Simultaneous Determination of Chromium(Ⅲ) and Chromium(Ⅵ) in Water by the First Derivative Spectrophotometric Method
-
摘要: 环境水样中的铬通常以Cr(Ⅲ)和Cr(Ⅵ)的形态存在,不同价态的铬产生不同的生理作用,对不同价态铬进行准确分析是必要的。目前Cr(Ⅲ)和Cr(Ⅵ)的测定方法大多数是先分离后再测定,或先测定出Cr(Ⅲ)或Cr(Ⅵ),然后通过氧化或还原测定铬的总量,再差减法计算出另一价态铬的含量,此操作复杂,并且在处理过程中易导致价态的改变,误差较大,精确度难以保证。本文用一阶导数分光光度法消除了Cr(Ⅲ)对Cr(Ⅵ)干扰,能同时测定Cr(Ⅲ)或Cr(Ⅵ)的含量。混合水样中加入显色剂EDTA-2Na,调节溶液pH在3~3.5,恒温水浴70℃条件保持加热15min,测定吸光度,导数间隔因子为10nm求一阶导数,在波长330nm处Cr(Ⅵ)吸光度一阶导数有最大值,而在此波长处Cr(Ⅲ)-EDTA络合物吸光度一阶导数值为0,可用一阶导数分光光度法测定Cr(Ⅵ)的含量,在Cr(Ⅲ)-EDTA的最大吸收波长543nm处测溶液吸光度,直接测定Cr(Ⅲ)的含量。在优化实验条件下,Cr(Ⅲ)线性回归方程为A=0.0036ρ-0.0002(r2=0.9999),线性范围为0~120mg/L,检出限为0.006mg/L;Cr(Ⅵ)线性回归方程为D=0.00072ρ-0.00013(D为一阶导数值,r2=0.9996),线性范围为0~100mg/L,检出限为0.005mg/L。Cr(Ⅲ)和Cr(Ⅵ)加标回收率为97.8%~102.6%。该方法能够满足废水中Cr(Ⅲ)和Cr(Ⅵ)分析测试要求。要点
(1) 一阶导数光谱法可使重叠峰完全分开,消除Cr(Ⅲ)对Cr(Ⅵ)的干扰。
(2)当导数间隔因子为10nm时有适宜的一阶导数值。
(3)Cr(Ⅲ)-EDTA络合物稳定性高,在3h内吸光度值未见变化。
HIGHLIGHTS(1) The derivative spectrophotometric method can be used for resolving overlapped peaks, and thus eliminating the interference of Cr(Ⅲ) on Cr(Ⅵ).
(2) When the derivative interval factor was 10nm, the first derivative value of absorption was the most suitable.
(3) Cr(Ⅲ)-EDTA coordination compound has high stability, and its absorbance value did not change within 3 hours.
Abstract:OBJECTIVESChromium is usually found as Cr(Ⅲ) and Cr(Ⅵ) in environmental water samples. The different valences of chromium produce different physiological function, thus it is necessary to analyze the different valences of chromium accurately. At present, the contents of Cr(Ⅲ) and Cr(Ⅵ) are mostly determined after separation or the content of Cr(Ⅲ) or Cr(Ⅵ) is measured first, then the total content of Cr is determined after oxidation or reduction. The content of another valence of chromium is then calculated by the subtraction method. The available method needs a complex procedure. Moreover, the valence of Cr is easily modified during the sample treatment, resulting in large error and low precision.OBJECTIVESTo find a simple and accurate method for determination of Cr(Ⅲ) and Cr(Ⅵ).METHODSThe first derivative spectrophotometric method was used for simultaneously determining of Cr(Ⅲ) and Cr(Ⅵ), which eliminated the interference of Cr(Ⅲ) on Cr(Ⅵ).RESULTSChromogenic reagent EDTA-2Na was added to the mixed water sample in a 70℃water-bath at pH 3-3.5 for 15min, and the absorbance was measured. When the derivative interval factor was 10nm, the first derivative value of absorption for Cr(Ⅵ) was the maximum at 330nm wavelength and the value for Cr(Ⅲ)-EDTA was zero. The concentration of Cr(Ⅵ) can be obtained by the first derivative spectrophotometric method, whereas Cr(Ⅲ) can be determined directly at the maximum wavelength of 543nm. Under the optimal conditions, the concentration range was 0-100mg/L for Cr(Ⅵ) and 0-120mg/L for Cr(Ⅲ). The equation of linear regression for Cr(Ⅲ) was A=0.0036ρ-0.0002 (r2=0.9999), for Cr(Ⅵ) was D=0.00072ρ-0.00013 (r2=0.9996). and the limit of detection was 0.005mg/L for Cr(Ⅵ) and 0.006mg/L for Cr(Ⅲ). The recoveries for Cr(Ⅲ) and Cr(Ⅵ) were 97.8%-102.6%.ConclusionThe method meets the requirements for analyzing waste water. -
