• 中文核心期刊
  • 中国科技核心期刊
  • CSCD来源期刊
  • DOAJ 收录
  • Scopus 收录

高压密闭酸溶-电感耦合等离子体质谱法测定花岗闪长岩中的微量锆

黎卫亮, 程秀花, 余娟, 刘欢

黎卫亮, 程秀花, 余娟, 刘欢. 高压密闭酸溶-电感耦合等离子体质谱法测定花岗闪长岩中的微量锆[J]. 岩矿测试, 2016, 35(1): 32-36. DOI: 10.15898/j.cnki.11-2131/td.2016.01.006
引用本文: 黎卫亮, 程秀花, 余娟, 刘欢. 高压密闭酸溶-电感耦合等离子体质谱法测定花岗闪长岩中的微量锆[J]. 岩矿测试, 2016, 35(1): 32-36. DOI: 10.15898/j.cnki.11-2131/td.2016.01.006
Wei-liang LI, Xiu-hua CHENG, Juan YU, Huan LIU. Determination of Trace Zirconium in Granodiorite by Inductively Coupled Plasma-Mass Spectrometry with Sealed Acid Digestion at High Pressure[J]. Rock and Mineral Analysis, 2016, 35(1): 32-36. DOI: 10.15898/j.cnki.11-2131/td.2016.01.006
Citation: Wei-liang LI, Xiu-hua CHENG, Juan YU, Huan LIU. Determination of Trace Zirconium in Granodiorite by Inductively Coupled Plasma-Mass Spectrometry with Sealed Acid Digestion at High Pressure[J]. Rock and Mineral Analysis, 2016, 35(1): 32-36. DOI: 10.15898/j.cnki.11-2131/td.2016.01.006

高压密闭酸溶-电感耦合等离子体质谱法测定花岗闪长岩中的微量锆

详细信息
    作者简介:

    黎卫亮, 硕士, 工程师, 主要从事电感耦合等离子体质谱分析研究。E-mail:lennon444520@163.com

  • 中图分类号: P588.122;O614.412;O657.63

Determination of Trace Zirconium in Granodiorite by Inductively Coupled Plasma-Mass Spectrometry with Sealed Acid Digestion at High Pressure

  • 摘要: 采用高压密闭酸溶处理样品, 电感耦合等离子体质谱(ICP-MS)测定岩石中的多种微量、痕量元素是地质分析中普遍采用的一种分析方法, 但在分析花岗闪长岩样品时, 由于锆赋存在难溶的副矿物(锆石、金红石)中, 会出现锆溶出率偏低的现象。针对这一现象, 本研究增加了赶硅的预处理过程, 加大氢氟酸用量, 在溶液介质中引入氟离子使锆形成氟络离子改善了锆的稳定性, 将锆的溶出率提高到95%左右, 实现了花岗闪长岩中微量锆的准确测定。本方法的精密度(RSD, n=11) 小于5%, 检出限为0.052μg/g。应用于分析克拉玛依地区花岗闪长岩中的锆, 测定值与过氧化钠、偏硼酸锂碱熔以及X射线荧光光谱法的测定值有良好的一致性, 且基体效应小、检出限低, 还可以满足锂、铍、钪等其他多种微量元素的同时测定。
  • 由于X射线荧光光谱(XRF)分析技术的蓬勃发展以及熔样技术的不断提高和完善,XRF法已具有制样简单,对复杂的试样也能完全熔融,主次量元素同时测定的优点。近年来分析工作者采用熔融制样XRF法测定矿石矿物中多种元素已成为研究的热点[1, 2, 3],尤其是铜(精)矿石分析更为活跃。田琼等[3]、赵耀等[4]测定了铜精矿中的多种元素;才书林等[5]将此法应用于有色金属矿石标准物质定值中铜的分析;李小莉等[6]、曹慧君等[7]测定了铜矿石中的主次量元素。在XRF分析铜矿石的现有方法中,选取的标准样品个数和矿石类型少,分析的含量范围宽,与铜矿石中铜常见含量差距太大[8],导致测量结果误差大。此外,铜矿石在熔融过程中可能有粘附坩埚和模具的现象发生,且制成的熔融片容易出现裂痕[9]。为了制备合格的熔融片,通常将样品预氧化后或在熔融过程中加入脱模剂溴化锂,这种脱模剂的加入方式容易因溴的挥发而发生样品迸溅。

