Preparation and Application of Biochar-Chitosan Magnetic Composite Adsorbent for Removal of Lead and Copper from Groundwater
-
摘要:
壳聚糖作为天然多糖有机物,具有对环境友好的特性,其含有的大量含氮官能团可吸附水中的金属离子。但壳聚糖类吸附剂在酸性条件下适应性差,实际使用过程中需要调节pH值,因此增加了运行成本。本文选用农林废弃物花生壳(CC)和玉米芯(PS)制备生物炭,与壳聚糖进行结合,并引入磁性因子Fe3O4,制备了花生壳生物炭-壳聚糖磁性复合吸附剂(PSC)和玉米芯生物炭-壳聚糖磁性复合吸附剂(CCC),并研究这两种吸附剂对水中Pb2+和Cu2+的吸附性能,同时利用实际含多种金属离子的地下水对所制备的材料进行实验,以评估其实际应用潜能。比表面积仪(BET)分析表征显示,CCC相比PSC的比表面积和平均孔径更大,两种吸附剂在pH 4~7范围内均表现出稳定的吸附性能。循环5个周期后,两种吸附剂仍对Pb2+和Cu2+的去除率保持在85%以上,表现出良好的循环利用性能。CCC对Pb2+和Cu2+的最大吸附容量分别为169.10mg/g和18.69mg/g,均大于PSC的最大吸附容量。同时,CCC可有效去除含重金属地下水中的多种金属离子。在处理实际含Pb2+和Cu2+的废水时可优先选择CCC材料作为吸附剂。吸附动力学实验结果表明,两种材料对Pb2+的吸附以物理吸附为主,对Cu2+的吸附以化学吸附为主。pH值影响实验和X射线光电子能谱(XPS)表征结果说明两种材料主要通过静电吸引和含氮官能团与金属离子的螯合作用去除Pb2+和Cu2+。本文使用农林废弃物制备生物炭降低了成本,引入的磁性因子方便了脱附过程,生物炭-壳聚糖磁性复合材料的制备方法有效地改善了壳聚糖类材料在酸性条件下的适应性,所制备的材料是一种去除地下水中Pb2+和Cu2+污染的有效潜在吸附剂。
Abstract:BACKGROUNDWastewater containing heavy metals produced by mining, beneficiation, smelting, forging, processing, transportation, and other industries that has been improperly disposed of, leads to heavy metals entering and polluting the groundwater environment. Heavy metals can be enriched in the human body and participate in the biological cycle. Long-term accumulation of heavy metals in the human body will bring carcinogenic, teratogenic, and mutagenic risks. Adsorption has been of wide concern in the treatment of heavy metals pollution in water, due to the advantages of low operation cost, simple engineering operation and low secondary pollution. Chitosan as a natural organic polysaccharide organic matter, has the characteristics of being environmentally friendly. It contains many nitrogen-containing functional groups that can adsorb metal ions in water. However, the adaptability of chitosan adsorbents to acidic conditions is poor, so the pH value needs to be adjusted in the actual process, which increases the operating cost. Combining biochar with chitosan can not only improve the adsorption capacity of chitosan, but also improve the separation performance of biochar. However, most of the research on chitosan modified biochar concentrate on the single biochar. There are few studies on the modification of biochar from different sources by chitosan, and the interaction between chitosan and biochar is not clear.
OBJECTIVESThe aim of this study was to prepare peanut shell biochar-chitosan magnetic composite adsorbent (PSC) and corn cob biochar-chitosan magnetic composite adsorbent (CCC), and to investigate the Pb2+/Cu2+ adsorption properties and mechanisms on PSC and CCC.
METHODSScanning electron microscope was used to analyze the microstructure of the material, and the material samples were treated with gold spray before photographing. The specific surface area and pore volume of the material were determined using a specific surface area analyzer, and the material was adsorption-desorption tested with nitrogen at -196℃. X-ray diffraction was used to analyze the crystal structure of materials, and the Cu Kα source was used to scan in the range of 10°-80° (2θ). X-ray photoelectron spectrometer was used to analyze the changes of functional groups on the surface of the material, and the radiation (225W, 15mA, 15kV) was carried out by monochromatic Al-Kα. Metal ion content in solution was measured by inductively coupled plasma-optical emission spectrometry. The adsorption experiments were carried out in a 50mL conical flask and a constant temperature shaker. The oscillation frequency was 150r/min and the reaction time was 12h. After the reaction, the concentrations of Pb2+ and Cu2+ in the solution were determined. Two parallel samples were set up in each group. Different initial pH experiments were used to evaluate the adsorption performance of materials. Kinetic and isothermic models were used to evaluate the adsorption kinetic process of materials and predict the maximum adsorption capacity of materials. Recycling experiments and actual mine groundwater adsorption experiments were used to evaluate the practical application capacity of materials.
