• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
CHU Linlin, WANG Jingyun, JIN Xiaoxia, WANG Bifen, KONG Cuiyu. Determination of Hexavalent Chromium in Soil by Inductively Coupled Plasma-Mass Spectrometry with Alkaline Digestion-Ion Exchange[J]. Rock and Mineral Analysis, 2022, 41(5): 826-835. DOI: 10.15898/j.cnki.11-2131/td.202203240060
Citation: CHU Linlin, WANG Jingyun, JIN Xiaoxia, WANG Bifen, KONG Cuiyu. Determination of Hexavalent Chromium in Soil by Inductively Coupled Plasma-Mass Spectrometry with Alkaline Digestion-Ion Exchange[J]. Rock and Mineral Analysis, 2022, 41(5): 826-835. DOI: 10.15898/j.cnki.11-2131/td.202203240060

Determination of Hexavalent Chromium in Soil by Inductively Coupled Plasma-Mass Spectrometry with Alkaline Digestion-Ion Exchange

More Information
  • Received Date: March 23, 2022
  • Revised Date: May 13, 2022
  • Accepted Date: May 23, 2022
  • Available Online: November 10, 2022
  • HIGHLIGHTS
    (1) A certain amount of cation exchange resin was added into the alkaline extraction solution, and a large number of cations were removed. Continuous analysis had strong stability.
    (2) The detection limit of the method can be reduced by dilution, adding exchange resin, using an internal standard method and optimizing instrument conditions.
    (3) When reducing substances exist in the soil, the pH range of the extraction solution should be controlled within 7.5±0.5 to maintain the recovery.
    BACKGROUND

    Hexavalent chromium Cr(Ⅵ) is one of the basic monitoring indicators of soil in construction land. It is of great significance to carry out soil hexavalent chromium monitoring in the prevention and control of environmental pollution. At present, the standard method of hexavalent chromium in soil is flame atomic absorption spectrometry (FAAS). The FAAS method has a high detection limit (0.5mg/kg), and serious matrix effect, and cannot meet the analysis of Cr(Ⅵ) in low-concentration soil samples.

    OBJECTIVES

    To establish a convenient and high sensitivity method for determination of low-concentration hexavalent chromium in soil.

    METHODS

    An ion-exchange-inductively coupled plasma-mass spectrometry (ICP-MS) method was developed to determine the content of hexavalent chromium in soil by extracting hexavalent chromium with alkali solution. The resin content, mixing speed, extraction temperature and extraction time were studied. The measurement results were compared with the flame atomic absorption spectrophotometry (FAAS) method.

    RESULTS

    The results showed that the total dissolved solids (TDS) mass fraction was reduced from 2.4% to 0.17% after the alkaline extraction solution was diluted 10 times and 3.5g of cation exchange resin was added, and the matrix interference was greatly reduced. At the same time, due to the dissolution of hydrogen ions in the ion exchange process, the pH reached a suitable detection range (7.5±0.5). The pretreatment conditions were optimized. When the extraction temperature was 90-95℃, the stirring speed was 300 rpm, and the heating time was 70 min, the extraction effect of Cr(Ⅵ) was the best, and the relative error was -1.7%. The relative standard deviation (RSD) was 3.1%-5.9%, and the average relative error was -3.8% to -1.1%. F test and t test were used to compare the test results of high, medium and low concentration standard substances by ICP-MS and FAAS, and there was no significant difference between the two methods. The method detection limit (MDL) was 0.061 mg/kg.

    CONCLUSIONS

    Since this method adopts dilution, ion exchange, internal standard method, to reduce matrix interference, combined with the high sensitivity and good accuracy of ICP-MS, the method detection limit (MDL) is significantly lower than the detection limit of FAAS method (0.5mg/kg). This method can be used for the determination of low-concentration soil Cr(Ⅵ) samples.