    本文在选择参与工作曲线的标准样品时,突破测定铜矿石只选铜矿石标准物质的概念范畴,选用铜含量既有良好浓度变化范围,又符合铜矿石常见含量[8]的包括铜金银铅锌钼铜镍等各类矿石的24个标准物质。改进样品预处理方式,选用溴化锂作为脱模剂,加入饱和溴化锂溶液后再用四硼酸锂-偏硼酸锂-氟化锂混合熔剂完全覆盖的方法有效防止溴的挥发、吸湿及加入过程中的可能发生的样品喷溅,制备成完整的高质量的熔融片,用XRF可准确测定铜矿石中铜锌铅硅铝铁钛锰钙钾镁钼铋锑钴镍等16种主次量元素的含量。

    Axios PW 4400波长色散X射线荧光光谱仪(荷兰帕纳科公司),最大功率4.0 kW,最大激发电压60 kV,最大电流125 mA,SST超尖锐陶瓷端窗(75 μm)铑钯X射线光管,68个位置(直径32 mm)样品交换器,SuporQ5.0高级智能化操作软件。各元素的测量条件见表 1

    表  1  各分析元素的测量条件
    Table  1.  Measurement parameters of elements by XRF
    元素分析线晶体准直器
    (μm)
    探测器电压
    (kV)
    电流
    (mA)
    2θ
    (°)
    背景
    (°)
    PHD范围
    CuKαLiF 200150Flow606045.00980.7506-20~66
    ZnKαLiF 200150Scint606041.75920.8550-15~78
    Pb1LiF 200150Scint606028.21760.9272-21~78
    CoKαLiF 200150Flow606052.77240.8384-16~67
    MoKαLiF 200150Scint606020.25980.6332-25~78
    BiLβLiF 200150Scint606032.96940.5986-19~78
    SbKαLiF200150Scint606013.44860.2812-29~69
    NiKαLiF200300Flow606048.66140.8022-18~66
    SiKαPE 002300Flow25144109.10282.1706-24~78
    AlKαPE 002300Flow25144144.8902-1.6524-22~78
    FeKαLiF 200150Flow606057.5136-0.7198-15~68
    TiKαLiF 200150Flow409086.14440.591-25~71
    MnKαLiF 200150Flow606062.97020.636-25~68
    KKαLiF 200300Flow25144136.698-1.0938-25~74
    CaKαLiF 200150Flow30120113.109 1.7412-25~73
    MgKαPX1300Flow2514422.9698 2.0386-1.506025~66
    NaKαPX1300Flow2514427.8904 1.9338-1.889225~65
    RhKαcLiF 200150Scint606018.4294--25~78
    下载: 导出CSV 
    | 显示表格

    DY521型全自动熔样机(上海宇索有限公司)。

    铂金合金(95%Pt+5%Au)坩埚。

    硝酸铵(分析纯),四硼酸锂-偏硼酸锂-氟化锂混合熔剂(mLiB2O4: mLiBO2: mLiF=4.5:1:0.4),饱和溴化锂溶液。

    选用以下国家标准物质、有色行业标准物质和相关矿石标准物质制作工作曲线。

    一级标准物质:GBW 07162(多金属贫矿石)、GBW 07164(富铜银矿石)、GBW 07169(富铜矿石)、GBW 07197(铜镍矿石)、GBW 07198(铜镍矿石)、GBW 07233(铜矿石)、GBW 07234(铜矿石)、GBW 07237(锌矿石)。

