• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
WANG Ganzhen, PENG Jun, LI Li, QIN Yi, CAO Jian, TIAN Zongping. Preparation of Standard Material for Composition Analysis of Manganese Ore[J]. Rock and Mineral Analysis, 2022, 41(2): 314-323. DOI: 10.15898/j.cnki.11-2131/td.202104080051
Citation: WANG Ganzhen, PENG Jun, LI Li, QIN Yi, CAO Jian, TIAN Zongping. Preparation of Standard Material for Composition Analysis of Manganese Ore[J]. Rock and Mineral Analysis, 2022, 41(2): 314-323. DOI: 10.15898/j.cnki.11-2131/td.202104080051

Preparation of Standard Material for Composition Analysis of Manganese Ore

More Information
  • Received Date: April 07, 2021
  • Revised Date: August 03, 2021
  • Accepted Date: September 20, 2021
  • Published Date: March 27, 2022
  • HIGHLIGHTS
    (1) The manganese ores of accumulation-type manganese oxide and sedimentary manganese carbonate ore deposit were used as candidates, ensuring the representability that there were 9 kinds of manganese minerals and 8 kinds of associated minerals in the standard materials.
    (2) The content of 23 components such as mineralization elements, gangue main components and harmful elements in manganese ore was determined, and the values of Cl, F, As, Pb, Cd, Cr, Co, and Hg in manganese ore were determined for the first time.
    (3) The reference materials of manganese ore can provide technical support for geological exploration evaluation, comprehensive utilization research, import trade evaluation, environmental monitoring and evaluation, and quality assurance of experimental testing of manganese ore.
    BACKGROUNDThe toxic and hazardous elements in manganese ore not only affect manganese purification, production environment and product quality, but have also always been a technical problem in the manganese industry and particularly in experimental testing. At present, there are a total of 10 existing manganese ore composition analysis standard materials in the world, all of which lack the certified values of harmful components such as Cl, F, Co, Cr, Hg and As. Therefore, they do not meet the needs of manganese purification research, environmental monitoring, manganese ore import and detection method research.
    OBJECTIVESTo prepare manganese ore composition analysis standard materials with quantitative values for Cl, F, As, Pb, Cd, Cr and Hg.
    METHODSTwo certified chemical composition reference materials of manganese ore (GBW07139, GBW07140) were prepared by collecting samples from 3 large-scale manganese mining areas in Hunan Province and Xinjiang Autonomous Region. According to the type of deposit, all the samples passed the 97μm standard sieve and the initial uniformity inspection, and were packed into the smallest packaging unit individually or in combination.
    RESULTSFor the uniformity test of randomly selected 2×30 bottles, the measured values of F were all less than F0.05(29, 60)=1.59, and the relative standard deviation was between 0.45% and 6.44%, indicating good uniformity of the samples. The long-term stability/short-term stability test was carried out within one year, and the linear model/average consistency data showed no significant difference, indicating good stability of samples. Ten laboratories participated in the collaborative certified value research, which included 23 components such as Mn, MnO2, SiO2, Al2O3, Fe, CaO, MgO, K2O, Na2O, TiO2, S, P, Cu, Co, Zn, Ni, Pb, Cd, Hg, Cr, As, Cl and F. In the two manganese ore composition analysis standard materials, the mass fractions of Mn were 21.63% and 41.55%, Cl were 38×10-6 and 1214×10-6, Ni were 1075×10-6 and 30.9×10-6, respectively.
    CONCLUSIONSThis batch of manganese ore composition analysis standard materials contain certified values of Cl, F, Pb, Cd, Cr, Co, Hg and As, and is suitable for quality control of manganese-related analysis and testing.
  • Xiang J, Chen J P, Bagas L, et al. Southern China's manganese resource assessment: An overview of resource status, mineral system and prediction model[J]. Ore Geology Reviews, 2020, 116: 1-13.
    Peterson M J, Hapugoda S. Microhardness characterisation of manganese ore minerals—Implications for downstream processing[J]. Minerals Engineering, 2020, 157: 1-17.
    Singh V, Biswas A, Sahu N. Development of a smelting reduction process for low-grade ferruginous manganese ores to produce valuable synthetic manganese ore and pig iron[J]. Mining, Metallurgy & Exploration, 2020, 37(5): 1681-1692.
    张旭, 冯雅丽, 张小伟. 黄铁矿-微生物体系还原浸出低品位氧化锰矿工艺过程研究[J]. 矿冶工程, 2018, 38(5): 100-102, 106. doi: 10.3969/j.issn.0253-6099.2018.05.026

