Citation: | Mao-guo AN, Qing-ling ZHAO, Xian-feng TAN, Yong-gang WANG, Qing-cai LI. Research on the Effect of Chemical Reduction-Stabilization Combined Remediation of Cr-contaminated Soil[J]. Rock and Mineral Analysis, 2019, 38(2): 204-211. DOI: 10.15898/j.cnki.11-2131/td.201806040068 |
Tardif S, Cipullo S, SøH U, et al. Factors governing the solid phase distribution of Cr, Cu and As in contaminated soil after 40 years of ageing[J].Science of the Total Environment, 2019, 652:744-754. doi: 10.1016/j.scitotenv.2018.10.244
|
田衎, 杨珺, 孙自杰, 等.矿区污染场地土壤重金属元素分析标准样品的研制[J].岩矿测试, 2017, 36(1):82-88. doi: 10.15898/j.cnki.11-2131/td.2017.01.012
Tian K, Yang J, Sun Z J, et al.Preparation of soil certified reference materials for heavy metals in contaminated sites[J].Rock and Mineral Analysis, 2017, 36(1):82-88. doi: 10.15898/j.cnki.11-2131/td.2017.01.012
|
Lü J S, Wang Y M.Multi-scale analysis of heavy metals sources in soils of Jiangsu Coast, Eastern China[J].Chemosphere, 2018, 212:964-973. doi: 10.1016/j.chemosphere.2018.08.155
|
Ma R, Zhou X N, Shi J S.Heavy metal contamination and health risk assessment in critical zone of Luan River catchment in the North China Plain[J].Geochemistry:Exploration, Environment, Analysis, 2018, 18:47-57. doi: 10.1144/geochem2017-010
|
Wang Q, Liu J F, Chen Z, et al.A causation-based method developed for an integrated risk assessment of heavy metals in soil[J].Science of the Total Environment, 2018, 642:1396-1405. doi: 10.1016/j.scitotenv.2018.06.118
|
Diao Z H, Du J J, Jiang D, et al. Insights into the simultaneous removal of Cr6+ and Pb2+ by a novel sewage sludge-derived biochar immobilized nanoscale zero valent iron:Coexistence effect and mechanism[J].Science of the Total Environment, 2018, 642:505-515. doi: 10.1016/j.scitotenv.2018.06.093
|
邓日欣, 罗伟嘉, 韩奕彤, 等.膨润土负载纳米铁镍同步修复地下水中三氯乙烯和六价铬复合污染[J].岩矿测试, 2018, 37(5):541-548. doi: 10.15898/j.cnki.11-2131/td.201801280013
Deng R X, Luo W J, Han Y T, et al.Simultaneous removal of TCE and Cr(Ⅵ) in groundwater by using bentonite-supported nanoscale Fe/Ni[J].Rock and Mineral Analysis, 2018, 37(5):541-548. doi: 10.15898/j.cnki.11-2131/td.201801280013
|
Economou-Eliopoulos M, Megremi I, Vasilatos C.Geochemical constraints on the sources of Cr(Ⅵ) contamination in waters of Messapia (Central Evia) Basin[J].Applied Geochemistry, 2017, 84:13-25. doi: 10.1016/j.apgeochem.2017.05.015
|
Séby F, Vacchina V. Critical assessment of hexavalent chromium species from different solid environmental, industrial and food matrices[J].Trends in Analytical Chemistry, 2018, 104:54-68. doi: 10.1016/j.trac.2017.11.019
|
Clemention M, Shi X L, Zhang Z.Oxidative stress and metabolic reprogramming in Cr(Ⅵ) carcinogenesis[J].Current Opinion in Toxicology, 2018, 8:20-27. doi: 10.1016/j.cotox.2017.11.015
|
Khalid S, Shahid M, Niazi N K, et al.A comparison of technologies for remediation of heavy metal contaminated soils[J].Journal of Geochemical Exploration, 2017, 182:247-268. doi: 10.1016/j.gexplo.2016.11.021
|
陈保冬, 张莘, 伍松林, 等.丛枝菌根影响土壤-植物系统中重金属迁移转化和累积过程的机制及其生态应用[J].岩矿测试, 2019, 38(1):1-25. doi: 10.15898/j.cnki.11-2131/td.201807110083
Chen B D, Zhang X, Wu S L, et al.The role of arbuscular mycorrhizal fungi in heavy metal translocation, transformation and accumulation in the soil-plant continuum:Underlying mechanisms and ecological implications[J].Rock and Mineral Analysis, 2019, 38(1):1-25. doi: 10.15898/j.cnki.11-2131/td.201807110083
|
Liu L W, Li W, Song W P, et al.Remediation techniques for heavy metal-contaminated soils:Principles and applicability[J].Science of the Total Environment, 2018, 633:206-219. doi: 10.1016/j.scitotenv.2018.03.161
|