    二级标准物质:GBW(E) 070068(金矿石)、GBW(E) 070069(金矿石)、GBW(E) 070070(银矿石)、GBW(E) 070071(银矿石)、GBW(E) 070072(银矿石)、GBW(E) 070073(铜矿石)、GBW(E) 070074(铜矿石)、GBW(E) 070075(铜矿石)、GBW(E) 070076(富铜矿石)。

    有色行业标准物质:YSS023-2004(铜铅锌原矿),ZBK335(富铜矿石)、ZBK 336(富铜矿石)、ZBK 337(富铜矿石)、ZBK 339(富铜矿石)。

    相关矿石国家标准物质:为了便于元素Pb、Mo的测定,加入了GBW 07235(铅矿石)、GBW 07238(钼矿石)。

    各元素的含量范围见表 2

    表  2  各元素校准曲线范围
    Table  2.  Concentration range of elements in the calibration curve
    元素含量(%)
    Cu0.01~12.79
    Pb0.019~4.17
    Zn0.01~4.26
    SiO29.27~82.95
    Al2O31.73~15.18
    TFe2O33.50~55.58
    TiO20.017~0.53
    MnO0.026~2.21
    CaO1.52~28.86
    MgO0.082~28.40
    K2O0.021~3.85
    Mo60~15100
    Bi70~2830
    Co40~1500
    Sb80~6800
    Ni40~7970
    注:Mo、Bi、Co、Sb、Ni元素的含量范围最低限为检出限。
    下载: 导出CSV 
    | 显示表格

    准确称取在110℃烘干的样品0.2000 g置于瓷坩埚中,放入高温炉内在700℃焙烧1 h冷却取出,称取3.0000 g四硼酸锂-偏硼酸锂-氟化锂熔剂(mLiB2O4: mLiBO2: mLiF=4.5:1:0.4)与样品充分混合后,倒入铂金合金坩埚中,称取2.0000 g硝酸铵倒入铂金坩埚中,加入饱和溴化锂溶液6滴,再称取3.0000 g熔剂倒入铂金坩埚将样品和硝酸铵完全覆盖。置于熔样机上,在650℃灼烧5 min,升温至1100℃熔融10 min,熔样机自动将熔融物倒入模具中。冷却剥离,在非测试面编号后放入干燥器中待测。矿石标准样品按此方法制备。

    虽然高倍稀释熔融法消除了矿物效应、粒度效应,减小了共存元素效应[10, 11],考虑到铜了矿石种类繁多、基体复杂多变的特点[8]。如选用的GBW(E) 070068(金矿石标准物质,Cu:0.30%)、GBW(E) 070069(金矿石标准物质,Cu:0.12%)符合斑岩型铜矿中铜含量的特征;GBW(E) 070070(银矿石标准物质,Cu:0.19%)、GBW(E) 070071(银矿石标准物质,Cu:0.50%)、GBW(E) 070072(银矿石标准物质,Cu:0.68%)符合变质岩型铜矿的特征;GBW 07237(锌矿石标准物质,Cu:0.71%,Pb:0.25%,Zn:2.75%)、YSS023-2004(铜铅锌原矿标准物质,Cu:2.33%,Pb:1.76%,Zn:1.94%)、GBW 07197(铜镍矿石标准物质,Cu:0.62%,Ni:0.053%)、GBW 07198(铜镍矿石标准物质,Cu:0.11%,Ni:0.22%)符合铜矿中常含有伴生元素铅、锌、镍含量的特征。

    以上选用的9个矿石标准物质中铜含量在0.02%~1.15%范围的样品占62%,铜含量在1.15%~5.49%范围的样品占17%,铜含量在5.49%~12.79%范围的样品占21%。这一体系不但符合铜矿床工业指标一般要求[8],而且所适应矿石类型比较多见,符合日常分析样品的含量特征,既解决了铜矿石标准物质个数少的问题,又使建立的标准曲线有较强的基体适应性。

