• DOAJ
  • Scopus
  • Core Journal of China
  • Chinese Science Citation Database (CSCD)
  • Chinese Scientific and Technical Paper and Citation Database (CSTPCD)
LIU Bingbing,ZHANG Lin. Determination of Total Dissolved Nitrogen in Geothermal Water by Ultraviolet Second Derivative Spectrometry with Alkaline Persulfate Digestion[J]. Rock and Mineral Analysis,2024,4X(X):1−10. DOI: 10.15898/j.ykcs.202411210239
Citation: LIU Bingbing,ZHANG Lin. Determination of Total Dissolved Nitrogen in Geothermal Water by Ultraviolet Second Derivative Spectrometry with Alkaline Persulfate Digestion[J]. Rock and Mineral Analysis,2024,4X(X):1−10. DOI: 10.15898/j.ykcs.202411210239

Determination of Total Dissolved Nitrogen in Geothermal Water by Ultraviolet Second Derivative Spectrometry with Alkaline Persulfate Digestion

More Information
  • Received Date: November 20, 2024
  • Revised Date: January 12, 2025
  • Accepted Date: January 16, 2025
  • Available Online: February 06, 2025
  • HIGHLIGHTS
    (1) The ultraviolet second derivative spectrum of nitrate-nitrogen shows a good peak shape at a wavelength of 226.6nm, and its characteristic absorption value is directly proportional to the concentration.
    (2) Dilution time is the most important factor affecting the determination of total dissolved nitrogen in the digestion reaction.
    (3) High content of bromide ions has a positive interference on the determination of total dissolved nitrogen.

    The method for the determination of total dissolved nitrogen in geothermal water by alkaline persulfate digestion-ultraviolet second derivative spectrometry was developed. The total dissolved nitrogen was quantitatively determined in the form of nitrate-nitrogen. The second derivative value corresponding to wavelength 266.6nm was determined as the characteristic absorbance. The parameters in digestion reaction were optimized by single-factor level experiments and a two-factor ANOVA experiment. The digestion temperature, digestion time and solution volume of alkaline potassium persulfate were recommended to be 120℃, 20min and 5.0mL, respectively. The sample volume was 10.0mL and the dilution time was before sample digestion. High content of bromide ions had a positive interference on the determination of total dissolved nitrogen. In the linear range of 0.20-5.0mg/L, the calibration curve of nitrate-nitrogen was established with its coefficient of determination R2=0.9996. The actual samples were determined with the recovery rate (94.0%-103.5%) and the relative deviation (0.83%-3.36%). Compared with the industry standard method, the experimental results were satisfactory. This method has high accuracy and reliability, controllable interference factors, small sample amount, low instrument cost, and can meet the rapid, simple and accurate batch detection of total dissolved nitrogen in geothermal water. The BRIEF REPORT is available for this paper at http://www.ykcs.ac.cn/en/article/doi/10.15898/j.ykcs.202411210239.

  • [1]
    Cortés-Bautista S, Robles-Jimárez H R, Carrero-Ferrer I, et al. Portable Determinations for Legislated Dissolved Nitrogen Forms in Several Environmental Water Samples as a Study Case[J]. Science of the Total Environment, 2023, 864: 161131. doi: 10.1016/j.scitotenv.2022.161131
    [2]
    Zhao C, Chen L, Zhong G, et al. A Portable Analytical System for Rapid On-Site Determination of Total Nitrogen in Water[J]. Water Research, 2021, 202: 117410. doi: 10.1016/j.watres.2021.117410
    [3]
    Yang S, Dong M, Lu H, et al. Explaining Nitrogen Turnover in Sediments and Water Through Variations in Microbial Community Composition and Potential Function[J]. Chemosphere, 2023, 344: 140379. doi: 10.1016/j.chemosphere.2023.140379
    [4]
    Łukasiewicz E, Shamoushaki M. Heating Potential of Undeveloped Geothermal Water Intakes in Poland in the Context of Sustainable Development and Air Protection[J]. Water Resources and Industry, 2022, 27: 100175. doi: 10.1016/j.wri.2022.100175
    [5]
    杨晓飞, 苏翠兰, 锁瑞强, 等. 贵州卫城地热资源热储地质条件分析[J]. 桂林理工大学学报, 2024, 44(1): 51−57. doi: 10.3969/j.issn.1674-9057.2024.01.006