铊属于稀散元素,常分散赋存于岩石中;在地球化学上既有亲石性,又有亲硫性。亲石性表现为以类质同象的形式与钾、钠等元素在云母和钾长石等富钾矿物共生;而在低温高硫环境中,则表现为亲硫性,以类质同象的形式进入各种铅锌铜铁等硫化物矿物中。20世纪70年代,为了寻找放射性同位素205Pb曾经存在的证据和探究核素合成的机理,科研人员开始了对铊同位素的研究[1]。在早期的研究中,由于测试用的热电离质谱仪(TIMS)的质量分馏不稳定,且难以激发高电离能的元素,导致铊同位素分析结果的精密度较差,不能满足大部分研究的需要。近些年,随着具备高电离能力的多接收器电感耦合等离子体质谱仪(MC-ICP-MS)的出现,同时得益于铅对分析过程中铊同位素分馏的校正,使分析结果的精密度有了大幅提高(优于0.05‰)[2-5]。
由于铊兼有亲石和亲硫性,其同位素组成对吸附、共沉淀、氧化还原等过程较为敏感,因此可以被应用于天体演化[6]、古环境变化[7]、矿床成因[8]及污染物迁移[9-11]等过程的示踪。但因为自然界样品中铊的含量低(地壳中铊的平均含量仅为0.75mg/kg),且同位素组成的变化范围和自然分馏效应很小[12],导致很难获得高精度和高准确度的铊同位素数据。因此,除高精度的仪器测量外,样品的消解、分离和纯化等化学前处理流程对铊同位素分析结果的准确与否也至关重要。对于铊含量的分析,分解试样时如果不知道矿石中铊的赋存状态,一般选用含有氢氟酸的混合酸或强碱性熔剂分解[13-16]。而对于富含有机质的样品,由于亚铊的氧化物、氯化物等具有挥发性,应避免使用直接灼烧法除去有机质,而是采用湿法氧化分解[14,16]。目前国内外地质样品中铊同位素测定的消解方法主要为电热板加热法。这种方法便于在洁净的化学实验室完成,但清洗容器和样品消解过程的用时较长,耗时往往超过一周[4]。根据地质样品岩性的不同,消解所用的混合酸体系也不相同,尚无统一的标准。铊的分离和纯化一般利用Tl+和Tl3+在盐酸介质中与Cl−络合能力的不同。需要注意的是,在纯化后的铊馏分中应尽可能减小铅量,否则由于残留的铅同位素组成是未知的(校正时添加标液的铅同位素是已知的),会影响铊的同位素分馏校正;此外,天然样品204Pb的自然丰度虽然仅有铅总量的1.4%,但204Pb1H多原子离子干扰对于铊同位素的高精度测量仍不可忽视。目前,使用阴离子交换树脂(如AG1-X8或AG-MP-1M树脂)二次过柱是普遍采用的铊提纯方法。该方法由Rehkämper等[2]首次提出,后经Nielsen等[3]、Baker等[6]、Owens等[17]研究团队发展和完善。该方法两次过柱均采用同一种阴离子交换树脂,第一次分离时采用装有1.5mL树脂的石英柱,依次用硝酸-氢溴酸-饱和溴水淋洗液洗脱基体元素、盐酸-饱和溴水淋洗液洗脱干扰元素铅,最后用盐酸-二氧化硫淋洗液收集铊。收集到的铊馏分经硝酸蒸干后,加入氢溴酸-饱和溴水提取液进行二次过柱,以保证完全消除干扰组分的影响。第二次过柱时,除所用体积与第一次不同之外,淋洗液的类型和浓度均与第一次相同。此外,Wang等[5]开发了磷酸三丁酯(TBP)树脂和AG50W-X12阳离子交换树脂的两级串联分离纯化方案,以NIST 997为参考物质测定BHVO-2、BCR-2、AGV-2、GSP-2、COQ-1、NOD-P-1、NOD-A-1、GBW07406、SCO-1共9种地质标准样品的同位素组成,获得了理想的结果。
微波消解是一种利用微波的穿透性和激活反应能力加热密闭容器内的试剂和样品的技术,具有省时、省酸、安全、空白值低、易实现自动监控、污染小以及损失少等优点,已广泛应用于食物[18-19]、环境[20]、生物[21]、植物[22]以及矿物[23-26]等样品中重金属元素的分析。本文为提高铊同位素分析中化学前处理流程的效率,研究了利用微波消解技术分解地质样品进行铊同位素分析的可行性,比较了硝酸-氢氟酸-盐酸-过氧化氢和硝酸-氢氟酸-高氯酸混合酸体系对样品的消解情况。消解后的样品经AG1-X8阴离子交换树脂分离纯化后,采用MC-ICP-MS结合铅标准溶液(NIST SRM981)质量分馏校正法进行同位素分析。使用优化后的实验方案分析了4个地质标准物质的铊同位素组成,获得较为满意的结果。
1. 实验部分
1.1 仪器和主要装置
铊同位素组成的测试运用Neptune plus多接收器电感耦合等离子体质谱仪(MC-ICP-MS,美国ThermoFisher公司)完成,进样系统包括双路气旋式雾化室、Jet样品锥和X截取锥,检测器包括9个法拉第杯和1个离子计数器。
淋洗曲线标定及回收率测试应用7500cx电感耦合等离子体质谱仪(ICP-MS,美国Agilent公司)完成,内标溶液为10ng/mL铑(2%硝酸介质)。MC-ICP-MS和ICP-MS质谱仪的主要工作参数见表1。
表 1 MC-ICP-MS和ICP-MS仪器主要工作参数Table 1. Main operation conditions of MC-ICP-MS and ICP-MS instruments工作参数 设定值 MC-ICP-MS ICP-MS 冷却气(Ar)流速(L/min) 16.00 14.95 辅助气(Ar)流速(L/min) 0.86 0.28 雾化气(Ar)流速(L/min) 0.05 0.92 射频功率(W) 1152 1470 积分时间(s) 4.194 / 每组测量次数 30 / 测量组数 1 / 实验用水由超纯水系统(美国Millipore公司)制备,电阻率18.2MΩ·cm。
高纯酸由NJ-SCH-I酸纯化器(南京滨正红仪器有限公司)纯化。
样品消解由Ethos1微波消解仪(意大利Milestone公司)完成。
PFA微型离子交换柱:北京博明远科技有限公司,下部为0.65cm(内径)×10.0cm(高),上部为1.5cm(内径)×5cm(高),总容量约15mL,底部为孔径20μm的亲水性筛板。
1.2 标准物质和主要试剂
铅同位素标准溶液NIST SRM981、铊标准溶液GSB 04-1758-2004和地质标准物质(NOD-P-1、NOD-A-1、GBW07406、GSP-2)详细信息见表2。
表 2 地质标准物质和同位素标准溶液的详细信息Table 2. Details of geological reference materials and isotope reference solutions标准物质编号 样品类型 研制单位 推荐值 铊 铅 NIST SRM 981 铅同位素标准溶液 美国标准与技术研究院(NIST) / 10μg/mL GSB 04-1758-2004 铊标准溶液 中国有色金属及电子材料分析测试中心 1000μg/mL / NOD-P-1 铁锰结核 美国地质调查局(USGS) 210±2μg/g 560±6μg/g NOD-A-1 铁锰结核 美国地质调查局(USGS) 120±1.0μg/g 846±8.2μg/g GBW07406 土壤 中国地质科学院地球物理地球化学勘查研究所 2.2±0.6μg/g 314±25μg/g GSP-2 花岗岩 美国地质调查局(USGS) 1.1±0.1μg/g 43±3μg/g 阴离子交换树脂(AG1-X8,100~200目):购自美国Bio-Rad公司。
优级纯的盐酸、硝酸和氢氟酸(上海国药集团化学试剂有限公司):经二次亚沸蒸馏纯化后使用;高氯酸(优级纯,上海国药集团化学试剂有限公司);过氧化氢、饱和溴水(分析纯,广州西陇化工股份有限公司);二氧化硫标准气体(99.9%,广东英德市西洲气体有限公司)。
0.1mol/L盐酸-6%二氧化硫溶液的配制:将二氧化硫标准气体通入0.1mol/L盐酸中,使其质量增加6%,现用现配。
1.3 样品消解
根据铊在样品中的含量,称取50~300mg粉末状样品(200目,105℃烘干2h)于干净的PFA(可溶性聚四氟乙烯)消解罐中,用少量水润湿,加入2mL氢氟酸、2mL硝酸和0.5mL高氯酸;充分混匀,放置反应1h后,加盖拧紧;按表3的升温程序进行微波消解。冷却后,缓慢泄压放气,打开消解罐,将样品转移至15mL 聚四氟乙烯杯中180℃加热至白烟冒尽,加入2mL 6mol/L盐酸溶解,120℃蒸干,重复一次(除尽氢氟酸、硝酸和高氯酸)。最后加入2mL 2mol/L硝酸-1%饱和溴水,加盖密闭后80℃加热12h,待溶液冷却,离心后进行色谱分离。