    校准曲线的质量往往采用品质因子K来评价[10],经校正后铜、铅、锌的品质因子K分别为0.01、0.02、0.02。从表 3可以看出,铜、铅、锌校正曲线的计算值与标准值基本吻合,用此校准曲线对组成曲线的标准物质测试,标准物质的测定值和标准值也基本一致,充分说明了曲线的良好性。

    表  3  Cu、Pb、Zn校准曲线的计算值与标准值对比
    Table  3.  Comparison of calculated values and proposed values four Cu, Pb, Zn in calibration curves
    标准物质编号CuPbZn
    标准值
    (%)
    校准曲线计算值
    (%)
    标准值
    (%)
    校准曲线计算值
    (%)
    标准值
    (%)
    校准曲线计算值
    (%)
    GBW 071620.260.250.430.420.830.84
    GBW 071642.802.820.0560.060.140.14
    GBW 071695.495.511.121.120.610.60
    GBW 071970.620.62<0.02-0.0780.080
    GBW 071980.110.11<0.02-0.0450.050
    GBW 072331.151.15<0.02-0.060.06
    GBW 072340.190.19<0.02-0.0130.014
    GBW 072350.200.204.174.200.060.06
    GBW 072370.710.710.250.242.752.54
    GBW 072380.010.01<0.02-<0.01-
    ZBK3356.786.760.110.110.450.45
    ZBK33612.7712.780.040.040.640.63
    ZBK33710.7110.720.020.020.050.05
    ZBK3398.468.440.090.090.500.50
    YSS023-20042.332.311.761.801.941.94
    GBW(E) 0700680.300.291.611.630.220.22
    GBW(E) 0700690.120.120.610.610.100.10
    GBW(E) 0700700.190.19<0.02-<0.01-
    GBW(E) 0700710.500.490.020.02<0.01-
    GBW(E) 0700720.680.68<0.02-0.0110.011
    GBW(E) 0700730.290.29<0.02-0.010.01
    GBW(E) 0700740.900.89<0.02-0.020.02
    GBW(E) 0700753.843.850.0240.020.0830.08
    GBW(E) 0700768.538.520.0270.020.190.19
    下载: 导出CSV 
    | 显示表格

    铜矿石中的铜主要以硫化物存在,同时伴生有黄铁矿(FeS)、方铅矿(PbS)、闪锌矿(ZnS)、辉钼矿(MoS)等矿物[8, 12],需要在高温下焙烧除去样品中硫、碳、砷、汞等有害元素,保护铂金坩埚免受腐蚀和更好地熔融样品,也使得样品中多数金属硫化物被充分氧化成金属氧化物,同时可使样品成为多孔状,增大样品本身隙表面,熔融时更好地与熔剂充分接触,熔解更为完全。

    称取硫含量较高(S:15.42%)的铜矿石标准物质GBW(E) 070076(富铜矿石),选择在600℃、700℃、800℃焙烧。实验发现,在800℃焙烧样品冷却后有结块和粘附埚底现象,600℃、700℃焙烧后按本方法熔融制片测量硫的荧光强度,600℃焙烧硫的荧光强度很强(荧光强度120 kcps),700℃焙烧硫的荧光强度非常弱(荧光强度10 kcps),说明样品中的硫已基本除尽。本方法选择在700℃焙烧样品。

    因为铜矿石在熔融过程中有粘附坩埚和模具的倾向,且制成的熔融片容易出现裂痕[9],或在冷却过程中发生脆裂。本文选择溴化锂作为脱模剂,为了防止溴化锂在熔融过程中挥发而不能起到良好的脱模效果,在加入溴化锂溶液后再用混合熔剂完全覆盖熔体。

    选择铜矿石标准物质GBW(E) 070071(Cu:0.50%)、GBW(E) 070075(Cu:3.84%)、ZBK339(Cu:8.46%),试验滴加不同滴数的饱和溴化锂溶液对测试结果的影响,结果见表 4。滴加6滴饱和溴化锂溶液,不仅熔片质量好,测试值和标准值基本吻合。本法选择滴加6滴。