    Yang X F, Su C L, Suo R Q, et al. Analysis on Geological Conditions of Geothermal Reservoir for Geothermal Resources in Weicheng, Guizhou[J]. Journal of Guilin University of Technology, 2024, 44(1): 51−57. doi: 10.3969/j.issn.1674-9057.2024.01.006
    [6]
    王蒙, 郭平业, 金鑫, 等. 废弃矿井抽水蓄能与地热利用系统开发潜力评估[J]. 中南大学学报(英文版), 2024, 31(8): 2872−2890. doi: 10.1007/s11771-024-5727-z

    Wang M, Guo P Y, Jin X, et al. Evaluation of Development Potential of Pumped Hydroelectric Storage and Geothermal Utilization System in Abandoned Coal Mine[J]. Journal of Central South University, 2024, 31(8): 2872−2890. doi: 10.1007/s11771-024-5727-z
    [7]
    李曼, 邢林啸, 王贵玲, 等. 冀中坳陷地区地下热水氟分布特征及其风险评估和开发利用建议[J]. 中国地质, 2023, 50(6): 1857−1870. doi: 10.12029/gc20220411005

    Li M, Xing L X, Wang G L, et al. Distribution Characteristics of Fluorine in Deep Geothermal Water in Jizhong Depression and Its Risk Assessment and Development Utilization Suggestions[J]. Geology in China, 2023, 50(6): 1857−1870. doi: 10.12029/gc20220411005
    [8]
    都聪聪. 地热水中氨氮在高水压下的迁移转化实验研究[D]. 焦作: 河南理工大学, 2021: 1−9.

    Du C C. Experimental Study on the Migration and Transformation of Ammonia Nitrogen in Geothermal Water Under High Water Pressure[D]. Jiaozuo: Henan Polytechnic University, 2021: 1−9.
    [9]
    张娟. 地热水与围岩介质中“三氮”迁移机理研究[D]. 焦作: 河南理工大学, 2011: 1−6.

    Zhang J. Studies on Transport Mechanism of "Three Nitrogen" Between Geothermal Water and Rock Mass Media Surroundings[D]. Jiaozuo: Henan Polytechnic University, 2011: 1−6.
    [10]
    Lin K, Pei J, Li P, et al. Simultaneous Determination of Total Dissolved Nitrogen and Total Dissolved Phosphorus in Natural Waters with an On-Line UV and Thermal Digestion[J]. Talanta, 2018, 185: 419−426. doi: 10.1016/j.talanta.2018.03.085
    [11]
    Lin K, Xu J, Guo H, et al. Flow Injection Analysis Method for Determination of Total Dissolved Nitrogen in Natural Waters Using On-Line Ultraviolet Digestion and Vanadium Chloride Reduction[J]. Microchemical Journal, 2021, 164: 105993. doi: 10.1016/j.microc.2021.105993
    [12]
    Badr E A, Achterberg E P, Tappin A D, et al. Determination of Dissolved Organic Nitrogen in Natural Waters Using High-Temperature Catalytic Oxidation[J]. TrAC Trends in Analytical Chemistry, 2003, 22(11): 819−827. doi: 10.1016/S0165-9936(03)01202-0
    [13]
    邓江华, 谭帅霞, 昌慧娟, 等. 氧弹燃烧-离子色谱法测定天然橡胶中的氮含量[J]. 橡胶工业, 2014, 61(3): 184−186. doi: 10.3969/j.issn.1000-890X.2014.03.012