RESULTSSEM images of PS and CC showed that there were many pores on the surface of both types of carbon. There were more pores and bulges observed on the surface of CC than PS, indicating that CC had a larger contact area with pollutants than PS. The specific surface area (12.045m2/g) and mean pore diameter (3.614nm) of CC were larger than those of PS (specific surface area was 3.294m2/g and mean pore diameter was 3.067nm), which was consistent with the SEM results. The specific surface area (4.598m2/g) and average pore diameter (3.417nm) was 2.812nm), indicating that the primary structural properties of biochar affected the pore structure of the composites. SEM of CCC and PSC showed that chitosan and biochar were well combined. Compared with previous literature, the biochar-chitosan composite material in this study preserves the original structure of biochar to the greatest extent, and makes the chitosan evenly coated on the surface of biochar. The results BET showed that the primary structural properties of the biochar affected the physical properties of the modified materials. The XRD results showed that Fe3O4 was successfully embedded into the composite material. Three pH values (4, 7 and 10) were selected to evaluate the swelling properties of the materials. The results showed that the swelling ratios of the two materials were similar under the three pH conditions, and neither of them was more than 100.0%, which was due to the biochar as a carrier having a good supporting effect. Compared with chitosan/kiwifruit branch biochar adsorbent, the two adsorbents in this study showed relatively stable adsorption properties in the pH range of 4-7, indicating that the adsorbents had a wider range of pH value application. The effect of the initial pH on the adsorption was tested. As the initial pH value increased from 3 to 7, the adsorption capacity and removal efficiency of the material increased. The positive charge of the adsorbent surface also decreased, which reduced the electrostatic repulsion of Pb2+ and Cu2+ between the material surface and the solution, and increased the electrostatic attraction between the material surface and Pb2+ and Cu2+. The increasing electrostatic attraction was beneficial to the adsorption of Pb2+ and Cu2+. When PSC and CCC adsorbed Pb2+, the pseudo-first-order kinetic model could better describe the adsorption process than the pseudo-second-order kinetic model, indicating that physical adsorption played a dominant role in the adsorption of Pb2+ by PSC and CCC. Pseudo-second-order kinetics can better fit the Cu2+ adsorption by PSC and CCC than pseudo-second-order kinetic model, indicating that chemisorption dominates the adsorption process of Cu2+ by PSC and CCC. The Langmuir isotherm adsorption model can better describe the adsorption process of Pb2+ and Cu2+ than Freundlich isotherm adsorption model, indicating that the adsorption process is monolayer adsorption. The EDTA-2Na was used as the desorption agent of chitosan composite, the removal efficiencies of Pb2+ and Cu2+ were still above 85% after five cycles, which indicated that the two adsorbents in this study had excellent stability. PSC and CCC were the low-cost and effective adsorption materials. Groundwater of an acid mine was taken from a mining area in Dongshan District, Dafan Mountain, Anhui Province. The groundwater samples contained large amounts of metal ions, such as As, Ca, Cd, Cu, Fe, Mn, Na and Ni, the corresponding concentrations were 18.200g/L, 40.541mg/L, 3.800g/L, 13.300mg/L, 215.00mg/L, 510.00g/L, 81.694mg/L and 87.000g/L, respectively. 