    Zhang X, Feng Y L, Zhang X W. Reductive leaching process of low-grade manganese oxide ore by pyrite-microorganism system[J]. Mining and Metallurgical Engineering, 2018, 38(5): 100-102, 106. doi: 10.3969/j.issn.0253-6099.2018.05.026
    丛源, 董庆吉, 肖克炎, 等. 中国锰矿资源特征及潜力预测[J]. 地学前缘, 2018, 25(3): 118-137. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201803013.htm

    Cong Y, Dong Q J, Xiao K Y, et al. Characteristics and predicted potential of Mn resources in China[J]. Earth Science Frontiers, 2018, 25(3): 118-137. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201803013.htm
    梅光贵, 张文山, 曾湘波, 等. 中国锰业技术[M]. 长沙: 中南大学出版社, 2011: 27-31.

    Mei G G, Zhang W S, Zeng X B, et al. Technology of China manganese industry[M]. Changsha: Central South University Publishing, 2011: 27-31.
    林顺达, 李康强, 李鑫培, 等. 软锰矿还原技术研究现状[J]. 湿法冶金, 2019, 38(6): 432-437. https://www.cnki.com.cn/Article/CJFDTOTAL-SFYJ201906002.htm

    Lin S D, Li K Q, Li X P, et al. Research status on reduction technology of pyrolusite[J]. Hydrometallurgy of China, 2019, 38(6): 432-437. https://www.cnki.com.cn/Article/CJFDTOTAL-SFYJ201906002.htm
    肖红艳, 徐晓晴, 王斐, 等. 新型捕收剂RA-92在低品位碳酸锰矿选矿中的应用[J]. 岩矿测试, 2016, 35(3): 284-289. doi: 10.15898/j.cnki.11-2131/td.2016.03.011

    Xiao H Y, Xu X Q, Wang F, et al. Application of novel collector dosage RA-92 in the flotation procedure of low-grade carbonate manganese ore[J]. Rock and Mineral Analysis, 2016, 35(3): 284-289. doi: 10.15898/j.cnki.11-2131/td.2016.03.011
    曹默雷, 陈建平. 由层序地层学角度分析大塘坡式锰矿沉积过程——以湘西北民乐锰矿为例[J]. 沉积学报, doi: 10.14027/j.issn.1000-0550.2021.020.

    Cao M L, Chen J P. The analysis of the sedimentary process for Datangpo-type manganese ores from the point of sequence stratigraphy: A case of the minle manganese deposits in northwestern Hunan[J]. Acta Sedimentologica Sinica, doi: 10.14027/j.issn.1000-0550.2021.020.
    高永宝, 滕家欣, 李文渊, 等. 新疆西昆仑奥尔托喀讷什锰矿地质、地球化学及成因[J]. 岩石学报, 2018, 34(8): 2341-2358. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201808010.htm

    Gao Y B, Teng J X, Li W Y, et al. Geology, geochemistry and ore genesis of the Aoertuokanashi manganese deposit, western Kunlun, Xinjiang, northwest China[J]. Acta Petrologica Sinica, 2018, 34(8): 2341-2358. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201808010.htm
    袁爱群, 郭雨桐, 李维健, 等. 杂质离子对锰电解电流效率的影响[J]. 湿法冶金, 2020, 39(4): 325-328. https://www.cnki.com.cn/Article/CJFDTOTAL-SFYJ202004014.htm

    Yuan A Q, Guo Y T, Li W J, et al. Effect of impurity ions on current efficiency during manganese electrolysis[J]. Hydrometallurgy of China, 2020, 39(4): 325-328. https://www.cnki.com.cn/Article/CJFDTOTAL-SFYJ202004014.htm
    贾宝亮, 孙亚峰, 王小钊, 等. 陕西镇安某高磷混合型铁锰矿选矿实验研究[J]. 矿产综合利用, 2021(1): 83-87. doi: 10.3969/j.issn.1000-6532.2021.01.013