    Deng J H, Tan S X, Chang H J, et al. Determination of Nitrogen Content in Natural Rubber by Oxygen Bomb Combustion Ion Chromatography[J]. China Rubber Industry, 2014, 61(3): 184−186. doi: 10.3969/j.issn.1000-890X.2014.03.012
    [14]
    赵莉. 高温燃烧法测定水质总氮[J]. 分析试验室, 2015, 34(8): 965−968. doi: 10.13595/j.cnki.issn1000-0720.2015.0210

    Zhao L. Determination of Total Nitrogen in Water by High Temperature Combustion Method[J]. Chinese Journal of Analysis Laboratory, 2015, 34(8): 965−968. doi: 10.13595/j.cnki.issn1000-0720.2015.0210
    [15]
    Borba B M D, Jack R F, Rohrer J S, et al. Simultaneous Determination of Total Nitrogen and Total Phosphorus in Environmental Waters Using Alkaline Persulfate Digestion and Ion Chromatography[J]. Journal of Chromatography A, 2014, 1369: 131−137. doi: 10.1016/j.chroma.2014.10.027
    [16]
    Tamura S Y, Hashihama F, Ogawa H, et al. Automated Simultaneous Determination of Total Dissolved Nitrogen and Phosphorus in Seawater by Persulfate Oxidation Method[J]. Talanta Open, 2020, 2: 100016. doi: 10.1016/j.talo.2020.100016
    [17]
    刘振超, 李志雄, 陆迁树, 等. 碱性过硫酸钾-紫外分光光度法测定水质总氮方法的改进[J]. 岩矿测试, 2024, 43(1): 114−123. doi: 10.15898/j.ykcs.202302280028

    Liu Z C, Li Z X, Lu Q S, et al. Improvement of the Method for Determining Total Nitrogen in Water Quality Using Alkaline Potassium Persulfate Utraviolet Spectrophotometry[J]. Rock and Mineral Analysis, 2024, 43(1): 114−123. doi: 10.15898/j.ykcs.202302280028
    [18]
    梁娟, 黄建, 韩丽娟, 等. 碱性过硫酸钾消解-离子色谱法测定印染废水中总氮含量[J]. 印染, 2019, 45(18): 46−50. doi: 10.3321/j.issn.1000-4017.2019.18.010

    Liang J, Huang J, Han L J, et al. Determination of Total Nitrogen in Dyeing Effluents Using Alkaline Potassium Persulfate Digestion-Ion Chromatography[J]. China Dyeing and Finishing, 2019, 45(18): 46−50. doi: 10.3321/j.issn.1000-4017.2019.18.010
    [19]
    刘冰, 刘金蓉, 王莹, 等. 双系统离子色谱法同时检测水中硫化物、氰化物、总磷和总氮[J]. 中国无机分析化学, 2023, 13(4): 349−355. doi: 10.3969/j.issn.2095-1035.2023.04.008

    Liu B, Liu J R, Wang Y, et al. Simultaneous Determination of Sulfide, Cyanide, Total Phosphorus and Total Nitrogen in Water by Double-Channel Ion Chromatography[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(4): 349−355. doi: 10.3969/j.issn.2095-1035.2023.04.008
    [20]
    杨雪. 离子色谱法测定地表水中总氮和总磷[J]. 理化检验(化学分册), 2015, 51(11): 1619−1620. doi: 10.11973/lhjy-hx201511033

    Yang X. Determination of Total Nitrogen and Total Phosphorus in Surface Water by Ion Chromatography[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2015, 51(11): 1619−1620. doi: 10.11973/lhjy-hx201511033
    [21]
    Liu D, Xiong Y, Zeng H, et al. Deep UV-LED Induced Nitrate-to-Nitrite Conversion for Total Dissolved Nitrogen Determination in Water Samples Through Persulfate Digestion and Capillary Electrophoresis[J]. Analytica Chimica Acta, 2023, 1278: 341743. doi: 10.1016/j.aca.2023.341743
    [22]
    王中荣, 魏福祥, 王盼盼, 等. 微顺序注射-镉柱还原分光光度法测定海水中总氮[J]. 分析化学, 2016, 44(9): 1328−1334. doi: 10.11895/j.issn.0253-3820.160162