0.45μm filter membrane was used to remove particulate impurities from the water before adsorption. CCC was used to treat the heavy metal polluted groundwater, and the results showed that CCC has a good removal ability on a variety of metal ions in groundwater such as Cu2+, Cd2+, and Fe3+. The Cu2+ concentration in the treated water can reach the Grade IV water standard of the “Groundwater Quality Standard”. The pH results showed that the removal mechanisms of Pb2+ and Cu2+ by PSC and CCC mainly included electrostatic attraction. The functional groups of adsorbents before and after adsorption were analyzed through X-ray photoelectron spectroscopy (XPS). The results of XPS showed that complexation was another removal mechanism. The nitrogen (—NH) of pyrroles, amino of chitosan (—NH2), and C=N were the main functional groups, which were responsible for the complexation with Pb2+ and Cu2+.
CONCLUSIONSThe preparation method of the materials in this study can effectively improve the adaptability of chitosan materials under different pH conditions. The adsorbents developed in this study can effectively remove heavy metals from groundwater and have a good application potential.
-
Keywords:
- biochar /
- chitosan /
- adsorption /
- lead /
- copper /
- N-containing functional groups; X-ray photoelectron spectroscopy
-
由于采矿、选矿、冶炼、锻造、加工、运输等行业产生的含重金属废水的不恰当处置,导致部分重金属特别是Pb2+和Cu2+进入地下水环境中,污染地下水[1]。重金属可在人体内富集并参与生物循环,在人体中长期积累会对人体带来致癌、致畸、致突变的风险,尤其是对神经和肠胃系统[2-3]。受污染的地下水具有隐蔽性强和成分复杂等特点,处理难度较大,且各种不同化学形态的重金属离子无法通过水体的自净作用被去除[4]。因此,为了保护生态系统的良性循环和人体健康,开发净化受重金属污染地下水的方法或材料是非常有必要的。目前常见的重金属去除方法主要有生物法[5]、化学沉淀法[6]、膜分离法[7]和吸附法[8]等。生物法处理重金属具有一定的局限性,因为微生物生长所需的环境条件比较苛刻,且产生的含重金属剩余污泥容易造成二次污染[9]。化学沉淀法具有去除效率高的特点,但是大量混凝剂的使用导致了较高的处理成本[10]。尽管膜分离法的去除效率较高,但是昂贵的膜片以及频繁的膜污染问题致使其不适用于处理重金属污染水体[11]。吸附法由于其运营维护成本低、工程操作简单和不易产生二次污染等优点,在处理含重金属污染地下水方面受到广泛关注[12]。
壳聚糖是自然界中存在的氨基碱性高分子多糖有机物,它的分子链上含有大量的官能团,如羟基基团(—OH)和氨基基团(—NH2)。它们可以与重金属产生良好的螯合作用,且壳聚糖的来源广、成本低、可生物降解[13]。但是,一般含重金属水体的pH为酸性,而壳聚糖在酸性条件下存在不稳定和易溶解的问题[14]。因此,通过对壳聚糖的结构进行改性以解决上述问题,在壳聚糖分子链上引入其他功能基团是一种有效的方法。在众多功能基团中,吡咯基具有含氮杂原子的芳香性共轭环,例如2-吡咯甲醛,具有较强的供电子性和配位能力,若将它们引入到壳聚糖分子链上,可提高壳聚糖在酸性条件下的稳定性[13]。生物炭是生物质在限氧或无氧条件下高温热解形成的富碳、高度芳香化、难熔性固态物质[14]。与传统活性炭相比,生物炭含有丰富的官能团,表现出对重金属良好的吸附性能,且其原材料来源广泛、制备成本更低,因此学者们对生物炭净化含重金属水体方面进行了大量研究[15-17]。但是原始生物炭存在粒径小、回收难的问题,这不利于生物炭在水处理领域的应用[18-19]。
本研究使用花生壳和玉米芯制备了两种不同的生物炭,以2-吡咯甲醛作为壳聚糖的改性剂,添加Fe3O4赋予其磁性以提升材料的操作便利性。实验中联合使用生物炭、2-吡咯甲醛、壳聚糖和Fe3O4四种材料制备了生物炭-壳聚糖磁性复合吸附剂并用于Pb2+和Cu2+的吸附研究。利用扫描电子显微镜(SEM)、比表面积分析仪(BET)和X射线衍射仪(XRD)研究了吸附剂的物理化学性质;利用批试验和数学理论模型研究了材料对Pb2+和Cu2+的吸附性能和理论吸附容量;使用实际地下水评估材料的实际应用潜能;使用X射线光电子能谱仪(XPS)对吸附前后材料的含氮官能团进行表征,分析参与吸附过程的官能团的种类以确定吸附机理。
1. 实验部分
1.1 实验材料
花生壳和玉米芯的产地为江苏省连云港市东海县白塔埠镇。硝酸铅和硝酸铜用于配制铜和铅溶液。壳聚糖、冰乙酸、四氧化三铁和2-吡咯甲醛用于磁性壳聚糖的制备。盐酸和氢氧化钠用于调节溶液pH。乙二胺四乙酸二钠(EDTA-2Na)用于材料解吸。实验所需化学试剂均为分析纯,均购自国药集团化学试剂有限公司。
酸性矿山地下水取自安徽省大矾山东山区某矿区,所取地下水样品含As、Ca、Cd、Cu、Fe、Mn、Na和Ni金属离子,其含量分别为18.200µg/L、40.541mg/L、3.800µg/L、13.300mg/L、215.00mg/L、510.00µg/L、81.694mg/L和87.000µg/L,吸附前使用0.45μm的滤膜去除水中的杂质。
1.2 生物炭-壳聚糖磁性复合吸附剂的制备
称取一定量预处理后的生物质原料(花生壳和玉米芯),包裹三层铝箔纸使其置于限氧条件下,将其放于马弗炉中,以10℃/min速率升温,升至设定温度600℃,保持2h热解条件,之后将得到的生物炭粉末经室温冷却后过100目筛,保存备用。其中花生壳生物炭记作PS,玉米芯生物炭记作CC。
然后,称取10g壳聚糖置于1L烧杯中,将500mL浓度为5.0%的冰乙酸溶液倒入烧杯中,再将烧杯置于水浴锅中,在30℃条件下使用搅拌器机械搅拌1h,之后加入10g的2-吡咯甲醛,将水浴锅温度调至70℃,机械搅拌7h,再称取12g生物炭加入其中,在25℃条件下均匀搅拌1h后,加入10g的Fe3O4,在温度不变的条件下机械搅拌1h,形成均匀黑色凝胶溶液。最后使用注射器将上述黑色凝胶溶液滴入1mol/L氢氧化钠溶液中,形成凝胶小球。使用去离子水反复清洗凝胶小球10次后,放入烘箱,在60℃条件下烘干24h,密封保存备用。花生壳生物炭-壳聚糖复合材料记作PSC,玉米芯生物炭-壳聚糖复合材料记作CCC。
两种材料合成的简易示意图见图1。
1.3 材料表征