    Jia B L, Sun Y F, Wang X Z, et al. Experimental study on beneficiation of a high phosphorus mixed ferromanganese ore in Zhenan, Shaanxi Province[J]. Multipurpose Utilization of Mineral Resources, 2021(1): 83-87. doi: 10.3969/j.issn.1000-6532.2021.01.013
    王杨, 伍成波, 岳林, 等. 高磷菱锰矿焙烧-氨浸实验研究[J]. 矿冶工程, 2020, 40(5): 100-103. doi: 10.3969/j.issn.0253-6099.2020.05.026

    Wang Y, Wu C B, Yue L, et al. Experimental research on roasting and ammonia leaching of high phosphorus rhodochrosite[J]. Mining and Metallurgical Engineering, 2020, 40(5): 100-103. doi: 10.3969/j.issn.0253-6099.2020.05.026
    吕东亚, 马保中, 陈永强, 等. 盐酸法富集低品位锰矿及酸介质高值再生工艺[J]. 工程科学学报, 2020, 42(5): 578-585. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD202005006.htm

    Lyu D Y, Ma B Z, Chen Y Q, et al. Beneficiation of low-grade manganese ore by hydrochloric acid leaching and high value regeneration of acid medium[J]. Chinese Journal of Engineering, 2020, 42(5): 578-585. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD202005006.htm
    张帆, 王芳, 解雪, 等. 锰矿中氯离子的去除工艺研究[J]. 中国资源综合利用, 2019, 37(9): 17-20. doi: 10.3969/j.issn.1008-9500.2019.09.006

    Zhang F, Wang F, Xie X, et al. Study on dechlorination of manganese ore[J]. China Resources Comprehensive Utilization, 2019, 37(9): 17-20. doi: 10.3969/j.issn.1008-9500.2019.09.006
    张钰钰, 朱鹏, 苏仕军, 等. 用锰冶金铁铝废渣从模拟废水中吸附铅离子试验研究[J]. 湿法冶金, 2021, 40(1): 46-51. https://www.cnki.com.cn/Article/CJFDTOTAL-SFYJ202101012.htm

    Zhang Y Y, Zhu P, Su S J, et al. Adsorption of Pb2+ using iron-aluminum slag adsorbent from simulated wastewater[J]. Hydrometallurgy of China, 2021, 40(1): 46-51. https://www.cnki.com.cn/Article/CJFDTOTAL-SFYJ202101012.htm
    任军, 刘方, 朱健, 等. 锰矿废渣区苔藓物种多样性及其重金属污染监测[J]. 安全与环境学报, 2020, 20(6): 2398-2407. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ202006048.htm

    Ren J, Liu F, Zhu J, et al. Diversity of the bryophytes and heavy metal pollution monitoring in manganese ore waste area[J]. Journal of Safety and Environment, 2020, 20(6): 2398-2407. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ202006048.htm
    李坦平, 吴宜, 曾利群, 等. 电感耦合等离子体串联质谱法测定电解二氧化锰废渣浸出液中的重金属元素[J]. 岩矿测试, 2020, 39(5): 682-689. doi: 10.15898/j.cnki.11-2131/td.201911230162

    Li T P, Wu Y, Zeng L Q, et al. Determination of heavy metal elements in leaching solution of electrolytic manganese dioxide waste residue by inductively coupled plasma-tandem mass spectrometry[J]. Rock and Mineral Analysis, 2020, 39(5): 682-689. doi: 10.15898/j.cnki.11-2131/td.201911230162
    姚露, 杨林, 邹敏杰, 等. 氧化锰矿浆脱除电解锰渣煅烧烟气二氧化硫工艺研究[J]. 工程科学与技术, 2020, 52(5): 250-256. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202005029.htm