表 3 样品处理微波消解程序Table 3. Microwave digestion procedure for sample pretreatment步骤 消解温度
(℃)消解功率
(W)加热时间
(min)保持时间
(min)1 120 400 5 5 2 150 800 5 5 3 190 1200 5 20 需要特别注意的是:①所有的敞口操作必须在超净工作台进行,以防外部环境中铅及其他元素的污染;②为避免酸的损失和安全伤害,消解罐必须完全冷却后才能泄压开盖[22]。
1.4 铊的纯化
铊的纯化流程在Nielsen等[3,27]的研究基础上作了部分优化,优化内容主要包括:①将双柱淋洗修改为单柱淋洗;②控制淋洗液的总体积在28mL。详细步骤如下(流程见表4):采用湿法填充树脂柱,将约2mL AG1-X8树脂置于微型离子交换柱中,依次用1mL 0.1mol/L盐酸-6%二氧化硫和1mL超纯水清洗两遍,再用2mL 2mol/L硝酸-1%溴水平衡树脂2次;然后将离心后的样品溶液加载于树脂柱上,用2mL 2mol/L硝酸-1%溴水淋洗6次和2mL超纯水淋洗1次,以除去基体元素;随后用2mL 0.1mol/L盐酸-6%二氧化硫淋洗5次,收集铊。最后将收集到的0.1mol/L盐酸-6%二氧化硫溶液置于电热板120℃蒸干,然后用0.5mL 0.1%硫酸-2%硝酸溶解,准备进行质谱测试。
表 4 铊同位素的离子交换流程(2mL AG1-X8树脂,100~200目)Table 4. Chemical purification procedure for Tl isotopes (2mL AG1-X8 resin, 100-200 mesh)步骤 淋洗液 淋洗液体积
(mL)淋洗
次数实验目的 1 0.1mol/L盐酸-6%二氧化硫 1 2 清洗树脂 2 超纯水 1 2 清洗树脂 3 2mol/L硝酸-1%溴水 2 2 清洗/平衡树脂 4 2mol/L硝酸-1%溴水 2 / 装载样品 5 2mol/L硝酸-1%溴水 2 6 洗脱基质 6 超纯水 2 1 洗脱NO3−和BrO− 7 0.1mol/L盐酸-6%二氧化硫 2 5 收集铊 1.5 铊同位素分析
铊同位素的分析测定在桂林理工大学广西隐伏金属矿产勘查重点实验室进行。由于自然界样品的铊同位素组成的变化范围很小,用传统的千分偏差“δ”往往不能有效地反映其同位素组成的差异,所以国际上铊同位素测试结果普遍以万分偏差“ε”来表示[1]。另外,由于未购买到国际上普遍认可的铊同位素标准物质NIST 997,本文选择以中国有色金属及电子材料分析测试中心研制的铊同位素物质GSB 04-1758-2004为参照,即用ε205TlGSB Tl表示:
$$ \varepsilon^{205}\mathrm{T}\mathrm{l}_{\mathrm{G}\mathrm{S}\mathrm{B}\ \mathrm{T}\mathrm{l}}=\left[\frac{(^{205}\mathrm{T}\mathrm{l}/^{203}\mathrm{T}\mathrm{l})_{\mathrm{s}\mathrm{a}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{e}}}{(^{205}\mathrm{T}\mathrm{l}/^{203}\mathrm{T}\mathrm{l})_{\mathrm{G}\mathrm{S}\mathrm{B}\mathrm{ }\ \mathrm{T}\mathrm{l}}}-1\right]\times10000 $$ 测试时MC-ICP-MS仪器的法拉第杯结构为:L3(202Hg)、L2(203Tl)、L1(204Pb)、C(205Tl)、H1(206Pb)、H2(207Pb)、H3(208Pb),其他主要工作参数见表1。样品引入时的介质均采用2%的硝酸,2ng/mL GSB 04-1758-2004标准溶液对应205Tl电压信号约为1.2V。测试过程产生的质量歧视通过加入已知铅同位素组成的溶液(NIST SRM981)进行校正,计算方法参考文献[5]。在这项研究中,铅标准溶液的质量按照mPb/mTl=10/1加入。在每次测量开始之前,都需要仔细调整仪器参数,以确保铊和铅的信号强度最大化;同时,进行重复的质量扫描,以检查法拉第杯位置是否合适并监测峰形,确保同位素比值测量的仪器条件。此外,为了校正样品的铊同位素组成,在每次分析前后均测量一次标准物质GSB 04-1758-2004。
2. 结果与讨论
2.1 消解条件的优化
2.1.1 无机酸组成及用量的影响
针对土壤和沉积物样品中的金属总量分析,中国环境保护标准《土壤和沉积物 金属元素总量的消解-微波消解法》(HJ 832—2017)推荐使用11mL硝酸-氢氟酸-盐酸的混合酸组合对样品进行消解。然而,若地质样品中的有机质或难溶矿物含量较高时,样品难以被完全分解,需使用硝酸-氢氟酸-高氯酸进行二次消解[28]。高氯酸和过氧化氢可以提高消解体系的分解能力,因此,本文试验了硝酸-氢氟酸-盐酸-过氧化氢和硝酸-氢氟酸-高氯酸两种混合酸体系对样品的消解情况。此外,为了控制干扰元素(特别是铅)的引入,实验中对酸的用量也进行了优化。
选择土壤标样GBW07406,称样量0.2g,加入不同的混合酸组合,按表3中程序进行微波消解,测定结果见表5。在硝酸-氢氟酸-盐酸-过氧化氢混合酸体系中,当用酸量总体积为4mL(组号1-1)时,消解液中有少量不溶的白色沉淀,此时铊回收率仅有84.7%,说明酸用量太少,不足以将0.2g样品消解完全。将酸用量进一步提升(组号1-2和1-3),所得消解液为清亮透彻的黄色溶液,铊回收率均接近100%,说明硝酸-氢氟酸-盐酸-过氧化氢体系中,7mL酸用量(组号1-2)就可以将0.2g样品消解完全。在硝酸-氢氟酸-高氯酸混合酸体系中,消解样品所用的酸量要少,仅4.5mL(组号2-2)就可将0.2g样品消解完全,此时得到的消解液为清澈透亮的黄色溶液,铊回收率为98.2%。鉴于同位素分析中尽可能低本底的需求,本实验选择2mL硝酸-2mL氢氟酸-0.5mL高氯酸(组号2-2)的混合酸体系对样品进行消解。
表 5 不同无机酸种类及用量的消解效果对比(n=3)Table 5. Comparison of digestion effects of different types and volumes of inorganic acids (n=3)混合酸体系 实验组号 混合酸体系各酸用量
(mL)样品消解效果观察 铊回收率
(%)硝酸-氢氟酸-
盐酸-过氧化氢1-1 1+1+1+1 有少量不溶白色沉淀 84.7 1-2 2+2+2+1 黄色消解液清澈透亮 98.4 1-3 5+3+3+1 黄色消解液清澈透亮 98.6 硝酸-氢氟酸-
高氯酸2-1 1+1+0.5 有少量不溶白色沉淀 81.9 2-2 2+2+0.5 黄色消解液清澈透亮 98.2 2-3 5+3+0.5 黄色消解液清澈透亮 99.0 需要特别指出的是,高氯酸与有机质在密闭系统中反应剧烈,易发生爆炸,使用时不仅要严格控制其用量,还要在微波消解之前放置反应一段时间(本文建议时长为1h)。
2.1.2 微波消解程序的选择