    表  4  滴加不同滴数饱和LiBr溶液对铜测定结果的影响
    Table  4.  Effect of different drops for saturated LiBr solution on analytical results of Cu
    标准物质编号Cu的标准值
    (%)
    Cu的测定值(%)
    2滴4滴6滴8滴10滴12滴
    GBW(E) 0700710.500.500.490.500.480.460.45
    GBW(E) 0700753.84裂纹3.833.823.803.763.72
    ZBK3398.46爆裂8.378.448.418.408.32
    下载: 导出CSV 
    | 显示表格

    实验发现,铜矿石在熔融后熔融物发生团聚现象。随着铜含量的增大,这种团聚现象越严重,流动性也更差,当样品粉末和混合熔剂总量少于5.5 g时无法形成完整的熔融片。采用混合熔剂与样品质量比为15:1(6 g+0.4 g)、20:1(6 g+0.3 g)、30:1(6 g+0.2 g)、40:1(6 g+0.15 g)进行实验。从熔样过程观察,采用15:1、20:1比例熔样,由于熔样比例小,熔融物的流动性较差,脱模效果也差;采用30:1、40:1比例熔样,熔融物的流动性更好,脱模效果也好,形成的熔融片更加均匀透明;40:1稀释比例较大,对低含量组分测量误差较大。

    采用混合熔剂与样品的质量比为30:1熔样,制备出了高质量熔融片,同时又能获取各组分良好的检出限,含量低的组分仍能被检出。所以本方法选择熔样比例为30:1(6 g熔剂+0.2 g样品)。

    采用30:1稀释熔融法制样消除了颗粒度、不均匀性、矿物效应,但是铜矿石基体复杂,伴生元素较多,各组分的含量变化很大,有些元素之间还存在增强-吸收效应的影响,仍需进行基体效应和谱线干扰校正。选择经验系数法进行基体校正[13],同时Bi、Co采用康普顿散射线做内标校正,Mo采用Mo Bg1进行内标校正。

    谱线干扰校正涉及的有Al Kα受到Br Lα的干扰、Mg Kα受到Ca Kα(3)的干扰、Co Kα受到Fe Kβ的干扰,必须进行校正。

    基于基体简单的试样多采用公式法[10, 11]计算检出限,用公式计算出来的被分析元素的理论检出限和实际测定限大致相同。但铜矿石样品基体较为复杂,虽经高倍稀释熔融和仪器软件校正后,理论检出限和实际测定限仍有差距。对于Cu、Pb、Zn、SiO2、Al2O3、TFe2O3、TiO2、MnO、CaO、MgO、K2O等元素,采用含量较低的标准物质重复测定12次计算标准偏差,将其乘以3即为该元素的检出限[14]。对于伴生元素Co、Mo、Bi、Sb、Ni,选用各元素回归曲线最低点(删除点除外)重复测量12次取平均值为该元素的检出限,结果见表 5,以上方法计算出来的元素检出限与实际能报出的结果基本一致。

    表  5  方法检出限
    Table  5.  Detection limits of the method
    元素方法检出限
    (μg/g)
    Cu100
    Pb200
    Zn100
    SiO2200
    Al2O3330
    TFe2O3200
    TiO280
    MnO100
    CaO240
    MgO100
    K2O160
    Sb80
    Mo60
    Bi70
    Co40
    Ni40
    下载: 导出CSV 
    | 显示表格

    采用本方法将GBW 07164、GBW 07169各制备成10个熔融片并进行测定,对结果进行统计,得到的精密度结果见表 6。从表 6可看出,各元素的相对标准偏差在 0.1%~5.4%,说明本方法的精密度良好。