Choppala G, Kunhikrishnan A, Seshadri B, et al.Compa-rative sorption of chromium species as influenced by pH, surface charge and organic matter content in contaminated soils[J].Journal of Geochemical Exploration, 2018, 184:255-260. doi: 10.1016/j.gexplo.2016.07.012
|
Zhang M T, Yang C H, Zhao M, et al.Immobilization potential of Cr(Ⅵ) in sodium hydroxide activated slag pastes[J].Journal of Hazardous Materials, 2017, 321:281-289. doi: 10.1016/j.jhazmat.2016.09.019
|
Ballesteros S, Rincón J M, Rincón-Mora B, et al.Vitrifi-cation of urban soil contamination by hexavalent chromium[J].Journal of Geochemical Exploration, 2017, 174:132-139. doi: 10.1016/j.gexplo.2016.07.011
|
Wu J N, Zhang J, Xiao C Z.Focus on factors affecting pH, flow of Cr and transformation between Cr(Ⅵ) and Cr(Ⅲ) in the soil with different electrolytes[J].Electrochimica Acta, 2016, 211:652-662. doi: 10.1016/j.electacta.2016.06.048
|
Dhal B, Thatoi H N, Das N N, et al.Chemical and micro-bial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste:A review[J].Journal of Hazardous Materials, 2013, 250-251:272-291. https://www.sciencedirect.com/science/article/pii/S0304389413000666
|
Jiang B, He H H, Liu Y J, et al.pH-dependent roles of polycarboxylates in electron transfer between Cr(Ⅵ) and weak electron donors[J].Chemosphere, 2018, 197:367-374. doi: 10.1016/j.chemosphere.2018.01.047
|
Li Y Y, Liang J L, Yang Z H, et al.Reduction and immobilization of hexavalent chromium in chromite ore processing residue using amorphous FeS2[J].Science of the Total Environment, 2019, 658:315-323. doi: 10.1016/j.scitotenv.2018.12.042
|
Li D, Ji G Z, Hu J, et al.Remediation strategy and electrochemistry flushing & reduction technology for real Cr(Ⅵ)-contaminated soils[J].Chemical Engineering Journal, 2018, 334:1281-1288. doi: 10.1016/j.cej.2017.11.074
|
Zhang X H, Liu J, Huang H T, et al.Chromium accu-mulation by the hyperaccumulator plant Leersia hexandra Swartz[J].Chemosphere, 2007, 67:1138-1143. doi: 10.1016/j.chemosphere.2006.11.014
|
Bai Y N, Lu Y Z, Shen N, et al.Investigation of Cr(Ⅵ) reduction potential and mechanism by Caldicellulosiruptor saccharolyticus under glucose fermentation condition[J].Journal of Hazardous Materials, 2018, 344:585-592. doi: 10.1016/j.jhazmat.2017.10.059
|
Zhang Q, Amor K, Galer S J G, et al.Variations of stable isotope fractionation during bacterial chromium reduction processes and their implications[J].Chemical Geology, 2018, 481:155-164. doi: 10.1016/j.chemgeo.2018.02.004
|
赵庆令, 安茂国, 陈洪年, 等.济南市某废弃化工厂区域土壤地球化学特征研究[J].岩矿测试, 2018, 37(2):201-208. doi: 10.15898/j.cnki.11-2131/td.201708240135
Zhao Q L, An M G, Chen H N, et al.Research on geochemical characteristics of soil in a chemical industrial factory site in Jinan city[J].Rock and Mineral Analysis, 2018, 37(2):201-208. doi: 10.15898/j.cnki.11-2131/td.201708240135
|
李玲, 唐晓声, 李海建.六价铬污染土壤还原稳定修复[J].广东化工, 2016, 43(3):95-96. doi: 10.3969/j.issn.1007-1865.2016.03.049
Li L, Tang X S, Li H J.Reduction and stabilization remediation of hexavalent chromium contaminated soil[J]. Guangdong Chemical Industry, 2016, 43(3):95-96. doi: 10.3969/j.issn.1007-1865.2016.03.049
|
纪柱.含铬的磷酸盐[J].无机盐工业, 2005, 37(8):8-11. doi: 10.3969/j.issn.1006-4990.2005.08.003
Ji Z.Chromium:Containing phosphate[J].Inorganic Chemicals Industry, 2005, 37(8):8-11. doi: 10.3969/j.issn.1006-4990.2005.08.003
|
Gomm J R, Schwenzer B, Morse D E.Textured films of chromium phosphate synthesized by low-temperature vapor diffusion catalysis[J].Solid State Sciences, 2007, 9:429-431. doi: 10.1016/j.solidstatesciences.2007.03.012
|
Li Y Y, Cundy A B, Feng J X, et al.Remediation of hexa-valent chromium contamination in chromite ore processing residue by sodium dithionite and sodium phosphate addition and its mechanism[J].Journal of Environmental Management, 2017, 192:100-106.