为了考察微波消解程序中的最高温度和保持时间对消解效果影响,本文选择土壤标样GBW07406为试验样品,保持其他条件不变;以表3中步骤3的消解温度和保持时间为因素,进行正交试验,分析结果如表6所示。结果表明,当消解温度设定在190℃,保持时间为20min时,铊的回收率大于98%。继续升高消解温度和增加保持时间并不能使铊的回收率显著提高,且高温高压易造成微波消解内管变形,影响其密闭性。因此,190℃保持20min为本文推荐使用的微波消解条件,此时总的微波消解时间为45min。
表 6 消解温度和保持时间的正交试验结果(n=3)Table 6. Orthogonal test results of digestion temperature and holding time (n=3)编号 因素水平 铊回收率
(%)消解温度(℃) 时间(min) 1 180 15 86.6 2 180 20 93.1 3 190 15 94.0 4 190 20 98.2 5 200 15 97.8 6 200 20 99.1 2.2 铊在阴离子交换树脂上的淋洗曲线
203Tl和205Tl的干扰主要来自163Dy40Ar、165Ho40Ar、187Re16O、189Os16O、202Hg1H、204Hg1H和204Pb1H等多原子离子团,因此在进行铊的纯化时需特别关注共存元素镝、钬、铼、锇、汞和铅的分离情况。
选择0.2g消解后的标准物质GBW07406为试验样品,按表4中铊同位素的离子交换流程,以1mL为单位接取馏分;利用ICP-MS测定各馏分中相应元素的含量并绘制淋洗曲线,结果如图1所示。从淋洗曲线中可以看出,绝大多数基质元素及干扰元素(包括镝、钬、铼、锇、汞和铅)被最开始的6mL 2mol/L硝酸-1%溴水洗脱。为了尽可能地减少铅的残留,本课题组继续使用了6mL 2mol/L硝酸-1%溴水淋洗;接下来,用2mL超纯水将树脂中的氧化性离子(NO3−和BrO−)洗脱。随后以10mL 0.1mol/L盐酸-6%二氧化硫淋洗并收集馏分中的铊。通过对该馏分的组分分析发现,铊的回收率约为98.5%,镝、钬、铼、锇和汞几乎无残留,铅的残留量不足铊量的1/10,钡有一定的残留,约为总钡量的4%。其中,接取液中钡和极少量铅的残留对铊的同位素测试没有影响,当地质样品中的铅/铊比值大于1000时,铅的残留可能会导致铊同位素组成测定结果偏高[5],此时建议进行二次过柱。
2.3 基质中铁钙铝对铊测量的影响
铊在地质样品中的含量通常低于0.1μg/g,往往需要加大称样量来提高测试精度。大多数样品以硅质或碳质为主,经消解后,硅和碳都挥发除去,所留下的盐分很少,而富含赤铁矿(铁高)、灰岩(钙高)和高岭土(铝高)等类型的地质样品,消解后的溶液中金属离子的浓度很高,而树脂的总离子交换容量一般在3~6mmol/g(干基)或1~2mmol/g(湿基)。因此,为考察这三种阳离子对淋洗流程的干扰,本文采用标准加入法考察了三氧化二铁、氧化钙和三氧化二铝对上述淋洗曲线中铊回收率的影响。操作步骤为:取三组1mL 1μg/mL铊标准溶液(GSB 04-1758-2004),分别加入0.1~0.5g的Fe2O3、CaO和Al2O3,按第1.3、1.4、1.5节进行前处理和样品测试。三种元素的加入量与铊回收率之间的关系如图2所示。
从图2可以看出,CaO的加入对铊回收率的影响很小,可以忽略。Fe2O3的影响最大,当其加入量为0.4g(约2.56mmol)时,铊的回收率开始下降,约为90%;当加入量为0.5g时,铊的回收率下降到只有75%左右。这可能是因为随着样品中Fe3+的增多,用盐酸淋洗时容易形成络合物FeCl4−,占据离子交换反应位点,使树脂的交换容量达到饱和,从而降低了铊的回收率。而对于Al2O3,当其加入量为0.5g(约4.90mmol)时,铊的回收率略有下降,约为93%,从观察到的实验现象判断,原因应是Al2O3有部分结晶,夹杂着少量铊进入固相析出而导致的。因此,对于基质中含铁、铝矿物较高的样品应控制其称样量,以防树脂的交换容量饱和而导致铊回收率偏低。
2.4 流程空白
通过三份空白试验使用第1.3、1.4、1.5节步骤中的流程进行铊同位素分析,最终确定整个实验流程中铊的空白值低于10pg,远低于普通地质样品中铊含量的1‰,对测试结果的影响可以忽略[23]。
2.5 地质标准物质中铊同位素组成的测定结果
为了确保MC-ICP-MS测定铊同位素的长期可重复性,对铊标准溶液GSB 04-1758-2004进行40次测量,结果如图3所示。图中的205Tl/203Tl值是以铅标准溶液NIST SRM981为外标校正后的结果(相对于208Pb/206Pb=2.1076)。本实验室的测量结果为205Tl/203Tl=2.38775,标准偏差(2σ)为0.00011,说明仪器的稳定性较好。
按照优化后的化学流程,处理4个地质标准物质,并进行铊同位素组成的测定。从表7中的测定结果可以发现,4个标准物质的2SD均优于0.3(n=6),说明本方法具有较高的精密度。由于与文献选用的同位素标准物质不同,方法的准确度可以用两者间差值变化情况来考察。通过与文献的结果对比发现,标准物质NOD-P-1、GBW07406和GSP-2的ε205Tl差值(ε205TlNIST 997−ε205TlGSB Tl)均为0.8,NOD-A-1的ε205Tl差值为0.7,说明方法具有较好的准确性;此外,可以估算标准物质GSB 04-1758-2004相对于NIST 997的ε205Tl值应约等于0.8。
表 7 地质标准物质中铊同位素组成的测定结果及文献对比Table 7. Comparison of analytical results of Tl isotope composition in geological reference materials determined by this method and those in the literatures3. 结论
通过对铊同位素分析中的消解方法、淋洗曲线和流程空白的分析讨论可知,采用微波消解法,在2mL硝酸-2mL氢氟酸-0.5mL高氯酸的混合酸体系中选用适当的消解程序,可以将0.2g土壤标准物质GBW07406彻底消解;利用AG1-X8阴离子交换树脂,依次以2mL 2mol/L硝酸-1%饱和溴水淋洗6次、2mL超纯水淋洗1次和2mL 0.1mol/L盐酸-6%二氧化硫淋洗5次,并收集0.1mol/L盐酸-6%二氧化硫的馏分,可有效地纯化地质样品中的铊。该淋洗流程所允许上样溶液中含有三价铁和三价铝离子的量分别不应超过2.56mmol和4.90mmol,否则引起树脂的离子交换容量饱和而导致铊回收率降低。与前人相比,该流程缩短了消解时间,采用AG1-X8树脂单柱法进行铊同位素的纯化,将淋洗液的总体积优化至24mL。本工作提高了铊同位素分析中化学前处理流程的效率,将此方法应用于4个不同地质标准物质的铊同位素比值的测定,结果证明具有较好的精密度和准确性。
需要指出的是,由于外界因素的制约,国际上普遍认可的NIST 997标准物质在中国已很难购买,影响了国内铊同位素地球化学研究工作的开展,所以中国亟需研制出国际上认可的铊同位素标准物质。
-
表 1 反应时间及温度对Cr(Ⅲ)吸光度的影响
Table 1 Effect of reaction time and temperature on the absorbance of Cr(Ⅲ)
反应温度
(℃)吸光度 5min 10min 15min 20min 25min 30min 40 0.0104 0.0384 0.0489 0.0567 0.0611 0.0643 50 0.0452 0.0582 0.0682 0.0687 0.0701 0.0758 60 0.0730 0.0758 0.0772 0.0784 0.0786 0.0795 70 0.0756 0.0779 0.0780 0.0783 0.0791 0.0796 80 0.0751 0.0781 0.0791 0.0802 0.0805 0.0806 表 2 干扰离子对Cr(Ⅲ)和Cr(Ⅵ)测定的影响