    Yao L, Yang L, Zou M J, et al. Study on flue gas desulfurization with oxide manganese slurry for electrolytic manganese calcining[J]. Advanced Engineering Sciences, 2020, 52(5): 250-256. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202005029.htm
    李松, 邓赛文, 王毅民, 等. X射线荧光光谱在锰矿石分析中的应用文献评介[J]. 冶金分析, 2021, 41(3): 18-26. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202103004.htm

    Li S, Deng S W, Wang Y M, et al. Review on the application of X-ray fluorescence spectrometry in analysis of manganese ore[J]. Metallurgical Analysis, 2021, 41(3): 18-26. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202103004.htm
    孙倩芸, 李锋丽, 杨焕蝶, 等. 锰纯度定值及其单元素溶液标准物质的研制[J]. 化学分析计量, 2019, 28(5): 1-5. doi: 10.3969/j.issn.1008-6145.2019.05.001

    Sun Q Y, Li F L, Yang H D, et al. Certification of the purity of Mn and preparation of Mn solution reference material[J]. Chemical Analysis and Meterage, 2019, 28(5): 1-5. doi: 10.3969/j.issn.1008-6145.2019.05.001
    吴磊, 刘义博, 王家松, 等. 高压密闭消解-电感耦合等离子体质谱法测定锰矿石中的稀土元素前处理方法研究[J]. 岩矿测试, 2018, 37(6): 637-643. doi: 10.15898/j.cnki.11-2131/td.201712060189

    Wu L, Liu Y B, Wang J S, et al. Sample treatment methods for determination of rare earth elements in manganese ore by high-pressure closed digestion-inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2018, 37(6): 637-643. doi: 10.15898/j.cnki.11-2131/td.201712060189
    秦毅, 田宗平, 方俊杰, 等. 氧化锰矿石还原焙烧过程中铁还原率评价方法研究[J]. 湿法冶金, 2017, 36(5): 427-429. https://www.cnki.com.cn/Article/CJFDTOTAL-SFYJ201705018.htm

    Qin Y, Tian Z P, Fang J J, et al. Evaluation of iron reduction rate during reduction roasting of manganese oxide ore[J]. Hydrometallurgy of China, 2017, 36(5): 427-429. https://www.cnki.com.cn/Article/CJFDTOTAL-SFYJ201705018.htm
    王毅民, 张学华, 邓赛文, 等. X射线荧光光谱在海洋地质及矿产资源调查分析中的应用评介[J]. 冶金分析, 2020, 40(10): 63-75. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202010006.htm

    Wang Y M, Zhang X H, Deng S W, et al. Review on the application of X-ray fluorescence spectrometry in marine geology and mineral resources survey[J]. Metallurgical Analysis, 2020, 40(10): 63-75. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202010006.htm
    曾美云, 陈燕波, 刘金, 等. 高磷铁矿石成分分析标准物质研制[J]. 岩矿测试, 2019, 38(2): 212-221. doi: 10.15898/j.cnki.11-2131/td.201808150094

    Zeng M Y, Chen Y B, Liu J, et al. Preparation of high-phosphorus iron ore reference materials for chemical composition analysis[J]. Rock and Mineral Analysis, 2019, 38(2): 212-221. doi: 10.15898/j.cnki.11-2131/td.201808150094
    彭君, 易晓明, 王干珍, 等. 锰矿中氯的XRF测定方法确认与运用[J]. 中国锰业, 2020, 38(4): 58-62. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMM202004017.htm

    Peng J, Yi X M, Wang G Z, et al. Confirmation and application of determination of chlorine in manganese ore by X-ray fluorescence spectrometry[J]. China's Manganese Industry, 2020, 38(4): 58-62. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMM202004017.htm
    李津, 唐索寒, 马健雄, 等. 磁铁矿铁同位素标准物质的研制[J]. 岩石矿物学杂志, 2021, 40(3): 535-541. doi: 10.3969/j.issn.1000-6524.2021.03.007

    Li J, Tang S H, Ma J X, et al. The preparation of reference material for Fe isotope measurement of magnetite samples[J]. Acta Petrologica et Mineralogica, 2021, 40(3): 535-541. doi: 10.3969/j.issn.1000-6524.2021.03.007
  • Related Articles