采用扫描电镜(SEM, JSM-7610F, Quantachrome公司)分析材料的微观形貌,在拍照记录前对材料样品进行喷金处理。材料的比表面积和孔隙体积使用比表面积分析仪(BET, iCAP 7300, Quantachrome公司)进行测定,利用氮气在−196℃下对材料进行吸附-解吸测试。X射线衍射(XRD, D8 advance, Bruker公司)用于分析材料表面晶体结构,使用Cu Kα放射源在10°~80°(2θ)范围内进行扫描。利用X射线光电子能谱仪(XPS, ESCALABXi+x,ThermoFisher公司)分析材料表面官能团结构,采用单色Al-Kα进行辐射(225W,15mA, 15kV)。采用电感耦合等离子体发射光谱仪(ICP-OES, iCAP 7300,ThermoFisher公司)测试溶液中的金属离子含量。
1.4 吸附实验
吸附实验在50mL锥形瓶和恒温摇床中进行,振荡频率为150r/min,反应时间为12h,反应结束后测定溶液中Pb2+和Cu2+的浓度。每组实验设置2个平行样。利用不同初始pH实验评价材料在不用pH条件下的吸附性能,利用动力学和等温线模型评价材料的吸附动力学过程和预测材料最大吸附容量,利用循环吸附实验和实际矿山地下水对材料的实际应用潜能进行评价。
1.4.1 初始pH的影响
初始pH的影响实验:分别称取0.2g吸附剂置于6个50mL锥形瓶中,采用盐酸和氢氧化钠调节溶液的pH值为2.0、3.0、4.0、5.0、6.0和7.0,之后将调好pH值的50mg/L的Pb2+/Cu2+污染液置于锥形瓶内进行实验。
1.4.2 吸附动力学和吸附等温线实验
吸附动力学实验条件:称取1.0g吸附剂置于250mL锥形瓶中,加入250mL初始浓度为50mg/L的Pb2+/Cu2+污染液,分别在3、5、10、15、30、60、180、300、420、720和1440min时取样。
吸附等温线实验条件:分别称取0.2g吸附剂置于9个50mL锥形瓶中,加入50mL初始浓度分别为1、10、25、50、100、200、300、400和500mg/L的Pb2+/Cu2+溶液。
1.4.3 材料循环利用和实际地下水验证评价实验
循环利用实验:使用EDTA-2Na作为脱附剂进行循环利用实验。将吸附后的材料置于浓度为0.01mol/L的EDTA-2Na溶液中,并调节溶液pH为5.0,在30℃条件下振荡30min,然后用去离子水进行清洗烘干后再次进行吸附实验,重复5个周期。
利用实际地下水对CCC材料的吸附性能进行评价:将0.3g的CCC和50mL实际地下水置于50mL锥形瓶中进行实验。
1.5 批实验数据分析方法
去除率和吸附量的计算采用以下公式(1)和(2)[20-21]:
$$\eta =\frac{{C}_{0}-{C}_{\mathrm{e}}}{{C}_{0}}\times 100\% $$ (1) $$ {q}_{\mathrm{e}}=\frac{\left({C}_{0}-{C}_{\mathrm{e}}\right)\times V}{m} $$ (2) 式中:η代表去除率(%);C0代表溶液中Pb2+和Cu2+的初始浓度(mg/L);Ce代表吸附平衡时溶液中Pb2+和Cu2+的浓度(mg/L)。qe代表平衡时材料的吸附量(mg/g);V代表溶液的体积(L);m代表吸附剂的质量(g)。
2. 结果与讨论
2.1 材料的表征
2.1.1 SEM和BET表征
图2中a和b分别是PS和CC的SEM图像。两种生物炭表面均有一定的孔隙,可以观察到CC表面比PS表面有更多的孔隙和凸起,说明CC与污染物有更大的接触面积,这更有利于对重金属的吸附。采用比表面积分析仪对材料的比表面积和孔径进行分析,结果显示CC的比表面积(12.045m2/g)和平均孔径(3.614nm)均大于PS的比表面积(3.294m2/g)和平均孔径(3.067nm)。
图2中c和d分别是PSC和CCC的SEM图。PSC和CCC表面均凹凸不平,有很多凸起的球形颗粒,颗粒的粒径约为250nm,这些球形颗粒为Fe3O4,说明Fe3O4成功地附着在材料表面。CCC的比表面积(4.598m2/g)和平均孔径(3.417nm)均大于PSC的比表面积(1.514m2/g)和平均孔径(2.812nm),说明生物炭的原生结构性质影响复合材料的孔隙结构。同时,从SEM图中可以看出,壳聚糖和生物炭已经显著结合在一起[22-23]。与以往文献报道结果相比,本研究中的生物炭-壳聚糖复合材料最大程度地保留了生物炭的原始结构,使壳聚糖均匀地分布在生物炭表面[3]。
2.1.2 XRD表征
图3A中的a、b、c和d线分别为壳聚糖、Fe3O4、PSC和CCC的XRD衍射图。壳聚糖的衍射谱在衍射角为2θ=20.1°处存在一个较宽的衍射峰,这个衍射峰主要是由于壳聚糖内部的分子氢键的作用[24-25]。b线可以看出在衍射角为2θ=18.3°、30.14°、35.48°、43.12°、53.48°、57.02°、62.62°、71.18°和74.06°处存在衍射峰,这与Fe3O4(PDF#99-0073卡片)的衍射峰一致[26-27]。c和d线代表的峰位置比较相似,PSC(c线)在2θ=30.17°、35.53°、43.24°、57.04°和62.61°等五处存在衍射峰,CCC(d线)在2θ=26.63°、30.08°、35.44°、43.03°、57.07和62.55°处存在衍射峰,它们对应于JCPDS数据库中PDF#99-0073(Fe3O4)的衍射峰(35.426°、62.520°、56.935°、30.076°和43.053°),这些衍射峰对应的晶面衍射分别为(311)、(440)、(511)、(220)、(400)和(731),表明将磁性因子Fe3O4成功地嵌入复合材料中。值得注意的是,PSC和CCC衍射图中没有其他的杂质衍射峰,且形成的衍射峰相对清晰,说明磁性复合材料的制备是成功的。
2.1.3 溶胀性表征
选取了三种pH值(4、7和10)对材料的溶胀性进行评价,实验结果见图3B。从图中看出两种材料在三个pH值条件下的溶胀比相差不大,且均未超过100.0%,表现出较高的稳定性,这是由于生物炭作为载体具有较好的支撑作用[22]。在pH=7时CCC和PSC的溶胀比最大,分别为58.8%和80.5%,说明CCC和PSC在中性条件下不稳定。前人研究发现壳聚糖易溶于酸性溶液,表明采用本研究制备的材料经改性后增强了壳聚糖在酸性条件下的稳定性。同时相较于使用氨基硫脲改性壳聚糖材料的溶胀比(1320.0%)[28],本研究中的材料具有较低的溶胀比和较强的稳定性。
2.2 初始pH的影响
溶液初始pH对材料吸附的影响见图4。在初始pH=7时PSC和CCC对Pb2+的最大吸附容量均为12.36mg/g,对Cu2+的最大吸附容量均为8.31mg/g。随着初始pH值从3增加至7,材料的吸附容量和去除率不断增大,这是由于随着初始pH值的增加,吸附剂表面的正电荷减少,降低了材料表面与溶液中Pb2+和Cu2+的静电斥力,增加了材料表面与Pb2+和Cu2+之间的静电引力,而静电引力的增加有利于Pb2+和Cu2+的吸附[29-30]。在pH为2~3时,PSC和CCC对Pb2+和Cu2+的吸附容量均较低,这可能是由于吸附剂表面发生了质子化,更多的—NH2转化为NH3 +,材料表面与金属阳离子的静电斥力增强,使吸附容量减少[25]。与同类型的壳聚糖/猕猴桃生物炭相比,在pH 4~7范围内本研究的两种吸附剂均表现出相对稳定的吸附性能,说明本研究制备的吸附剂具有更广泛的pH值适用范围[31]。
2.3 吸附动力学和等温线模型拟合
采用伪一级和伪二级动力学模型对动力学数据进行拟合,伪一级和伪二级动力学模型如公式(3)和(4)所示[32-33]。采用Langmuir和Freundlich等温线模型对数据进行拟合,两种等温模型如公式(5)和(6)所示[14,33]。
(1)伪一级动力学模型
$$ {q}_{t}={q}_{\mathrm{e}}\left[1-{\mathrm{e}}^{-{k}_{1}t}\right] $$ (3) 式中:qt为t时刻吸附剂的吸附量(mg/g);qe为吸附达到平衡时吸附剂的吸附量(mg/g);k1代表速率常数(min−1);t为反应时间(h)。
(2)伪二级动力学模型
$$ {q}_{t}=\frac{{{q}_{\mathrm{e}}}^{2}{k}_{2}t}{1+{q}_{\mathrm{e}}{k}_{2}t} $$ (4) 式中:qt为t时刻吸附剂的吸附量(mg/g);qe为吸附达到平衡时吸附剂的吸附量(mg/g);k2代表速率常数[g/(mg·min)];t为反应时间(h)。
(3)Langmuir等温模型