    Wang Z R, Wei F X, Wang P P, et al. Determination of Total Nitrogen in Seawater by Micro Sequential Injection-Cadmium Column Reduction Spectrophotometry[J]. Chinese Journal of Analytical Chemistry, 2016, 44(9): 1328−1334. doi: 10.11895/j.issn.0253-3820.160162
    [23]
    王燕, 王艳洁, 赵仕兰, 等. 海水中溶解态总氮测定方法比对及影响因素分析[J]. 海洋环境科学, 2019, 38(4): 644−648. doi: 10.13634/j.cnki.mes.2019.04.025

    Wang Y, Wang Y J, Zhao S L, et al. Method Comparison and Analysis of Influence Factors for Determination of Dissolved Total Nitrogen in Seawater[J]. Marine Environmental Science, 2019, 38(4): 644−648. doi: 10.13634/j.cnki.mes.2019.04.025
    [24]
    时旭, 朱林, 程果锋, 等. 碱性过硫酸钾氧化法-紫外分光光度法测定养殖海水中总氮量[J]. 理化检验(化学分册), 2016, 52(2): 192−195. doi: 10.11973/lhjy-hx201602016

    Shi X, Zhu L, Cheng G F, et al. Ultraviolet Spectrophotometric Determination of Total Nitrogen in Aquacultural Seawater with Alkaline Persulfate Oxidation Method[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2016, 52(2): 192−195. doi: 10.11973/lhjy-hx201602016
    [25]
    祁文科, 刘冠军, 罗勇钢. 基于分光光度法的小型总氮自动分析仪设计[J]. 自动化仪表, 2021, 42(12): 15−18. doi: 10.16086/j.cnki.issn1000-0380.2021040018

    Qi W K, Liu G J, Luo Y G. Design of Miniaturized Total Nitrogen Automatic Analyzer Based on Spectrophotometry[J]. Process Automation Instrumentation, 2021, 42(12): 15−18. doi: 10.16086/j.cnki.issn1000-0380.2021040018
    [26]
    薛会会, 黄娟, 张阿磊, 等. 紫外分光光度计法测定硝化纤维素含氮量[J]. 含能材料, 2024, 32(5): 537−544. doi: 10.11943/CJEM2023203

    Xue H H, Huang J, Zhang A L, et al. Determination of Nitrogen Content of Nitrocellulose by Ultraviolet Spectrophotometer[J]. Chinese Journal of Energetic Materials, 2024, 32(5): 537−544. doi: 10.11943/CJEM2023203
    [27]
    Ferree M A, Shannon R D. Evaluation of a Second Derivative UV/Visible Spectroscopy Technique for Nitrate and Total Nitrogen Analysis of Wastewater Samples[J]. Water Research, 2001, 35(1): 327−332. doi: 10.1016/S0043-1354(00)00222-0
    [28]
    王静敏, 张景超, 张尊举. 二阶导数光谱法快速测定硝酸盐氮和亚硝酸盐氮[J]. 光谱学与光谱分析, 2019, 39(1): 161−165. doi: 10.3964/j.issn.1000-0593(2019)01-0161-05

    Wang J M, Zhang J C, Zhang Z J. Rapid Determination of Nitrate Nitrogen and Nitrite Nitrogen by Second Derivative Spectrophotometry[J]. Spectroscopy and Spectral Analysis, 2019, 39(1): 161−165. doi: 10.3964/j.issn.1000-0593(2019)01-0161-05
    [29]
    陈晓伟. 水体硝酸盐/COD紫外-可见吸收光谱数据定量分析方法研究[D]. 合肥: 中国科学技术大学, 2021: 46−50.