Table 2 Effect of interferencing ions on the determination of Cr(Ⅲ) and Cr(Ⅵ)
干扰物质 干扰物质浓度(mg/L) 混合溶液浓度(mg/L) Cr(Ⅲ)测得量(mg/L) Cr(Ⅵ)测得量(mg/L) 相对误差(%) Cr(Ⅲ) Cr(Ⅵ) Cr(Ⅲ) Cr(Ⅵ) Mg2+ 800 4.0 4.0 5.57 4.00 39.3 0 500 4.0 4.0 4.16 4.14 4.0 3.5 Al3+ 200 4.0 4.0 4.96 4.14 24.0 3.5 100 4.0 4.0 4.08 3.98 2.0 0.5 Cu2+ 100 4.0 4.0 4.32 4.40 8.0 10 50 4.0 4.0 4.20 4.16 5.0 4.0 Co3+ 200 4.0 4.0 4.78 4.16 19.5 4.0 100 4.0 4.0 4.06 4.02 1.5 0.5 Pb2+ 200 4.0 4.0 4.55 4.14 13.8 3.5 100 4.0 4.0 4.06 4.12 1.5 3.0 Ni2+ 100 4.0 4.0 5.26 4.28 31.5 7.0 50 4.0 4.0 4.13 4.12 3.2 3.0 Fe3+ 40 4 4 4.63 4.80 15.8 20 20 4 4 4.15 4.16 3.8 4.0 表 3 样品中Cr(Ⅲ)和Cr(Ⅵ)的测定结果及加标回收率
Table 3 Analytical results and spiked recovery of Cr(Ⅲ) and Cr(Ⅵ) in samples
实际样品 铬形态 测定值
(mg/L)加标量
(mg/L)总回收量
(mg/L)回收率
(%)电镀废液 Cr(Ⅲ)
Cr(Ⅵ)5.05
8.895.0
5.09.91
13.9698.2
101.4废铬酸洗液 Cr(Ⅲ) 16.07 5.0 21.20 102.6 Cr(Ⅵ) 9.14 5.0 14.03 97.8 -
王蓉, 张丽萍, 邹时英.偶氮胂Ⅲ褪色光度法测定土壤中的铬[J].岩矿测试, 2011, 30(2):230-232. http://www.ykcs.ac.cn/article/id/ykcs_20110224 Wang R, Zhang L P, Zou S Y.Determination of chromium in soil samples by arsenazo Ⅲ fading spectrophotometry[J].Rock and Mineral Analysis, 2011, 30(2):230-232. http://www.ykcs.ac.cn/article/id/ykcs_20110224
Chen S J, Zhang X S, Yu L Y, et al.Simultaneous determination of Cr(Ⅲ) and Cr(Ⅵ) in tannery wastewater using low pressure ion chromatography combined with flow injection spectrophotometry[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2012, 88:49-55. doi: 10.1016/j.saa.2011.11.053
Ouejhani A, Hellal F, Dachraoui M, et al.Application of doehlert matrix to the study of electrochemical oxidation of Cr(Ⅲ) to Cr(Ⅵ) in order to recover chromium from wastewater tanning baths[J].Journal of Hazardous Materials, 2008, 157(2/3):423-431. http://www.sciencedirect.com/science/article/pii/S0304389408000447
Tardif S, Cipullo S, Sø H U, et al.Factors governing the solid phase distribution of Cr, Cu and As in contaminated soil after 40 years of ageing[J].Science of the Total Environment, 2019, 652:744-754. doi: 10.1016/j.scitotenv.2018.10.244
Diao Z H, Du J J, Jiang D, et al.Insights into the simultaneous removal of Cr6+ and Pb2+ by a novel sewage sludge derived biochar immobilized nanoscale zero valent iron:Coexistence effect and mechanism[J].Science of the Total Environment, 2018, 642:505-515. doi: 10.1016/j.scitotenv.2018.06.093
张杰芳, 闫玉乐, 夏承莉, 等.微波碱消解-电感耦合等离子体发射光谱法测定煤灰中的六价铬[J].岩矿测试, 2017, 36(1):45-51. doi: 10.15898/j.cnki.11-2131/td.2017.01.007 Zhang J F, Yan Y L, Xia C L, et al. Determination of Cr(Ⅵ) in coal ash by microwave alkaline digestion and inductively coupled plasma-optical emission spectrometry[J].Rock and Mineral Analysis, 2017, 36(1):45-51. doi: 10.15898/j.cnki.11-2131/td.2017.01.007
李冰茹, 杜远芳, 王北洪, 等.食品中总铬和铬形态分析的前处理技术概述[J].食品安全质量检测学报, 2018, 9(9):2056-2062. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=spaqzljcjs201809013 Li B R, Du Y F, Wang B H, et al.Research progress on the pretreatment techniques in the analysis of total chromium and speciation chromium in food[J].Journal of Food Safety and Quality, 2018, 9(9):2056-2062. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=spaqzljcjs201809013