$$ {q}_{\mathrm{e}}=\frac{{q}_{\mathrm{m}}{K}_{\mathrm{L}}{C}_{\mathrm{e}}}{1+{K}_{\mathrm{L}}{C}_{\mathrm{e}}} $$ (5) 式中:qe是平衡时的吸附容量(mg/g);qm是最大吸附容量(mg/g);KL是Langmuir常数(L/mg);Ce代表平衡时溶液中吸附质的浓度(mg/L)。
(4)Freundlich等温模型
$$ {q}_{\mathrm{e}}={K}_{\mathrm{F}}{{C}_{\mathrm{e}}}^{\frac{1}{n}} $$ (6) 式中:qe是平衡时的吸附容量(mg/g);KF是Freundlich常数(L/mg);Ce代表平衡时溶液中吸附质的浓度(mg/L);n代表与吸附强度有关的参数。
材料吸附Pb2+和Cu2+的动力学拟合参数见表1。k2反映了吸附达到平衡状态的速率,k2值越大,吸附达到平衡的速度越快。从表1中可以看出,PSC和CCC在吸附Pb2+时,达到平衡的速度PSC>CCC;在吸附Cu2+时,达到平衡的速度CCC>PSC。PSC和CCC吸附Pb2+时,两种材料的伪一级与伪二级动力学模型相比,伪一级动力学模型的R2值更高且χ2值更低,说明PSC和CCC吸附Pb2+的过程符合伪一级动力学模型,在吸附过程中物理吸附占主导作用[10]。PSC和CCC在吸附Cu2+时,两种材料的伪一级与伪二级动力学模型相比,伪二级动力学模型的R2值更高且χ2值更低,说明伪二级动力学可以更好地拟合此吸附过程,化学吸附主导了此吸附过程[23]。
表 1 PSC和CCC吸附Pb2+、Cu2+动力学模型拟合参数以及PSC和CCC吸附Pb2+、Cu2+等温线模型拟合参数Table 1. Fitting parameters of kinetic models for Pb2+ and Cu2+ adsorption by PSC and CCC, and the fitting parameters of PSC and CCC adsorption of Pb2+ and Cu2+ isotherm models.金属离子 制备
材料伪一级动力学模型 伪二级动力学模型 K1 R2 χ2 k2 R2 χ2 Pb2+ PSC 0.0375 0.998 0.042 0.0062 0.936 0.114 CCC 0.0045 0.999 0.044 0.0004 0.986 0.121 Cu2+ PSC 0.0072 0.996 0.049 0.0009 0.997 0.135 CCC 0.0037 0.988 0.082 0.0021 0.997 0.056 金属离子 制备
材料Langmuir模型 Freundlich模型 qm KL R2 χ2 KF 1/n R2 χ2 Pb2+ PSC 189.09 0.0017 0.999 0.702 0.766 0.749 0.992 8.460 CCC 86.72 0.0036 0.998 1.420 1.220 0.622 0.984 9.706 Cu2+ PSC 18.69 0.0123 0.981 0.973 1.277 0.419 0.952 2.372 CCC 14.34 0.0197 0.979 0.667 2.72 0.368 0.928 0.375 材料吸附等温线模型的拟合相关计算参数见表1。当初始浓度从10mg/L增加到500mg/L时,PSC对Pb2+的吸附量分别从2.5mg/g增加至56.32mg/g,对Cu2+的吸附量从1.67mg/g增加至16.68mg/g,这是由于随着初始浓度的提高,溶液中金属离子与吸附剂表面的浓度梯度增大,因而增强了溶液中金属离子到吸附剂表面的驱动力,进而提高了传质效率[34]。吸附等温线拟合结果显示,CCC对Pb2+和Cu2+的最大理论吸附容量分别为169.10mg/g和18.69mg/g,PSC对Pb2+和Cu2+的最大理论吸附容量分别为86.72mg/g和14.34mg/g。由于CCC对Pb2+和Cu2+的最大理论吸附容量比PSC高,在处理实际含Pb2+和Cu2+的废水时可优先选择CCC作为吸附剂。与Freundlich等温吸附模型相比,两种材料对Pb2+和Cu2+的吸附过程均更加符合Langmuir等温吸附模型,这表明材料表面的吸附位点是均匀的,且吸附过程为单层吸附[34-35]。
本研究的两种材料与其他材料吸附容量的比较见表2。从表中数据可知,本研究的材料对Pb2+的吸附容量相比其他材料具有一定的优势,对Cu2+的吸附容量与其他材料相比较差,但本研究的材料可同时吸附Pb2+和Cu2+两种离子,在实际应用中可考虑将Pb2+作为主要目标污染物。
表 2 PSC和CCC吸附Pb和Cu的性能与其他材料对比Table 2. Comparison of the adsorption capacities of PSC and CCC with other materials.2.4 材料循环利用性
一般吸附剂吸附金属阳离子后使用酸性溶液进行脱附,酸性条件下材料表面带正电荷,利用静电斥力将吸附到材料表面的金属离子进行脱附,酸性溶液如盐酸、硝酸和硫酸等[6]。由于壳聚糖易溶于酸性溶液,因此本研究采用螯合能力较强的EDTA-2Na作为壳聚糖复合材料的脱附剂[17]。循环实验结果如图5所示,随着循环次数的增加,材料对Pb2+和Cu2+的去除率下降,这可能是由于脱附时未将材料表面上吸附的Pb2+和Cu2+完全脱附,从而增加材料表面与溶液中金属离子之间的静电斥力,减少了材料表面的吸附位点[22]。在循环5个周期后对Pb2+和Cu2+的去除率仍在85%以上,这一结果表明本研究中的两种吸附剂具有优异的稳定性,是可循环的环保型吸附材料。
2.5 实际地下水实验
由于CCC对Pb2+和Cu2+的吸附容量大于PSC,因此采用CCC对实际地下水进行处理。实际矿山地下水中含有As、Cd、Cu、Fe、Mn、Ni、Ca和Na。在吸附后,As、Cd、Cu、Fe、Mn和Ni浓度分别从18.200、3.800、13.300、215000.000、510.000和87.000µg/L降低至0.479、0.003、1.490、173.000、493.000和8.000µg/L,去除率分别为97.36%、99.92%、91.8%、99.92%、3.33%和90.81%,这表明材料对这些金属离子均有一定的吸附作用。可以观察到,CCC对Cd和Fe的去除率最高(99.92%),对Mn的去除率最低(3.33%),建议对含Mn重金属复合污染的水体使用本材料进行处理时,增加单独除Mn工艺模块。在吸附前后,Ca2+浓度从40.541mg/L增加至68.647mg/L,Na2+浓度从81.694mg/L增加至95.647mg/L,这可能由于材料自身的溶出或CCC在吸附Cu2+的过程中与Zn2+、Ca2+和Na2+发生了离子交换[41-43]。吸附后Cu2+的浓度从13.30mg/L降低至1.09mg/L,去除率为91.8%,其浓度达到《地下水质量标准》Ⅳ类水标准,但去除率小于用去离子水配制的含Cu2+污染水,这是因为实际水体中存在其他的金属阳离子,这些金属阳离子会与Cu2+竞争材料表面的吸附位点。以上结果表明,本研究中的CCC材料可有效地去除实际地下水中的多种金属离子。
2.6 材料吸附前后表面官能团分析
图6中a、b和c分别是PSC、吸附Pb2+后的PSC和吸附Cu2+后的PSC的XPS N1s图,其中PSC的N 1s存在5个峰,位于398.6、399.2、399.7、401.0和403.8V处,分别是吡咯类的氮(—NH)、壳聚糖的氨基(—NH2)、C=N、NH3+和C—N,在吸附Pb2+后,峰位置变为398.6、399.3、399.8和399.9eV [3,44],可以明显观察到C—N峰的消失,说明C—N参与了吸附过程。吡咯类的—NH和—NH2峰明显减弱,说明这两个含氮官能团也参与了PSC吸附Pb2+的过程。PSC吸附Cu2+后,C=N的峰明显减弱,其他峰变化与吸附Pb2+相似,说明C—N、—NH、—NH2和C=N也参与了Cu2+的吸附过程。
