• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
ZHAO Qing-ling, LI Qing-cai, TAN Xian-feng, AN Mao-guo, CHEN Juan, MAO Xiu-li. Determination of Hexavalent Chromium in Solid Waste by Inductively Coupled Plasma-Optical Emission Spectrometry with Microwave Digestion[J]. Rock and Mineral Analysis, 2021, 40(1): 103-110. DOI: 10.15898/j.cnki.11-2131/td.201907290114
Citation: ZHAO Qing-ling, LI Qing-cai, TAN Xian-feng, AN Mao-guo, CHEN Juan, MAO Xiu-li. Determination of Hexavalent Chromium in Solid Waste by Inductively Coupled Plasma-Optical Emission Spectrometry with Microwave Digestion[J]. Rock and Mineral Analysis, 2021, 40(1): 103-110. DOI: 10.15898/j.cnki.11-2131/td.201907290114

Determination of Hexavalent Chromium in Solid Waste by Inductively Coupled Plasma-Optical Emission Spectrometry with Microwave Digestion

More Information
  • Received Date: July 28, 2019
  • Revised Date: November 11, 2020
  • Accepted Date: December 05, 2020
  • Published Date: January 27, 2021
  • HIGHLIGHTS
    (1) Accurate temperature control technology of microwave digestion equipment was the key to ensure the test quality.
    (2) A simple and efficient digestion reagent for hexavalent chromium determination was screened.
    (3) Effective separation between hexavalent and trivalent chromium can be achieved at pH 7-11.
    BACKGROUNDHexavalent chromium is one of the necessary indices for monitoring the soil environment of solid waste and construction land.
    OBJECTIVESTo establish a simple, accurate and precise method for the determination of Cr(Ⅵ).
    METHODSUsing 0.1mol/L disodium hydrogen phosphate solution (pH=9.0) as the extractant, the sample was treated by microwave digestion at the optimized temperature and time, ensuring the destruction of the solid sample matrix. All Cr(Ⅵ) in the lattice was dissolved into the solution, and oxidation of Cr(Ⅲ) was effectively inhibited. The hexavalent chromium (solution) and trivalent chromium (precipitation) was separated by 0.45μm filter membrane at pH=9.0. Cr(Ⅵ) in the sample solution, and the content of Cr(Ⅵ) was determined by inductively coupled plasma-optical emission spectrometry (ICP-OES).
    RESULTSWhen the sample quantity was 1.00g, the microwave digestion temperature was 90℃, and the digestion time was 20min, the complete extraction and accurate determination of Cr(Ⅵ) in solid waste was guaranteed. The detection limit was 0.057mg/kg, the relative standard deviation (n=7) was lower than 3.20%, compared with HJ 687 standard method, the relative deviation is -5.6%-7.6%, and the recoveries of Cr(Ⅵ) in solid waste were 94.3% and 96.6%. Compared with the previous ICP-OES method with the detection limit of 0.83mg/kg and recovery of 87.2%, the detection limit of this method was lower by 10 times.
    CONCLUSIONSThe proposed method has a lower detection limit, short sample pretreatment time, and high degree of automation and can be widely used in the field of environment monitoring.

  • Tran H N, Nguyen D T, Le G T, et al. Adsorption mechanism of hexavalent chromium onto layered double hydroxides-based adsorbents: A systematic in-depth review[J]. Journal of Hazardous Materials, 2019, 373: 258-270. doi: 10.1016/j.jhazmat.2019.03.018
    Zhao P D, Zhang H, Yu J, et al. Conditions for mutual conversion of Cr(Ⅲ) and Cr(Ⅵ) in aluminum chromium slag[J]. Journal of Alloys and Compounds, 2019, 788: 506-513. doi: 10.1016/j.jallcom.2019.02.093
    Dhal B, Thatoi H N, Das N N, et al. Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: A review[J]. Journal of Hazardous Materials, 2013, 250-251: 272-291. doi: 10.1016/j.jhazmat.2013.01.048
    陈丽琼, 霍巨垣, 王欣, 等. 六价铬测定方法研究进展[J]. 理化检验(化学分册), 2015, 51(8): 1208-1212. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201508050.htm