    [1]TIAN Qin, TONG Ling, AN Ziyi, XU Chunxue, SUN Huizhong, DIAO Jinling. Development of Certified Reference Materials of Polycyclic Aromatic Hydrocarbons, Organochlorine Pesticides and Polychlorinated Biphenyls in Sediments[J]. Rock and Mineral Analysis, 2022, 41(3): 511-520. DOI: 10.15898/j.cnki.11-2131/td.202110130149
    [2]TIAN Zong-ping, PENG Jun, WANG Gan-zhen, YI Xiao-ming, CAO Jian, QIN Yi. Preparation of Standard Materials for Composition Analysis of Stone Coal Vanadium Ore[J]. Rock and Mineral Analysis, 2021, 40(1): 111-120. DOI: 10.15898/j.cnki.11-2131/td.202001070008
    [3]LING Yuan, HUANG Yi, SHANG Wen-yu, XIE Man-man, Liu Shu-bo, SUN Qing. Review on Pre-enrichment Methods in Compound Specific Carbon Isotope Analysis of Chlorinated Hydrocarbon in Water[J]. Rock and Mineral Analysis, 2011, 30(6): 795-801.
    [4]SHE Xiaolin, HU Lan, LIU Jun, CHEN Bo, HUANG Qin. Determination of Chlorine in Marine Sediments by Ion Chromatagraphy[J]. Rock and Mineral Analysis, 2009, 28(4): 373-375.
    [5]CHEN Yun-ping, TANG Jin-song. Mercury Thiocyanate Spectrophotometric Determination of Chlorine in Ores[J]. Rock and Mineral Analysis, 2008, 27(6): 479-480.
    [6]Determination of Chlorine in Zinc Concentrates by Neutral Leaching out-Mercuric Thiocyanate-Ammonium Ferric Sulfate Spectrophotometry[J]. Rock and Mineral Analysis, 2008, 27(3): 227-229.
    [7]Determination of Chlorine in Coal by Combustion Bomb-Potentiometric Titration[J]. Rock and Mineral Analysis, 2006, 25(1): 79-81.
    [8]Determination of Chlorine in Coals by Ion Chromatography[J]. Rock and Mineral Analysis, 1999, (4): 299-302.
    [9]Indirect Determination of Chlorine in Phosphorus Ores by Flame_AAS[J]. Rock and Mineral Analysis, 1997, (1): 80-81.
    [10]Determination of Trace Chlorine in Geological Materials by Goulometric Titration[J]. Rock and Mineral Analysis, 1990, (3): 178-183.
  • Cited by

    Periodical cited type(8)

    1. 杨寒,李颖,任俊,刘霞,巩琛,黄辉,张嘉祺,张华承. 氮化硼化学成分标准物质研制. 化学分析计量. 2024(01): 1-6 .
    2. 朱爱美,石学法,刘季花,汪虹敏,王小静,白亚之,崔菁菁. 太平洋富稀土深海沉积物标准物质研制. 岩矿测试. 2024(01): 189-199 . 本站查看
    3. 刘崴,胡俊栋,范晨子,刘永兵,赵文博,刘成海. 云南安宁磷矿区水系沉积物磷赋存形态及分布特征. 岩矿测试. 2024(01): 177-188 . 本站查看
    4. 孙慧中,安子怡,许春雪,陈宗定. 战略性关键金属矿产标准物质现状和需求分析. 岩矿测试. 2024(02): 375-396 . 本站查看
    5. 魏雅娟,伍斯静,江荆,吴雪英,叶玲玲,吴魏成. 银精矿成分分析系列标准物质研制. 化学分析计量. 2023(01): 1-5 .
    6. 刘杰,赵志明,阎荣辉,黄子舰. 泥岩岩石热解分析标准物质研制. 岩矿测试. 2023(01): 203-212 . 本站查看
    7. 刘妹. 中国地质标准物质研制进展. 岩矿测试. 2023(03): 445-463 . 本站查看
    8. 黄杰,夏彬涵,丁莉,王娟,李志伟,赵一星,顾茗心,冯兰慧. 黑色页岩贵金属成分分析标准物质研制. 贵金属. 2023(04): 49-54+61 .

    Other cited types(0)

Catalog

    Article views (315) PDF downloads (45) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return