Economou-Eliopoulos M, Megremi Ⅰ, Vasilatos C. Geochemical constraints on the sources of Cr(Ⅵ) contamination in waters of Messapia (Central Evia) Basin[J].Applied Geochemistry, 2017, 84:13-25. doi: 10.1016/j.apgeochem.2017.05.015
安茂国, 赵庆令, 谭现锋, 等.化学还原-稳定化联合修复铬污染场地土壤的效果研究[J].岩矿测试, 2019, 38(2):204-211. doi: 10.15898/j.cnki.11-2131/td.201806040068 An M G, Zhao Q L, Tan X F, et al.Research on the effect of chemical reduction-stabilization combined remediation of Cr-contaminated soil[J].Rock and Mineral Analysis, 2019, 38(2):204-211. doi: 10.15898/j.cnki.11-2131/td.201806040068
Mulware S J.Trace elements and carcinogenicity:A subject in review[J].Biotechnology, 2013, 3(2):85-96. doi: 10.1007/s13205-012-0072-6
Clemention M, Shi X L, Zhang Z.Oxidative stress and metabolic reprogramming in Cr(Ⅵ) carcinogenesis[J].Current Opinion in Toxicology, 2018, 8:20-27. doi: 10.1016/j.cotox.2017.11.015
陈思涵, 彭璨, 陈云生, 等.分光光度法测定胶囊中Cr(Ⅲ)和Cr(Ⅵ)[J].中国卫生检验杂志, 2015, 25(1):18-20. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgwsjyzz201501005 Chen S H, Peng C, Chen Y S, et al.Detection of Cr(Ⅲ) and Cr(Ⅵ) in capsule with spectrophotometry[J].Chinese Journal of Health Laboratory Technology, 2015, 25(1):18-20. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgwsjyzz201501005
张冀飞, 高欣, 杨晓兵.高效液相色谱-电感耦合等离子体质谱联用测定儿童玩具中痕量铬(Ⅲ)与铬(Ⅵ)[J].分析测试学报, 2015, 34(2):232-236. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxcsxb201502019 Zhang J F, Gao X, Yang X B.Determination of chromium(Ⅲ) and chromium(Ⅵ) in children's toys using high performance liquid chromatography-inductively coupled plasma mass spectrometry[J].Journal of Instrumental Analysis, 2015, 34(2):232-236. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxcsxb201502019
林莉, 郑翊, 卫碧文, 等.IC-ICP-MS联用法测定玩具材料中可迁移的六价铬与三价铬[J].分析试验室, 2013, 32(8):82-85. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxsys201308018 Lin L, Zheng Y, Wei B W, et al.Simultaneous determination of migratory chromium species in toy materials by ion chromatography and ICP-MS[J].Chinese Journal of Analysis Laboratory, 2013, 32(8):82-85. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxsys201308018
闫美, 谢晨星, 朱智惠, 等.保健食品中三价铬与六价铬的分离与测定[J].食品研究与开发, 2016, 37(7):171-175. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=spyjykf201607042 Yan M, Xie C X, Zhu Z H, et al.The research on the conditions of hexavalent chromium convert to trivalent chromium in healthy food[J].Food Research and Development, 2016, 37(7):171-175. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=spyjykf201607042
刘明理, 曹进, 丁宏, 等.液相色谱-质谱法测定保健食品中的三价铬及六价铬含量[J].食品安全质量检测学报, 2017, 8(7):2465-2470. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=spaqzljcjs201707016 Liu M L, Cao J, Ding H, et al.Determination of trivalent and hexavalent chromium in healthy food by liquid chromatography-mass spectrometry[J].Journal of Food Safety and Quality, 2017, 8(7):2465-2470. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=spaqzljcjs201707016
庞艳华, 刘名扬, 刘淑艳, 等.反相离子对色谱-电感耦合等离子体质谱法测定化妆品中不同形态的铬[J].色谱, 2011, 29(10):1027-1030. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sp201110014 Pang Y H, Liu M Y, Liu S Y, et al.Simultaneous determination of chromium speciation in cosmetics using reversed-phase ion-pair chromatography-inductively coupled plasma mass spectrometry[J].Chinese Journal of Chromatography, 2011, 29(10):1027-1030. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sp201110014