图6中d、e和f分别是CCC、吸附Pb2+后的CCC和吸附Cu2+后的CCC的XPS N1s图。在吸附Pb2+前,CCC的N 1s存在3个峰,位于398.7、398.9.2和399.5eV处,分别是吡咯类的氮(—NH)、壳聚糖的氨基(—NH2)和C=N。在吸附Pb2+后,峰变为4个,新出现的峰为402.5eV处的NH3+[45]。同时,—NH2峰减弱程度相比其他峰较小,可能是在吸附Pb2+的过程中参与不明显,反应生成了部分的NH3 +。CCC吸附Cu2+后峰强均减弱,说明CCC本身的吡咯类的氮(—NH)、壳聚糖的氨基(—NH2)和C=N均参与了CCC吸附Cu2+的过程[31]。XPS分析结果表明,PSC和CCC在吸附Pb2+和Cu2+过程中材料表面的含氮官能团起到了重要作用,含氮官能团主要通过与金属离子螯合作用,即金属离子与N原子形成共价键,达到吸附Pb2+和Cu2+的目的[18]。
3. 结论
本研究制备了两种生物炭-壳聚糖磁性复合吸附剂PSC和CCC,SEM和BET表征显示生物炭的原始结构影响着复合材料的孔隙特征,原始生物炭的比表面积和孔径越大,复合材料的比表面积和孔径越大。同时这两种吸附剂均对溶液中Pb2+和Cu2+具有良好的吸附能力,PSC和CCC对Pb2+的吸附过程以物理吸附为主,对Cu2+的吸附过程以化学吸附为主。PSC和CCC对Pb2+和Cu2+的吸附均为单层吸附。CCC对Pb2+和Cu2+的最大理论吸附容量分别为169.10mg/g和18.69mg/g,PSC对Pb2+和Cu2+的最大理论吸附容量分别为86.72mg/g和14.34mg/g。pH影响实验和XPS结果表明静电吸引和螯合作用是Pb2+和Cu2+的主要吸附机制。
本研究中材料的制备方法有效地提升了壳聚糖类材料在不同pH条件下的适应性。CCC对实际地下水中的多种重金属离子具有良好的去除能力。本研究主要针对的重金属是非变价金属离子Pb2+和Cu2+,建议后续可以研究生物炭-壳聚糖材料对变价金属离子的去除,以拓展生物炭-壳聚糖材料的应用场景。
-
表 1 PSC和CCC吸附Pb2+、Cu2+动力学模型拟合参数以及PSC和CCC吸附Pb2+、Cu2+等温线模型拟合参数
Table 1 Fitting parameters of kinetic models for Pb2+ and Cu2+ adsorption by PSC and CCC, and the fitting parameters of PSC and CCC adsorption of Pb2+ and Cu2+ isotherm models.
金属离子 制备
材料伪一级动力学模型 伪二级动力学模型 K1 R2 χ2 k2 R2 χ2 Pb2+ PSC 0.0375 0.998 0.042 0.0062 0.936 0.114 CCC 0.0045 0.999 0.044 0.0004 0.986 0.121 Cu2+ PSC 0.0072 0.996 0.049 0.0009 0.997 0.135 CCC 0.0037 0.988 0.082 0.0021 0.997 0.056 金属离子 制备
材料Langmuir模型 Freundlich模型 qm KL R2 χ2 KF 1/n R2 χ2 Pb2+ PSC 189.09 0.0017 0.999 0.702 0.766 0.749 0.992 8.460 CCC 86.72 0.0036 0.998 1.420 1.220 0.622 0.984 9.706 Cu2+ PSC 18.69 0.0123 0.981 0.973 1.277 0.419 0.952 2.372 CCC 14.34 0.0197 0.979 0.667 2.72 0.368 0.928 0.375 表 2 PSC和CCC吸附Pb和Cu的性能与其他材料对比
Table 2 Comparison of the adsorption capacities of PSC and CCC with other materials.
-
[1] Feng Z Y,Chen N,Liu T,et al. KHCO3 activated biochar supporting MgO for Pb(Ⅱ) and Cd(Ⅱ) adsorption from water:Experimental study and DFT calculation analysis[J]. Journal of Hazardous Materials, 2022, 426:128059. doi: 10.1016/j.jhazmat.2021.128059
[2] Yang G X,Jiang H. Amino modification of biochar for enhanced adsorption of copper ions from synthetic wastewater[J]. Water Research, 2014, 48:396−405. doi: 10.1016/j.watres.2013.09.050
[3] Deng J Q,Liu Y G,Liu S B,et al. Competitive adsorption of Pb(Ⅱ),Cd(Ⅱ) and Cu(Ⅱ) onto chitosan-pyromellitic dianhydride modified biochar[J]. Journal of Colloid and Interface Science, 2017, 506:355−364. doi: 10.1016/j.jcis.2017.07.069
[4] Jafarzadeh N,Heidari K,Meshkinian A,et al. Non-carcinogenic risk assessment of exposure to heavy metals in underground water resources in Saraven,Iran:Spatial distribution,monte-carlo simulation,sensitive analysis[J]. Environmental Research, 2022, 204:112002. doi: 10.1016/j.envres.2021.112002
[5] Wang Q,Zhao Y,Zhai S,et al. Application of different redox mediators induced bio-promoters to accelerate the recovery of denitrification and denitrifying functional microorganisms inhibited by transient Cr(Ⅵ) shock[J]. Journal of Hazardous Materials, 2021, 420:126664. doi: 10.1016/j.jhazmat.2021.126664
[6] Conceição F T,Silva M S G,Menegário A A,et al. Precipitation as the main mechanism for Cd(Ⅱ),Pb(Ⅱ) and Zn(Ⅱ) removal from aqueous solutions using natural and activated forms of red mud[J]. Environmental Advances, 2021, 4:100056. doi: 10.1016/j.envadv.2021.100056
[7] Chen Y,Yang X. Molecular simulation of layered GO membranes with amorphous structure for heavy metal ions separation[J]. Journal of Membrane Science, 2022, 660:120863. doi: 10.1016/j.memsci.2022.120863
[8] 崔婷,叶欣,朱霞萍,等. 土壤铁锰氧化物形态测定及吸附Sb(Ⅲ)的主控因子研究[J]. 岩矿测试,2023,42(1):167−176. Cui T,Ye X,Zhu X P,et,al. Determination of various forms of iron and manganese oxides and the main controlling factors of absorption of Sb(Ⅲ) in soil[J]. Rock and Mineral Analysis, 2023, 42(1):167−176.