    表  6  方法精密度
    Table  6.  Precision tests of the method
    元素GBW 07164GBW 07169
    含量(%)RSD(%)含量(%)RSD(%)
    Cu2.780.35.500.3
    Pb0.0550.41.10 0.3
    Zn0.140.10.620.5
    SiO240.52.548.03.8
    Al2O37.771.111.41.8
    TFe2O316.23.413.15.4
    MnO0.300.30.140.1
    CaO17.10.84.601.3
    MgO2.331.40.802.6
    K2O1.761.01.421.1
    TiO20.370.11.120.1
    Mo*1401.7--
    Bi*82.02.515201.4
    Co*80.00.81181.9
    Ni*--2180.5
    Sb*1001.567912.6
    注:带*的数据单位为μg/g。
    下载: 导出CSV 
    | 显示表格

    将没有参加回归的标准物质GBW 07163(多金属矿石)、GBW 07170(铜矿石)制成熔融片后用本方法测定,结果见表 7表 7结果表明,测定值与标准值基本符合。

    表  7  标准物质分析结果
    Table  7.  Analytical results of reference materials
    元素GBW 07163GBW 07170
    标准值
    (%)
    测定值
    (%)
    标准值
    (%)
    测定值
    (%)
    Cu1.051.0412.5912.62
    Pb2.172.152.242.20
    Zn4.264.241.211.20
    SiO247.947.823.1223.20
    Al2O311.211.24.644.59
    TFe2O312.012.112.7612.60
    MnO0.490.480.140.14
    CaO4.704.6824.4924.31
    MgO1.391.362.482.52
    K2O3.103.070.0210.022
    TiO2-0.540.210.21
    Bi*7577607638
    Ni*-<40376352
    Sb*6106301250011800
    Co*-44221209
    Mo*24<60-<60
    注:带*的数据单位为μg/g。
    下载: 导出CSV 
    | 显示表格

    按本法制样,测试4个铜矿石样品中Cu、Zn、Pb、Mo、Bi、Sb、Co、Ni含量,与电感耦合等离子体发射光谱法(ICP-AES)测试结果比对。从表 8可以看出,该方法测定结果与 ICP-AES等方法的测定值相一致。

    表  8  实际样品不同分析方法结果对照
    Table  8.  Analytical results of elements in real copper samples by different methods
    元素样品1样品2样品3样品4
    XRF
    (%)
    ICP-AES
    (%)
    XRF
    (%)
    ICP-AES
    (%)
    XRF
    (%)
    ICP-AES
    (%)
    XRF
    (%)
    ICP-AES
    (%)
    Cu3.203.181.361.380.580.601.171.20
    Pb0.470.470.090.090.030.040.110.11
    Zn1.121.150.760.760.240.220.180.17
    Bi0.0770.0750.110.100.0260.0240.0100.011
    Ni0.0140.0140.0080.0080.0760.0810.0500.053
    Sb0.040.040.060.06<0.0080.0030.00840.010
    Mo0.130.12*0.600.62*0.0060.005*<0.0060.005*
    Co0.150.140.0840.0860.090.100.050.05
    注:Mo元素带“*”数据是分光光度法的测定值。
    下载: 导出CSV 
    | 显示表格

    本文对影响熔融片制样-X射线荧光光谱仪测定铜矿石两个主要因素:标准物质的选取、脱模剂的加入量和加入方式进行了探讨和实验。从实用性考虑,选择铜矿石和其他矿石标准物质建立标准曲线,克服了前人XRF分析工作中标准样品个数较少、浓度之间跨越较大,以及采用的人工合成标准与实际样品基体相差太大的缺点,加强了样品基体的适应性。基于铜矿石熔融片易出现裂痕的特点,改进了加入脱模剂(饱和溴化锂溶液)的方法,制备出高质量的熔融片,建立的工作曲线可准确测定铜矿石中16种元素。此法制样简单,可多元素同时测定且快速准确,应用于日常检测中取得了满意的效果。

  • 表  1   实验研究样品情况

    Table  1   Experimental samples in this study

    样品编号岩石名称
    1岩浆混合强的花岗闪长岩
    2岩浆混合中等的花岗闪长岩
    3岩浆混合较强烈的花岗闪长岩
    4花岗闪长岩
    5花岗闪长岩
    6花岗闪长岩
    7花岗闪长岩
    下载: 导出CSV