吴思霖, 王欣美, 潘晨, 等.高效液相色谱-电感耦合等离子体质谱联用测定化妆品中六价铬与三价铬[J].分析测试学报, 2019, 38(6):724-727. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxcsxb201906015 Wu S L, Wang X M, Pan C, et al.Determination of chromium(Ⅵ) and chromium(Ⅲ) in cosmetics by high performance liquid chromatography-inductively coupled plasma mass spectrometry[J].Journal of Instrumental Analysis, 2019, 38(6):724-727. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxcsxb201906015
张保科, 王蕾, 马生凤.电感耦合等离子体质谱法测定含气天然矿泉水中的铬[J].岩矿测试, 2013, 32(4):568-571. http://www.ykcs.ac.cn/article/id/f4ece52c-7679-4883-a2ff-e57adb9b0536 Zhang B K, Wang L, Ma S F.Quantification of Cr in natural sparkling mineral waters by inductively coupled plasma-mass spectrometry[J].Rock and Mineral Analysis, 2013, 32(4):568-571. http://www.ykcs.ac.cn/article/id/f4ece52c-7679-4883-a2ff-e57adb9b0536
邢夏, 徐进力, 何晓辉, 等.石墨炉原子吸收光谱法测定地球化学样品中微量铬[J].岩矿测试, 2011, 30(3):333-336. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ykcs201103019 Xing X, Xu J L, He X H, et al.Determination of trace chromium in geochemical samples by graphite furnace atomic absorption spectrometry[J].Rock and Mineral Analysis, 2011, 30(3):333-336. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ykcs201103019
Sadeghi S, Moghaddam A Z.Chromium speciation using task specific ionic liquid/aqueous phase biphasic system combined with flame atomic absorption spectrometry[J].Journal of Molecular Liquids, 2016, 221:798-804. doi: 10.1016/j.molliq.2016.06.056
卢菊生, 徐佳佳, 田久英, 等.微乳相萃取分离富集-原子吸收光谱法分析铬形态[J].应用化学, 2010, 27(10):1230-1234. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yyhx201010022 Lu J S, Xu J J, Tian J Y, et al.Speciation determination of chromium by atomic absorption spectrometry with separation of microemulsion extraction[J].Chinese Journal of Applied Chemistry, 2010, 27(10):1230-1234. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yyhx201010022
Tafti E N, Dadfarnia S, Shabani A M H.Supramolecular dispersive liquid-liquid microextraction-based solidification of floating organic drops combined with electrothermal atomic absorption spectrometry for determination of chromium species[J].International Journal of Environmental Analytical Chemistry, 2017, 97(5):444-445. doi: 10.1080/03067319.2017.1321743
Monasterio R P, Lascalea G E, Martínez L D, et al. Determination of Cr(Ⅵ) and Cr(Ⅲ) species in parenteral solutions using a nanostructured material packed-microcolumn and electrothermal atomic absorption spectrometry[J].Journal of Trace Elements in Medicine and Biology, 2009, 23(3):157-166. doi: 10.1016/j.jtemb.2009.03.002
Lee C F, Chen B H, Huang Y L.Determining Cr(Ⅲ) and Cr(Ⅵ) in urine using a flow injection on-line sorption separation system coupled with electrothermal atomic absorption spectrometry and a UV/nano-Au/TiO2 photocatalysis reduction device[J].Talanta, 2008, 77(2):546-550. doi: 10.1016/j.talanta.2008.03.018
徐红纳, 王英滨.双波长分光光度法同时测定水样中的Cr(Ⅲ)和Cr(Ⅵ)[J].分析试验室, 2008, 27(5):34-37. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxsys200805009 Xu H N, Wang Y B.Simultaneous determination of chromium(Ⅲ) and chromium(Ⅵ) by dual-wavelength spectrophotometry[J].Chinese Journal of Analysis Laboratory, 2008, 27(5):34-37. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxsys200805009