[9] Jyoti D,Sinha R,Faggio C. Advances in biological methods for the sequestration of heavy metals from water bodies:A review[J]. Environmental Toxicology and Pharmacology, 2022, 94:103927. doi: 10.1016/j.etap.2022.103927
[10] Chen Q,Luo Z,Hills C,et al. Precipitation of heavy metals from wastewater using simulated flue gas:Sequent additions of fly ash,lime and carbon dioxide[J]. Water Research, 2009, 43:2605−2614. doi: 10.1016/j.watres.2009.03.007
[11] Luo J,Maier R M,Yu D,et al. Crittenden,double-network hydrogel:A potential practical adsorbent for critical metals extraction and recovery from water[J]. Environmental Science & Technology, 2022, 56:4715−4717.
[12] Wu J W,Wang T,Wang J W,et al. A novel modified method for the efficient removal of Pb and Cd from wastewater by biochar:Enhanced the ion exchange and precipitation capacity[J]. Science of the Total Environment, 2021, 754:142150. doi: 10.1016/j.scitotenv.2020.142150
[13] 聂雪. 改性壳聚糖金属螯合物的合成及电催化性能研究[D]. 长沙: 中南大学, 2005. Nie X. Synthesis and electrocatalytic properties of modified chitosan metal chelates[D]. Changsha: Central South University, 2005.
[14] Jiang B,Lin Y,Mbog J C. Biochar derived from swine manure digestate and applied on the removals of heavy metals and antibiotics[J]. Bioresource Technology, 2018, 270:603−611. doi: 10.1016/j.biortech.2018.08.022
[15] Zhao C,Liu G,Sun N,et al. Biomass-derived N-doped porous carbon as electrode materials for Zn-air battery powered capacitive deionization[J]. Chemical Engineering Journal, 2018, 334:1270−1280. doi: 10.1016/j.cej.2017.11.069
[16] Nazari S,Rahimi G,Khadem A. Effectiveness of native and citric acid-enriched biochar of chickpea straw in Cd and Pb sorption in an acidic soil[J]. Journal of Environmental Chemical Engineering, 2019, 7:103064. doi: 10.1016/j.jece.2019.103064
[17] Wang F,Jin L,Guo C,et al. Enhanced heavy metals sorption by modified biochars derived from pig manure[J]. Science of the Total Environment, 2021, 786:147595. doi: 10.1016/j.scitotenv.2021.147595
[18] Song J Y,Messele S A,Meng L J,et al. Adsorption of metals from oil sands process water (OSPW) under natural pH by sludge-based biochar/chitosan composite[J]. Water Research, 2021, 194:116930. doi: 10.1016/j.watres.2021.116930
[19] Feng Z Y,Feng C P,Chen N,et al. Preparation of composite hydrogel with high mechanical strength and reusability for removal of Cu(Ⅱ) and Pb(Ⅱ) from water[J]. Separation and Purification Technology, 2022, 300:121894. doi: 10.1016/j.seppur.2022.121894
[20] Chang Z,Tian L,Dong J,Chen Q,et al. The molecular markers provide complementary information for biochar characterization before and after HNO3/H2SO4 oxidation[J]. Chemosphere, 2022, 301:134422. doi: 10.1016/j.chemosphere.2022.134422
[21] Du H,Xi C,Tang B,et al. Performance and mechanisms of NaOH and ball-milling co-modified biochar for enhanced the removal of Cd2+ in synthetic water:A combined experimental and DFT study[J]. Arabian Journal of Chemistry, 2022, 15:103817. doi: 10.1016/j.arabjc.2022.103817
[22] Yin G,Tao L,Chen X,et al. Quantitative analysis on the mechanism of Cd2+ removal by MgCl2-modified biochar in aqueous solutions[J]. Journal of Hazardous Materials, 2021, 420:126487. doi: 10.1016/j.jhazmat.2021.126487
[23] Gao N,Du W,Zhang M G,et al. Chitosan-modified biochar:Preparation,modifications,mechanisms and applications[J]. International Journal of Biological Macromolecules, 2022, 209:31−49. doi: 10.1016/j.ijbiomac.2022.04.006
[24] Mallik A K,Kabir S F,Sakib M N,et al. Cu(Ⅱ) removal from wastewater using chitosan-based adsorbents:A review[J]. Journal of Environmental Chemical Engineering, 2022, 10:108048. doi: 10.1016/j.jece.2022.108048
[25] Li Y,Zhou Y,Nie W,et al. Highly efficient methylene blue dyes removal from aqueous systems by chitosan coated magnetic mesoporous silica nanoparticles[J]. Journal of Porous Materials, 2015, 22:1383−1392. doi: 10.1007/s10934-015-0017-7
[26] Javanbakht V,Ghoreishi S M,Habibi N,et al. A novel magnetic chitosan/clinoptilolite/magnetite nanocomposite for highly efficient removal of Pb(Ⅱ) ions from aqueous solution[J]. Powder Technology, 2016, 302:372−383. doi: 10.1016/j.powtec.2016.08.069
[27] Charpentier T V J,Neville A,Lanigan J L,et al. Preparation of magnetic carboxymethylchitosan nanoparticles for adsorption of heavy metal ions[J]. ACS Omega, 2016, 1:77−83. doi: 10.1021/acsomega.6b00035
[28] 李满林. 氨基硫脲及氨基化壳聚糖衍生物的合成与应用研究[D]. 杨凌: 西北农林科技大学, 2014. Li M L. Synthesis and application of thiourea and chitosan derivatives[D]. Yangling: Northwest A&F University, 2014.