    Chen L Q, Huo J Y, Wang X, et al. Recent advances of researches on determination of hexavalent chromium[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2015, 51(8): 1208-1212. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201508050.htm
    Cao X Y, Wang S, Bi R C, et al. Toxic effects of Cr(Ⅵ) on the bovine hemoglobin and human vascular endothelial cells: Molecular interaction and cell damage[J]. Chemosphere, 2019, 222: 355-363. doi: 10.1016/j.chemosphere.2019.01.137
    Rager J E, Mina S M, Chappell G A, et al. Review of transcriptomic responses to hexavalent chromium exposure in lung cells supports a role of epigenetic mediators in carcinogenesis[J]. Toxicology Letters, 2019, 305: 40-50. doi: 10.1016/j.toxlet.2019.01.011
    Zhao Y, Yan J, Li A P, et al. Bone marrow mesenchymal stem cells could reduce the toxic effects of hexavalent chromium on the liver by decreasing endoplasmic reticulum stress-mediated apoptosis via SIRT1/HIF-1α signaling pathway in rats[J]. Toxicology Letters, 2019, 310: 31-38. doi: 10.1016/j.toxlet.2019.04.007
    Yin F, Yan J, Zhao Y, et al. Bone marrow mesenchymal stem cells repair Cr(Ⅵ)-injured kidney by regulating mitochondria-mediated apoptosis and mitophagy mediated via the MAPK signaling pathway[J]. Ecotoxicology and Environmental Safety, 2019, 176: 234-241. doi: 10.1016/j.ecoenv.2019.03.093
    des Marias T L, Costa M. Mechanisms of chromium-induced toxicity[J]. Current Opinion in Toxicology, 2019, 14: 1-7. doi: 10.1016/j.cotox.2019.05.003
    Chen Q Y, Murphy A, Sun H, et al. Molecular and epigenetic mechanisms of Cr(Ⅵ)-induced carcinogenesis[J]. Toxicology and Applied Pharmacology, 2019, 377: 114636. doi: 10.1016/j.taap.2019.114636
    Santonen T, Alimonti A, Bocca B, et al. Setting up a collaborative European human biological monitoring study on occupational exposure to hexavalent chromium[J]. Environmental Research, 2019, 177: 108583. doi: 10.1016/j.envres.2019.108583
    张杰芳, 闫玉乐, 夏承莉, 等. 微波碱消解-电感耦合等离子体发射光谱法测定煤灰中的六价铬[J]. 岩矿测试, 2017, 36(1): 46-51. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201701006.htm

    Zhang J F, Yan Y L, Xia C L, et al. Determination of Cr(Ⅵ) in coal ashby microwave alkaline digestion and inductively coupled plasma-optical emission spectrometry[J]. Rock and Mineral Analysis, 2017, 36(1): 46-51. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201701006.htm
    张涛, 蔡五田, 刘金巍, 等. 超声辅助提取离子色谱法测定铬污染土壤中的六价铬[J]. 分析测试学报, 2013, 32(11): 1384-1387. https://www.cnki.com.cn/Article/CJFDTOTAL-TEST201311029.htm

    Zhang T, Cai W T, Liu J W, et al. Determination of hexavalent chromium in soil samples by ultrasound-assisted extraction ion chromatography[J]. Journal of Instrumental Analysis, 2013, 32(11): 1384-1387. https://www.cnki.com.cn/Article/CJFDTOTAL-TEST201311029.htm
    Miyake Y, Tokumura M, Iwazaki Y, et al. Determination of hexavalent chromium concentration in industrial waste incinerator stack gas by using a modified ion chromatography with post-column derivatization method[J]. Journal of Chromatography A, 2017, 1502: 24-29. doi: 10.1016/j.chroma.2017.04.046
    巢静波, 史乃捷, 陈扬, 等. 衍生液注入控制-离子色谱法同时测定环境水样中的三价铬和六价铬[J]. 环境化学, 2016, 35(1): 67-74. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201601009.htm

    Chao J B, Shi N J, Chen Y, et al. Simultaneous determination of trivalent and hexavalent chromium in environmental waters by ion chromatography with derivatization reagent injection-control technique[J]. Environmental Chemistry, 2016, 35(1): 67-74. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201601009.htm
    虞锐鹏, 胡忠阳, 叶明立, 等. 快速溶剂萃取-离子色谱法同时测定塑料中的三价铬和六价铬[J]. 色谱, 2012, 30(4): 409-413. https://www.cnki.com.cn/Article/CJFDTOTAL-SPZZ201204017.htm

    Yu R P, Hu Z Y, Ye M L, et al. Simultaneous determination of trivalent chromium and hexavalent chromium in plastics by accelerated solvent extraction-ion chromatography[J]. Chinese Journal of Chromatography, 2012, 30(4): 409-413. https://www.cnki.com.cn/Article/CJFDTOTAL-SPZZ201204017.htm
    Olonkwoh S S, Bakar N K A. A simple method for chromium speciation analysis in contaminated water using APDC and a pre-heated glass tube followed by HPLC-PDA[J]. Talanta, 2018, 181: 401-409. doi: 10.1016/j.talanta.2018.01.041
    田勇, 刘崇华, 方晗, 等. 共沉淀法辅助分离-离子色谱与电感耦合等离子体质谱联用测定玩具材料中三价铬及超痕量六价铬[J]. 分析测试学报, 2015, 34(6): 706-710. https://www.cnki.com.cn/Article/CJFDTOTAL-TEST201506015.htm

