spectrometry with cloud point extraction[J]. Rock and Mineral Analysis, 2013, 59(8): 775−779. doi: 10.15898/j.cnki.11-2131/td.2013.05.017
|
[29] |
刘琳娟, 张琪, 陆培培. 标准加入-原子吸收光谱法测定钢渣中的铁[J]. 岩矿测试, 2010, 29(6): 695−698. doi: 10.15898/j.cnki.11-2131/td.2010.06.021
Liu L J, Zhang Q, Lu P P. Determination of iron in steel slag by standard addition-atomic absorption spectrometry[J]. Rock and Mineral Analysis, 2010, 29(6): 695−698. doi: 10.15898/j.cnki.11-2131/td.2010.06.021
|
[30] |
王娜, 滕新华, 吴彦涛, 等. 三氯化铝浸取-火焰原子吸收光谱法测定水系沉积物中低含量的碳酸铁[J]. 岩矿测试, 2015, 34(2): 229−233. doi: 10.15898/j.cnki.11-2131/td.2015.02.013
Wang N, Teng X H, Wu Y T, et al. Determination of low-content iron carbonate in stream sediments by flame atomic absorption spectrometry with aluminum chloride extraction[J]. Rock and Mineral Analysis, 2015, 34(2): 229−233. doi: 10.15898/j.cnki.11-2131/td.2015.02.013
|
[31] |
余星兴, 袁大刚, 陈剑科, 等. 基于 Munsell 颜色的土壤游离铁预测研究[J]. 土壤学报, 2021, 58(5): 1322−1329. doi: 10.11766/trxb202004130048
Yu X X, Yuan D G, Chen J K, et al. Prediction of soil free iron oxide content based on soils Munsell color[J]. Acta Pedologica Sinica, 2021, 58(5): 1322−1329. doi: 10.11766/trxb202004130048
|
[32] |
胡健平, 王日中, 杜宝华, 等. 火焰原子吸收光谱法和电感耦合等离子体发射光谱法测定硫化矿中的银铜铅锌[J]. 岩矿测试, 2018, 37(4): 388−395. doi: 10.15898/j.cnki.11-2131/td.201706270110
Hu J P, Wang R Z, Du B H, et al. Determination of silver copper lead and zinc in sulfide ores by flame atomic absorption spectrometry and inductively coupled plasma-optical emission spectrometry[J]. Rock and Mineral Analysis, 2018, 37(4): 388−395. doi: 10.15898/j.cnki.11-2131/td.201706270110
|
[33] |
褚琳琳, 王静云, 金晓霞, 等. 碱溶液提取-离子交换-电感耦合等离子体质谱法测定土壤中六价铬[J]. 岩矿测试, 2022, 41(5): 826−835. doi: 10.15898/j.cnki.11-2131/td.202203240060
Chu L L, Wang J Y, Jin X X, et al. Determination of hexavalent chromium in soil by inductively coupled plasma-mass spectrometry with alkaline digestion-ion exchange[J]. Rock and Mineral Analysis, 2022, 41(5): 826−835. doi: 10.15898/j.cnki.11-2131/td.202203240060
|
1. |
马振,纪延钰,管蕾,修宗楷. 高分辨连续光源—火焰原子吸收仪测定污水厂污泥中的7种重金属. 绿色科技. 2025(02): 144-147 .
![]() |