Hackbarth F Ⅴ, Maass D, Souza A A U, et al.Removal of hexavalent chromium from electroplating wastewaters using marine macroalga Pelvetia canaliculata as natural electron donor[J].Chemical Engineering Journal, 2016, 290:477-489. doi: 10.1016/j.cej.2016.01.070
Kim J S, Choi Y R, Kim Y S, et al.Determination of hexavalent chromium (Cr(Ⅵ)) in plastics using organic-assisted alkaline extraction[J].Analytica Chimica Acta, 2011, 690(2):182-189. doi: 10.1016/j.aca.2011.01.060
Abadi M D M, Chamsaz M, Arbab-Zavar M H, et al.Supramolecular dispersive liquid-liquid microextraction-based solidification of floating organic drops for speciation and spectrophotometric determination of chromium in real samples[J].Analytical Methods, 2013, 5(12):2971-2977. doi: 10.1039/c3ay00036b
孙克强, 王京力, 李浩洋, 等.离子色谱法测定玩具中三价铬和六价铬的含量[J].理化检验(化学分册), 2017, 53(9):1099-1102. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lhjy-hx201709025 Sun K Q, Wang J L, Li H Y, et al.Determination of chromium(Ⅲ) and chromium(Ⅵ) in toys by ion chromatography[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2017, 53(9):1099-1102. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lhjy-hx201709025
巢静波, 史乃捷, 陈扬, 等.衍生液注入控制-离子色谱法同时测定环境水样中的三价铬和六价铬[J].环境化学, 2016, 35(1):67-74. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjhx201601009 Chao J B, Shi N J, Chen Y, et al.Simultaneous determination of trivalent and hexavalent chromium in environmental waters by ion chromatography with derivatization reagent injection-control technique[J].Environmental Chemistry, 2016, 35(1):67-74. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjhx201601009
Araujo-Barbosa U, Pena-Vazquez E, Barciela- Alonso M C, et al.Simultaneous determination and speciation analysis of arsenic and chromium in iron supplements used for iron-deficiency anemia treatment by HPLC-ICP-MS[J].Talanta, 2017, 170:523-529. doi: 10.1016/j.talanta.2017.04.034
古君平, 施文庄, 刘殷, 等.高效液相色谱-电感耦合等离子体质谱法同时测定烟用接装纸中三价铬与六价铬的含量[J].理化检验(化学分册), 2017, 53(1):17-21. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lhjy-hx201701004 Gu J P, Shi W Z, Liu Y, et al.Simultaneous determination of chromium(Ⅲ) and chromium(Ⅵ) in cigarette tipping paper by HPLC-ICP-MS[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2017, 53(1):17-21. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lhjy-hx201701004
周波林.一阶导数紫外光谱法测定人血浆中地西泮的血药浓度[J].中国医药导报, 2014, 11(20):16-19. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yycyzx201420006 Zhou B L.Determination of diazepam in human plasma by first order derivative spectrophotometry[J].China Medical Herald, 2014, 11(20):16-19. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yycyzx201420006
王华建, 黎艳红, 丰伟悦, 等.反相离子对色谱-电感耦合等离子体质谱联用技术测定水中痕量Cr(Ⅲ)与Cr(Ⅵ)[J].分析化学, 2009, 37(3):443-436. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxhx200903025 Wang H J, Li Y H, Feng W Y, et al.Simultaneous determination of trace Cr(Ⅲ) and Cr(Ⅵ) in water using ion-pairing reversed phase chromatography-inductively coupled plasma mass spectrometry[J].Chinese Journal of Analytical Chemistry, 2009, 37(3):443-436. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxhx200903025
-
期刊类型引用(1)
1. 杨波. ICP技术在水产食品重金属检测中的应用. 食品安全导刊. 2024(34): 115-118 . 百度学术
其他类型引用(0)