    Tian Y, Liu C H, Fang H, et al. Determination of Cr(Ⅲ) and ultratrace Cr(Ⅵ) in toy materials by co-precipitation assisted separation-ion chromatography-inductively coupled plasma mass spectrometry[J]. Journal of Instrumental Analysis, 2015, 34(6): 706-710. https://www.cnki.com.cn/Article/CJFDTOTAL-TEST201506015.htm
    刀谞, 吕怡兵, 滕恩江, 等. 离子色谱-电感耦合等离子体质谱联用测定大气颗粒物PM2.5和PM10中的六价铬[J]. 色谱, 2014, 32(9): 936-941. https://www.cnki.com.cn/Article/CJFDTOTAL-SPZZ201409008.htm

    Dao X, Lv Y B, Teng E J, et al. Determination of hexavalent chromium in atmospheric particles PM2.5 and PM10 by ion chromatography with inductively coupled plasma mass spectrometry[J]. Chinese Journal of Chromatography, 2014, 32(9): 936-941. https://www.cnki.com.cn/Article/CJFDTOTAL-SPZZ201409008.htm
    倪张林, 汤富彬, 屈明华, 等. 微波灰化-液相色谱-电感耦合等离子体质谱联用测定干食用菌中的三价铬和六价铬[J]. 色谱, 2014, 32(2): 174-178. https://www.cnki.com.cn/Article/CJFDTOTAL-SPZZ201402012.htm

    Ni Z L, Tang F B, Qu M H, et al. Determination of trivalent chromium and hexavalent chromium in dried edible fungi by microwave ashing-liquid chromatography with inductively coupled plasma mass spectrometry[J]. Chinese Journal of Chromatography, 2014, 32(2): 174-178. https://www.cnki.com.cn/Article/CJFDTOTAL-SPZZ201402012.htm
    Gao L, Gao B, Xu D Y, et al. In-situ measurement of labile Cr(Ⅲ) and Cr(Ⅵ) in water using diffusive gradients in thin-films (DGT)[J]. Science of the Total Environment, 2019, 653: 1161-1167. doi: 10.1016/j.scitotenv.2018.10.392
    Catalani S, Fostinelli J, Gilberti M E, et al. Application of a metal free high performance liquid chromatography with inductively coupled plasma mass spectrometry (HPLC-ICP-MS) for the determination of chromium species in drinking and tap water[J]. International Journal of Mass Spectrometry, 2015, 387: 31-37. doi: 10.1016/j.ijms.2015.06.015
    Heitland P, Blohm M, Breuer C, et al. Application of ICP-MS and HPLC-ICP-MS for diagnosis and therapy of a severe intoxication with hexavalent chromium and inorganic arsenic[J]. Journal of Trace Elements in Medicine and Biology, 2017, 41: 36-40. doi: 10.1016/j.jtemb.2017.02.008
    Drinčić A, Zuliani T, Šančar J, et al. Determination of hexavalent Cr in river sediments by speciated isotope dilution inductively coupled plasma mass spectrometry[J]. Science of the Total Environment, 2018, 637-638: 1286-1294. doi: 10.1016/j.scitotenv.2018.05.112
    Lu Y, Li G, Liu W, et al. The application of micro-wave digestion in decomposing some refractory ore samples with solid fusion agent[J]. Talanta, 2018, 186: 538-544. doi: 10.1016/j.talanta.2018.03.074
    Muller E I, Muller C C, Souza J P, et al. Green microwave-assisted wet digestion method of carbohydrate-rich foods with hydrogen peroxide using single reaction chamber and further elemental determination using ICP-OES and ICP-MS[J]. Microchemical Journal, 2017, 134: 257-261. doi: 10.1016/j.microc.2017.06.012
    赵庆令, 安茂国, 陈洪年, 等. 济南市某废弃化工厂区域土壤地球化学特征研究[J]. 岩矿测试, 2018, 37(2): 201-208. doi: 10.15898/j.cnki.11-2131/td.201708240135

    Zhao Q L, An M G, Chen H N, et al. Research on geochemical characteristic of soil in a chemical industrial factory site in Jinan City[J]. Rock and Mineral Analysis, 2018, 37(2): 201-208. doi: 10.15898/j.cnki.11-2131/td.201708240135
    安茂国, 赵庆令, 谭现锋, 等. 化学还原-稳定化联合修复铬污染场地土壤的效果研究[J]. 岩矿测试, 2019, 38(2): 204-211. doi: 10.15898/j.cnki.11-2131/td.201806040068