[29] Xiang J,Lin Q,Cheng S,et al. Enhanced adsorption of Cd(Ⅱ) from aqueous solution by a magnesium oxide-rice husk biochar composite[J]. Environmental Science and Pollution Research, 2018, 25:14032−14042. doi: 10.1007/s11356-018-1594-1
[30] Zhou Y,Gao B,Fang J,et al. Sorption of heavy metals on chitosan-modified biochars and its biological effects[J]. Chemical Engineering Journal, 2013, 231:512−518. doi: 10.1016/j.cej.2013.07.036
[31] Xiang J,Lin Q,Yao X,et al. Removal of Cd from aqueous solution by chitosan coated MgO-biochar and its in-situ remediation of Cd-contaminated soil[J]. Environmental Research, 2021, 195:110650. doi: 10.1016/j.envres.2020.110650
[32] Xu L,Liu Y,Wang J,et al. Selective adsorption of Pb2+ and Cu2+ on amino-modified attapulgite:Kinetic,thermal dynamic and DFT studies[J]. Journal of Hazardous Materials, 2021, 404:124140. doi: 10.1016/j.jhazmat.2020.124140
[33] 赵子科,陈春亮,柯盛,等. 榴莲壳和不同炭材料对低汞溶液的吸附动力学[J]. 岩矿测试,2022,41(1):90−98. doi: 10.3969/j.issn.0254-5357.2022.1.ykcs202201009 Zhao Z K,Chen C L,Ke S,et al. Adsorption kinetics of durian shell and different carbon materials to low mercury solution[J]. Rock and Mineral Analysis, 2022, 41(1):90−98. doi: 10.3969/j.issn.0254-5357.2022.1.ykcs202201009
[34] 许芳,张利平,程先忠,等. 改性桑树叶吸附材料对废水中Cd(Ⅱ)的吸附性能研究[J]. 岩矿测试,2016,35(1):62−68. Xu F,Zhang L P,Cheng X Z,et al. Study on the adsorption performance of modified mulberry leaf adsorbent for Cd(Ⅱ) in wastewater[J]. Rock and Mineral Analysis, 2016, 35(1):62−68.
[35] Karthik R,Meenakshi S. Removal of Pb(Ⅱ) and Cd(Ⅱ) ions from aqueous solution using polyaniline grafted chitosan[J]. Chemical Engineering Journal, 2015, 263:168−177. doi: 10.1016/j.cej.2014.11.015
[36] Bai R X,Zhang Y,Zhao Z G,et al. Rapid and highly selective removal of lead in simulated wastewater of rare-earth industry using diglycolamic-acid functionalized magnetic chitosan adsorbents[J]. Journal of Industrial and Engineering Chemistry, 2018, 59(25):416−424.
[37] Ren Y,He F,Peng H,et al. Magnetic EDTA-modified chitosan/SiO2/Fe3O4 adsorbent:Preparation,characterization,and application in heavy metal adsorption[J]. Chemical Engineering Journal, 2013, 226(12):300−311.
[38] Rozumová L,Zivotský O,Seidlerová J,et al. Magnetically modified peanut husks as an effective sorbent of heavy metals[J]. Journal of Environmental Chemical Engineering, 2016, 4(1):549−555. doi: 10.1016/j.jece.2015.10.039
[39] Luo X,Zeng J,Liu S,et al. An effective and recyclable adsorbent for the removal of heavy metal ions from aqueous system:Magnetic chitosan/cellulose microspheres[J]. Bioresource Technology, 2015, 194:403−406. doi: 10.1016/j.biortech.2015.07.044
[40] Culita D C,Simonescu C M,Dragne M,et al. Effect of surfactant concentration on textural,morphological and magnetic properties of CoFe2O4 nanoparticles and evaluation of their adsorptive capacity for Pb(Ⅱ) ions[J]. Ceramics International, 2015, 41(10):13553−13560. doi: 10.1016/j.ceramint.2015.07.150
[41] Ifthikar J,Jiao X,Ngambia A,et al. Facile one-pot synthesis of sustainable carboxymethyl chitosan-sewage sludge biochar for effective heavy metal chelation and regeneration[J]. Bioresource Technology, 2018, 262:22−31. doi: 10.1016/j.biortech.2018.04.053
[42] Afzal M Z,Sun X F,Liu J,et al. Enhancement of ciprofloxacin sorption on chitosan/biochar hydrogel beads[J]. Science of the Total Environment, 2018, 639:560−569. doi: 10.1016/j.scitotenv.2018.05.129
[43] Zhou Y M,Fu S Y,Zhang L L,et al. Use of carboxylated cellulose nanofibrils-filled magnetic chitosan hydrogel beads as adsorbents for Pb(Ⅱ)[J]. Carbohydrate Polymers, 2014, 101:75−82. doi: 10.1016/j.carbpol.2013.08.055
[44] 肖雪婷. Fe3O4-壳聚糖@生物炭的制备及处理油田采出水试验研究[D]. 沈阳: 沈阳建筑大学, 2020. Xiao X T. Study on preparation of Fe3O4-chitosan@biochar and treatment of oilfield produced water[D]. Shenyang: Shenyang Jianzhu University, 2020.
[45] Tan Y,Wan X,Ni X,et al. Efficient removal of Cd(Ⅱ) from aqueous solution by chitosan modified kiwi branch biochar[J]. Chemosphere, 2022, 289:133251. doi: 10.1016/j.chemosphere.2021.133251
-
期刊类型引用(7)
1. 毛康,薛家奇,陈卓,张华. 激光诱导荧光技术与地下水重金属原位检测应用进展. 岩矿测试. 2025(01): 19-34 . 本站查看
2. 陈俊茹,沈亚婷,刘菲. 土壤中铬价态转化的影响因素与作用机制研究进展. 岩矿测试. 2025(01): 35-50 . 本站查看
3. 孙静宇,梁莉莉,潘欢迎,徐佳丽,郑珍珍,刘鑫. 壳聚糖/无机物复合吸附剂去除废水中重金属离子的研究进展. 水处理技术. 2025(01): 13-20 . 百度学术
4. 韩梅,张威,贾娜,张辰凌,孔祥科. 生物炭富集-电感耦合等离子体质谱法测定海水中的痕量铅铜. 岩矿测试. 2024(02): 281-288 . 本站查看
5. 季晓莲,李松. 固体废弃物材料的改性及对重金属修复实验. 化学工程师. 2024(09): 5-8+94 . 百度学术
6. 陈作义,陈考昌,李华辉,柯永霞,柳晓俊,赵丹华. CA/COSBC复合凝胶微球的制备及其对Pb(Ⅱ)的吸附性能. 精细化工. 2024(11): 2423-2432 . 百度学术
7. 白宇,阿依努尔·吾舒尔,欧阳磊,黄理金,帅琴. 羧基功能化共价膦腈聚合物用于酸性水体中钪的选择性分离. 岩矿测试. 2023(05): 888-902 . 本站查看
其他类型引用(0)