    Chen X W. Research on Quantitative Method of Nitrate/COD in Water Based on UV-Vis Absorption Spectroscopy[D]. Hefei: University of Science and Technology of China, 2021: 46−50.
    [30]
    冯蕾, 陈锡芹, 程祖顺, 等. 二阶导数光谱法定量分析凝灰岩石粉对不同侧链长度聚羧酸减水剂吸附性[J]. 光谱学与光谱分析, 2019, 39(9): 2788−2793. doi: 10.3964/j.issn.1000-0593(2019)09-2788-06

    Feng L, Chen X Q, Cheng Z S, et al. Quantitative Analysis for Adsorption of Polycarboxylate Superplasticizer with Different Side-Cain Length on Tuff Powder Using Second Derivative Spectrometry[J]. Spectroscopy and Spectral Analysis, 2019, 39(9): 2788−2793. doi: 10.3964/j.issn.1000-0593(2019)09-2788-06
  • Related Articles

    [1]ZHANG Zhaoxin, CAO Ningning, LI Linji, LIU Suqing, LI Jiahao, CAO Cui, LI Heping, ZHANG Kai, SHI Yongli. In situ Adsorption Technology for Remediation of Cr(Ⅵ) Contaminated Soil[J]. Rock and Mineral Analysis, 2024, 43(2): 302-314. DOI: 10.15898/j.ykcs.202307090090
    [2]LIN Xiaochun, LIU Xiaoyu, YUAN Xin, ZHANG Longlong, LIU Siwen, FENG Yaxin, ZHAO Xiaoqian, HUANG Yuanying. Alkali-Modified Zeolite: Adsorption Performance for Pb and Ammonia-Nitrogen and Its Remediation Effect on Soil from Rare Earth Mines[J]. Rock and Mineral Analysis, 2023, 42(6): 1177-1188. DOI: 10.15898/j.ykcs.202211150217
    [3]YANG Qing. Accurate Determination of Polycyclic Aromatic Hydrocarbons in Soil Remedied with Sodium Persulfate[J]. Rock and Mineral Analysis, 2022, 41(3): 404-411. DOI: 10.15898/j.cnki.11-2131/td.202110130148
    [4]Mao-guo AN, Qing-ling ZHAO, Xian-feng TAN, Yong-gang WANG, Qing-cai LI. Research on the Effect of Chemical Reduction-Stabilization Combined Remediation of Cr-contaminated Soil[J]. Rock and Mineral Analysis, 2019, 38(2): 204-211. DOI: 10.15898/j.cnki.11-2131/td.201806040068
    [5]Ri-xin DENG, Wei-jia LUO, Yi-tong HAN, Zhi-xiong LI, Jia-wei CHEN. Simultaneous Removal of TCE and Cr(Ⅵ) in Groundwater by Using Bentonite-supported Nanoscale Fe/Ni[J]. Rock and Mineral Analysis, 2018, 37(5): 541-548. DOI: 10.15898/j.cnki.11-2131/td.201801280013
    [6]WANG Rui, LIU Fei, ZHANG Yuan, CHEN Hong-han, QIN Li-hong. A Review on Pollution Status and Microbial Remediation Technologies of Perchlorate in the Environmental Medium[J]. Rock and Mineral Analysis, 2012, 31(4): 689-698.
    [7]TAN Ke-yan, LIU Xiao-duan, LIU Jiu-chen, TANG Qi-feng, HUANG Yuan-ying, LUO Song-guang. Remediation Experiments of Attapulgite Clay to Heavy Metal Contaminated Soil[J]. Rock and Mineral Analysis, 2011, 30(4): 451-456.
    [8]XIE Yuan-li, RAO Zhu, WANG Mo, LI Song, SONG Shu-ling, TIAN Qin. Environmental Behaviors of Toxaphene and Development on Its Detection Techniques[J]. Rock and Mineral Analysis, 2008, 27(5): 363-370.
    [9]Rapid Determination of Chemical Oxygen Demand in Environmental Water Samples by Merging Zone Stop-Flow Injection Spectrophotometry[J]. Rock and Mineral Analysis, 2008, 27(2): 87-90.
    [10]Investigation for Environmental Quality of Soil and Groundwater in the East Outer Ring Road in Shanghai[J]. Rock and Mineral Analysis, 2006, 25(2): 173-176.
  • Other Related Supplements

Catalog

    Article views (23) PDF downloads (0) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return