  • [1]
    Chen J S, Wei F S, Zheng C J, et al. Background concentrations of elements in soils of China[J]. Water Air and Soil Pollution, 1991, 57/58(1): 699-712. doi: 10.1007/BF00282934
    [2]
    陈雅丽, 翁莉萍, 马杰, 等. 近十年中国土壤重金属污染源解析研究进展[J]. 农业环境科学学报, 2019, 38(10): 2219-2238. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201910002.htm

    Chen Y L, Weng L P, Ma J, et al. Review on the last ten years of research on source identification of heavy metal pollution in soils[J]. Journal of Agro-Environment Science, 2019, 38(10): 2219-2238. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201910002.htm
    [3]
    Liang J L, Huang X M, Yan J W, et al. A review of the formation of Cr(Ⅵ) via Cr(Ⅲ) oxidation in soils and groundwater[J]. Science of the Total Environment, 2021, 774: 145762. doi: 10.1016/j.scitotenv.2021.145762
    [4]
    Zhang X W, Tong J X, Hu B X, et al. Adsorption and desorption for dynamics transport of hexavalent chromium (Cr(Ⅵ)) in soil column[J]. Environmental Science and Pollution Research, 2018, 25: 459-468. doi: 10.1007/s11356-017-0263-0
    [5]
    Nagaraj P, Aradhana N, Shivakumar A, et al. Spe-ctrophotometric method for the determination of chromium (Ⅵ) in water samples[J]. Environmental Monitoring and Assessment, 2009, 157: 575-582. doi: 10.1007/s10661-008-0557-2
    [6]
    Fikirte Z, Meareg A. Determination of the level of hexavalent, trivalent, and total chromium in the discharged effluent of Bahir Dar tannery using ICP-OES and UV-visible spectrometry[J]. Cogent Chemistry, 2018, 4(1): 1534566. doi: 10.1080/23312009.2018.1534566
    [7]
    Miyake Y, Tokumura M, Iwazaki Y, et al. Determination of hexavalent chromium concentration in industrial waste incinerator stack gas by using a modified ion chromatography with post-column derivatization method[J]. Journal of Chromatography A, 2017, 1502: 24-29. doi: 10.1016/j.chroma.2017.04.046
    [8]
    Borai E H, El-Sofany E A, Abdel-Halim A S. Speciation of hexavalent chromium in atmospheric particulate samples by selective extraction and ion chromatographic determination[J]. TrAC Trends in Analytical Chemistry, 2002, 21(11): 741-745. doi: 10.1016/S0165-9936(02)01102-0
    [9]
    林海兰, 谢沙, 文卓琼, 等. 碱消解-火焰原子吸收法测定土壤和固体废物中六价铬[J]. 分析试验室, 2017, 36(2): 198-202. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201702017.htm

    Lin H L, Xie S, Weng Z Q, et al. Determination of chromium (Ⅵ) in soil and solid waste by alkaline digestion-flame atomic absorption spectrometry[J]. Chinese Journal of Analysis Laboratory, 2017, 36(2): 198-202. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201702017.htm
    [10]
    Abkenar S D, Hosseini M, Dahaghin Z, et al. Speciation of chromium in water samples with homogeneous liquid-liquid extraction and determination by flame atomic absorption spectrometry[J]. Bulletin of the Korean Chemical Society, 2010, 31(10): 2813-2818. doi: 10.5012/bkcs.2010.31.10.2813
    [11]
    Samira P, Mohammad B, Fatemeh Z, et al. Preconcentration and ultra-trace determination of hexavalent chromium ions using tailor-made polymer nanoparticles coupled with graphite furnace atomic absorption spectrometry: Ultrasonic assisted-dispersive solid-phase extraction[J]. New Journal of Chemistry, 2018, 42 (12): 10357-10365. doi: 10.1039/C8NJ01608A
    [12]
    炼晓璐, 魏洪敏, 甄长伟, 等. 碱消解-火焰原子吸收光谱法测定土壤中六价铬[J]. 中国无机分析化学, 2021, 11(3): 23-27. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX202103005.htm