    表  2   采用不同溶样、分析方法测定锆的结果对比

    Table  2   Comparison of analytical results of Zr obtained by different sample-digestion and analytical methods

    样品
    编号
    锆含量测定值(μg/g)
    高压密闭酸溶,
    ICP-MS法
    (本法)
    过氧化钠碱熔,
    ICP-MS法
    偏硼酸锂碱熔,
    ICP-MS法
    X射线荧光
    光谱法
    1147149146150
    2210214209213
    379.282.376.781.1
    4142144139144
    5138142141143
    6233239226236
    7202206197204
    下载: 导出CSV

    表  3   方法精密度和准确度

    Table  3   Precision and accuracy tests of the method

    测定方法GBW07111中锆含量相对误差
    (%)
    RSD
    (%)
    标准值
    (μg/g)
    测定值
    (μg/g)
    高压密闭酸溶,ICP-MS分析(本法)2242154.013.4
    过氧化钠碱熔,ICP-MS分析2242313.134.1
    偏硼酸锂碱熔,ICP-MS分析2242281.783.2
    下载: 导出CSV

    表  4   本法分析标准物质GBW07111中锆和其他微量元素的测定结果

    Table  4   Analytical results of zirconium and other trace elements in GBW07111 provided by the method

    元素测定值
    (μg/g)
    标准值
    (μg/g)
    元素测定值
    (μg/g)
    标准值
    (μg/g)
    Zr215224La58.160.5
    Li15.316.2Ce110112
    Be1.982.11Pr12.913.2
    Sc9.8410.3Nd47.548.1
    V97.2104Sm7.657.74
    Cu10.18.8Eu1.861.91
    Zn83.185.4Gd4.995.09
    Co14.915.6Tb0.650.68
    Nb10.210.6Dy3.033.20
    Ta0.580.62Ho0.570.60
    Hf5.015.2Er1.491.57
    Pb18.619.8Tm0.240.26
    Th11.210.9Yb1.511.56
    U1.371.40Lu0.220.24
    Y14.915.5
    下载: 导出CSV
  • 期刊类型引用(6)

    1. 侯德华,潘志龙,杨鑫朋,张立国,何娇月,张欢,程洲,王硕,王金贵. 西藏札佐晚白垩世中期埃达克岩年代学、地球化学及其构造意义. 沉积与特提斯地质. 2023(03): 592-603 . 百度学术
    2. 潘岚,谢伟. 藏南泽当努日铜钨钼矿床流体地球化学特征及矿床成因研究. 四川地质学报. 2023(04): 615-624 . 百度学术
    3. 闫国强,王欣欣,黄勇,李光明,刘洪,黄瀚霄,张志,田恩源,赖杨. Pb同位素对努日铜钼钨多金属矿床成矿物源的制约. 地球科学. 2020(01): 31-42 . 百度学术
    4. 张志平,钟康惠,董瀚,李鸿睿,汪宏涛. 西藏桑日县帕南岩体岩石学、地球化学、地质年代学研究及构造背景探讨. 沉积与特提斯地质. 2020(02): 52-64 . 百度学术
    5. 武雪梅,张志平,雒晓刚,周彦慧,刘晓涛,汪宏涛,王晓东. 西藏桑耶寺北岗结则雄花岗闪长岩体年代学、地球化学特征及地质意义. 矿产勘查. 2019(06): 1339-1350 . 百度学术
    6. 姚兴华,张志平,梁硕鹏,刘彩英,张晓娟. 西藏山南努日地区比马组火山岩地球化学特征及成因. 矿产勘查. 2019(09): 2119-2128 . 百度学术

    其他类型引用(4)

表(4)
计量
  • 文章访问数:  1384
  • HTML全文浏览量:  273
  • PDF下载量:  22
  • 被引次数: 10
出版历程
  • 收稿日期:  2015-06-30
  • 修回日期:  2015-10-30
  • 录用日期:  2015-11-09
  • 发布日期:  2016-01-24

目录

/

返回文章
返回