    An M G, Zhao Q L, Tan X F, et al. Research on the effect of chemical reduction-stabilization combined remediation of Cr-contaminated soil[J]. Rock and Mineral Analysis, 2019, 38(2): 204-211. doi: 10.15898/j.cnki.11-2131/td.201806040068
  • Cited by

    Periodical cited type(20)

    1. 范博文,黄秀,高光晔,袁姗姗,邢志. 电感耦合等离子体发射光谱(ICP-OES)发展与应用. 中国无机分析化学. 2025(03): 363-381 .
    2. 门倩妮,李荣华,甘黎明,冯博鑫. 碱溶液提取-电感耦合等离子体原子发射光谱法测定土壤中六价铬的含量. 理化检验-化学分册. 2024(01): 101-104 .
    3. 邓太秀,阿丽莉,王娟. 碱液浸取-ICP-OES法快速测定土壤中Cr(Ⅵ). 化学工程师. 2024(07): 19-22 .
    4. 张宁,刘璐,孙凯茜,王磊,邹佳洁,李龙飞,朱永晓,孟建卫. 基体分离-利用电感耦合等离子体质谱仪He碰撞模式测定土壤中六价铬. 中国土壤与肥料. 2024(07): 249-252 .
    5. 田文娟,郭丽,杜维,郑丹. 柱后衍生-离子色谱法测定固废中的六价铬方法优化. 广州化工. 2024(20): 110-114 .
    6. 杨柳晨,王小钊,邢丹. 铬盐污染土壤六价铬标准物质不确定度评估. 福建分析测试. 2024(06): 53-59 .
    7. 李小辉,胡新颖,胡家祯,孙慧莹,袁润蕾,于亚辉,王曼曼. 碱溶液消解-电感耦合等离子体质谱法测定土壤中6价铬. 现代化工. 2024(12): 240-243 .
    8. 金梅,陈琨,李海英,申慧滢. 碱液提取-原子吸收法测定土壤中六价铬的前处理方法探讨. 环保科技. 2024(06): 36-39 .
    9. 罗伶燕,沈益斌,郝军,梁家乐. 微波碱消解-火焰原子吸收光谱法测定土壤中六价铬. 广州化工. 2023(01): 161-163 .
    10. 门倩妮,王鹏,孙建伟,冯博鑫,姚薇. 物理化学还原法处理-电感耦合等离子体发射光谱(ICP-OES)法测定污染土壤中的六价铬. 中国无机分析化学. 2023(06): 536-542 .
    11. 王娟,毛盟,吴培源,贺攀红,阿丽莉. 土壤中六价铬含量的测定方法比对. 化学工程师. 2023(07): 31-34 .
    12. 褚琳琳,王筱洁,吴月,张德怀,金晓霞. 碱溶液提取-离子交换-火焰原子吸收光谱法测定土壤中六价铬的含量. 理化检验-化学分册. 2023(08): 966-969 .
    13. 兰绿灯,李佳玉,谭清月,贾海峰,孙猛,王峰. 内标校正-电感耦合等离子体原子发射光谱法测定土壤与固体废物中铬(Ⅵ). 冶金分析. 2023(10): 54-59 .
    14. 王婷,朱红霞,周敬峰,姜丽,金淑聪,胡佳欣. 柱后衍生离子色谱法测定土壤和沉积物中的六价铬. 中国环境监测. 2023(05): 236-242 .
    15. 杨建博,孟建卫,邱红绪,刘显,李晓敬,姚然. 恒温振荡浸提-火焰原子吸收光谱法测定土壤中铬(Ⅵ). 冶金分析. 2022(04): 45-52 .
    16. 褚琳琳,王静云,金晓霞,汪碧芬,孔翠羽. 碱溶液提取-离子交换-电感耦合等离子体质谱法测定土壤中六价铬. 岩矿测试. 2022(05): 826-835 . 本站查看
    17. 马培华. 固体废物的资源化和综合利用技术研究. 低碳世界. 2021(04): 29-30 .
    18. 徐冬梅,陈晋,张付海. 土壤、沉积物和固废中六价铬的碱消解法高效检测. 安徽工程大学学报. 2021(04): 17-22 .
    19. 徐冬梅. 微波碱提取-电感耦合等离子体光谱法测定底泥和土壤中的六价铬. 治淮. 2021(09): 12-14 .
    20. 黄晶. 碱溶液提取-连续光源原子吸收测定土壤和沉积物中的六价铬. 福建分析测试. 2021(05): 34-37 .

    Other cited types(1)

Catalog

    Article views (4256) PDF downloads (126) Cited by(21)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return