    Lian X L, Wei H M, Zhen C W, et al. Determination of hexavalent chromium in soil by alkali digestion flame atomic absorption spectrometry[J]. Chinese Jorunal of Inorganic Analytical Chemistry, 2021, 11(3): 23-27. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX202103005.htm
    [13]
    李强, 高存富, 曹莹, 等. 固体样品六价铬的检测比对和验证[J]. 环境工程, 2020, 38(6): 47-51. https://www.cnki.com.cn/Article/CJFDTOTAL-HJGC202006008.htm

    Li Q, Gao C F, Cao Y, et al. Comparison and verification of hexavalent chromium detection in solid samples[J]. Environmental Engineering, 2020, 38(6): 47-51. https://www.cnki.com.cn/Article/CJFDTOTAL-HJGC202006008.htm
    [14]
    赵庆令, 李清彩, 谭现锋, 等. 微波碱性体系消解-电感耦合等离子体发射光谱法测定固体废物中的六价铬[J]. 岩矿测试, 2021, 40(1): 103-110. http://www.ykcs.ac.cn/cn/article/id/3e1263d3-6d6c-43f1-89da-736a5e4179b5

    Zhao Q L, Li Q C, Tan X F, et al. Determination of hexavalent chromium in solid waste by inductively coupled plasma-optical emission spectrometry with microwave digestion[J]. Rock and Mineral Analysis, 2021, 40(1): 103-110. http://www.ykcs.ac.cn/cn/article/id/3e1263d3-6d6c-43f1-89da-736a5e4179b5
    [15]
    秦婷, 董宗凤, 吕晓华, 等. 碱消解-电感耦合等离子体发射光谱(ICP-OES)法测定土壤中六价铬[J]. 中国无机分析化学, 2019, 9(6): 10-13. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX201906003.htm

    Qin T, Dong Z F, Lyh X H, et al. Determination of hexavalent chromium in soil by alkaline digestion-inductively coupled plasma optical emission spectrometry (ICP-OES)[J]. Chinese Jorunal of Inorganic Analytical Chemistry, 2019, 9(6): 10-13. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX201906003.htm
    [16]
    陈波, 胡兰. 电感耦合等离子体质谱法测定土壤样品中六价铬的前处理方法研究[J]. 理化检验(化学分册), 2021, 57(4): 358-361. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH202104016.htm

    Chen B, Hu L. Study on pretreatment method for determination of hexavalent chromium in soil samples by inductively coupled plasma mass spectrometry[J]. Testing and Chemical Analysis (Part B: Chemical Analysis), 2021, 57(4): 358-361. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH202104016.htm
    [17]
    Spanua D, Monticellia D, Binda G, et al. One-minute highly selective Cr(Ⅵ) determination at ultra-trace levels: An ICP-MS method based on the on-line trapping of Cr(Ⅲ)[J]. Journal of Hazardous Materials, 2021, 412: 125280. doi: 10.1016/j.jhazmat.2021.125280
    [18]
    Barałkiewicz D, Pikosz B, Belter M, et al. Speciation analysis of chromium in drinking water samples by ion-pair reversed-phase HPLC-ICP-MS: Validation of the analytical method and evaluation of the uncertainty budget[J]. Accreditation and Quality Assurance, 2018, 18: 391-401.
    [19]
    Christopher T M, Carleton R B, Ruth E W, et al. Modi-fications to EPA method 3060A to improve extraction of Cr(Ⅵ) from chromium ore processing residue-contaminated soils[J]. Environmental Science & Technology, 2017, 51: 11235-11243.
    [20]
    Catalani S, Fostinelli J, Gilberti M E, et al. Application of a metal free high performance liquid chromatography with inductively coupled plasma mass spectrometry (HPLC-ICP-MS) for the determination of chromium species in drinking and tap water[J]. International Journal of Mass Spectrometry, 2015, 387: 31-37.
    [21]
    刘卫, 林建, 杨一, 等. 碱消解-离子色谱与电感耦合等离子体质谱(IC-ICP-MS)法测定土壤中的六价铬[J]. 中国无机分析化学, 2022, 12(1): 8-12. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX202201002.htm

    Liu W, Lin J, Yang Y, et al. Determination of hexavalent chromium in soil by alkaline digestion-ion chromatography and inductively coupled plasma mass spectrometry (IC-ICP-MS)[J]. Chinese Journal of Inorganic Analytical Chemistry, 2022, 12(1): 8-12. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX202201002.htm
    [22]
    Imanaka S, Hayashi H. Behavior of hexavalent chromium in the water supply system by IC-ICP-MS method[J]. Water Supply, 2013, 13(1): 96-103.
    [23]
    Xiao W D, Zhang Y B, Li T Q, et al. Reduction kinetics of hexavalent chromium in soils and its correlation with soil properties[J]. Journal of Environmental Quality, 2012, 41(5): 1452-1458.
    [24]
    Mädler S, Sun F, Tat C, et al. Trace-level analysis of hexavalent chromium in lake sediment samples using ion chromatography tandem mass spectrometry[J]. Journal of Environmental Protection, 2016, 7: 422-434.
    [25]
    Huo D W, Kingston H M S. Correction of species transfor-mations in the analysis of Cr(Ⅵ) in solid environmental samples using speciated isotope dilution mass spectrometry[J]. Analytical Chemistry, 2000, 72: 5047-5054.
    [26]
    Eary L E, Davis A. Geochemistry of an acidic chromium sulfate plume[J]. Applied Geochemistry, 2007, 22: 357-369.
    [27]
    Novotnik B, Zuliani T, Šanar J, et al. The determination of Cr(Ⅵ) in corrosion protection coatings by speciated isotope dilution ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2012, 27: 1484-1493.
    [28]
    冷远鹏, 薛晓康, 章明洪. 土壤碱消解检测六价铬的铬还原问题及质控结果分析[J]. 安徽农业科学, 2019, 47(21): 206-208. https://www.cnki.com.cn/Article/CJFDTOTAL-AHNY201921064.htm

    Leng Y P, Xue X K, Zhang M H. Determination of chromium reduction of hexavalent chromium by soil alkaline digestion and analysis of quality control results[J]. Journal of Anhui Agricultural Sciences, 2019, 47(21): 206-208. https://www.cnki.com.cn/Article/CJFDTOTAL-AHNY201921064.htm
    [29]
    刘海明, 武明丽, 成景特, 等. 酸溶分解-电感耦合等离子体质谱内标法测定地质样品中的痕量银[J]. 岩矿测试, 2021, 40(3): 444-450. doi: 10.15898/j.cnki.11-2131/td.202002190018

    Liu H M, Wu M L, Cheng J T, et al. Determination of trace silver in geological samples by inductively coupled plasma-mass spectrometry with acid decomposition and internal standard calibration[J]. Rock and Mineral Analysis, 2021, 40(3): 444-450. doi: 10.15898/j.cnki.11-2131/td.202002190018
    [30]
    Vanhaecke F, Vanhoe H, Dams R, et al. The use of internal standards in ICP-MS[J]. Talanta, 1992, 39(7): 737-742.
    [31]
    史凯, 朱建明, 吴广亮, 等. 地质样品中高精度铬同位素分析纯化技术研究进展[J]. 岩矿测试, 2019, 38(3): 341-353. doi: 10.15898/j.cnki.11-2131/td.201805130059

    Shi K, Zhu J M, Wu G L, et al. A review on the progress of purification techniques for high precision determination of Cr isotopes in geological samples[J]. Rock and Mineral Analysis, 2019, 38(3): 341-353. doi: 10.15898/j.cnki.11-2131/td.201805130059
    [32]
    Larsen K K, Wielandt D, Schiller M, et al. Chromatographic speciation of Cr(Ⅲ)-species, inter-species equilibrium isotope fractionation and improved chemical purification strategies for high-precision isotope analysis[J]. Journal of Chromatography A: Including Electrophoresis and Other Separation Methods, 2016, 1443: 162-174.
    [33]
    田晓芳, 高显超, 国静, 等. 过渡金属离子Mn(Ⅱ)和Fe(Ⅲ)对草酸还原Cr(Ⅵ)的催化作用[J]. 南京农业大学学报, 2009, 32(4): 160-164. https://www.cnki.com.cn/Article/CJFDTOTAL-NJNY200904031.htm

    Tian X F, Gao X C, Guo J, et al. Catalytic role of Mn(Ⅱ) and Fe(Ⅲ) in the reduction of Cr(Ⅵ) by oxalic acid[J]. Journal of Nanjing Agricultural university, 2009, 32(4): 160-164. https://www.cnki.com.cn/Article/CJFDTOTAL-NJNY200904031.htm
    [34]
    Vitale R J, Mussoline G R, Rinehimer K A, et al. Extrac-tion of sparingly soluble chromate from soils: Evaluation of methods and Eh-pH effects[J]. Environmental Science & Technology, 1997, 31(2): 390-394.
  • Cited by

    Periodical cited type(12)

    1. 郑鹏,孙倩芸,李锋丽,黄春荣,隋峰,郭波. 山东省土壤中六价铬检测能力验证结果分析. 质量安全与检验检测. 2024(02): 31-34 .
    2. 张兆鑫,曹宁宁,李林记,刘素青,李佳昊,曹翠,李和平,张凯,石勇丽. 原位吸附技术修复六价铬污染土壤. 岩矿测试. 2024(02): 302-314 . 本站查看
    3. 张吴,徐义邦,高明,姜云娜,秦文. 碱液提取全基体进样-电感耦合等离子体串联质谱(ICP-MS/MS)法测定土壤中的六价铬. 中国无机分析化学. 2024(09): 1242-1247 .
    4. 张随安,杨中瑞,段玉宇,杨凯淇,胡智杰,杨春,侯莎. 火焰原子吸收光谱法测定土壤中游离铁含量. 岩矿测试. 2024(04): 614-621 . 本站查看
    5. 朱金来. 应用碱性微波提取-ICP/MS法测定土壤中六价铬. 能源与环境. 2024(04): 141-143 .
    6. 李小辉,胡新颖,胡家祯,孙慧莹,袁润蕾,于亚辉,王曼曼. 碱溶液消解-电感耦合等离子体质谱法测定土壤中6价铬. 现代化工. 2024(12): 240-243 .
    7. 林顶,杨天福,纪玉萍,孔芳琼. 固相萃取-分光光度法测定复杂土壤基质中六价铬的方法研究. 云南地质. 2024(S1): 101-105 .
    8. 褚琳琳,王筱洁,吴月,张德怀,金晓霞. 碱溶液提取-离子交换-火焰原子吸收光谱法测定土壤中六价铬的含量. 理化检验-化学分册. 2023(08): 966-969 .
    9. 杨俊,赵广道,张佳佳,陈波,王金云,刘玉纯. 水浴磁力搅拌碱消解-火焰原子吸收分光光度法测定土壤中铬(Ⅵ). 化学分析计量. 2023(09): 73-77 .
    10. 兰绿灯,李佳玉,谭清月,贾海峰,孙猛,王峰. 内标校正-电感耦合等离子体原子发射光谱法测定土壤与固体废物中铬(Ⅵ). 冶金分析. 2023(10): 54-59 .
    11. 徐文艺. 微波消解-离子交换-电感耦合等离子体质谱法测定土壤中的六价铬. 安徽化工. 2023(06): 128-132 .
    12. 庞春燕. 土壤中六价铬的测定研究现状. 皮革制作与环保科技. 2022(19): 103-105 .

    Other cited types(1)

Catalog

    Article views (163) PDF downloads (30) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return