|
Markelova E, Couture R M, Parsona C T, et al.Specia-tion dynamics of oxyanion contaminants (As, Sb, Cr) in argillaceous suspensions during oxic-anoxic cycles[J].Applied Geochemistry, 2018, 91:75-88. doi: 10.1016/j.apgeochem.2017.12.012
|
1. |
宋骏杰,许奕敏,李伟平,谢荣焕,刘桂建. 还原菌Staphylococcus sp.修复六价铬污染土壤的中试研究. 安全与环境学报. 2024(04): 1581-1586 .
![]() | |
2. |
张兆鑫,曹宁宁,李林记,刘素青,李佳昊,曹翠,李和平,张凯,石勇丽. 原位吸附技术修复六价铬污染土壤. 岩矿测试. 2024(02): 302-314 .
![]() | |
3. |
张伟琦,谢涛,孙稚菁,王茂林,蔡喜运. 微波消解火焰原子吸收光谱法测定土壤中六价铬. 环境科学研究. 2023(01): 44-53 .
![]() | |
4. |
黄文涛,王孙崯,邓呈逊,梁广秋,侍子刚,程功弼. 还原稳定化材料在铬污染土壤修复中的应用进展. 环境科技. 2023(02): 66-70+76 .
![]() | |
5. |
李佩珊,冯志刚,黄冲,刘威,张兰英. Cr(Ⅵ)污染土壤的还原钝化修复研究. 南华大学学报(自然科学版). 2023(01): 16-23 .
![]() | |
6. |
裴一青,杨一鸣,杨艺鹏,宋玲彦. 半干旱区铬污染土壤还原-稳定化修复试验研究. 西北民族大学学报(自然科学版). 2023(03): 6-15 .
![]() | |
7. |
陶玲,仝云龙,余方可,杨万辉,王艺蓉,王丽,任珺. 碱改性凹凸棒石对土壤中镉化学形态及环境风险的影响. 岩矿测试. 2022(01): 109-119 .
![]() | |
8. |
林康,文志刚,王念,卢雨萱,夏华南,聂艳. 铬污染土壤修复技术研究进展. 绿色科技. 2022(04): 49-53 .
![]() | |
9. |
张敏,马乾方,唐姗姗,杨晓强,郭园园,王岩. 钙镁磷肥和沸石粉对制革污泥免烧骨料性能的改善. 西部皮革. 2022(11): 22-25 .
![]() | |
10. |
任学昌,张曦,时秋红,张玉杰,陈仁华. FeSO_4联合固化剂修复铬污染土壤的稳定化研究. 安全与环境学报. 2022(04): 2231-2240 .
![]() | |
11. |
陈龙,李启婷,钱坤鹏. 重金属铬污染土壤的修复技术研究进展. 应用化工. 2022(10): 3058-3062 .
![]() | |
12. |
赵庆令,李清彩,谭现锋,安茂国,陈娟,毛秀丽. 微波碱性体系消解-电感耦合等离子体发射光谱法测定固体废物中的六价铬. 岩矿测试. 2021(01): 103-110 .
![]() | |
13. |
宋文,成少平,迟晓杰,艾艳君,谷海红. 重金属污染土壤修复遥感监测研究进展. 矿产综合利用. 2021(04): 21-28 .
![]() | |
14. |
章长松. 河道疏浚底泥堆土镉污染修复技术分析. 煤田地质与勘探. 2021(05): 200-208 .
![]() | |
15. |
李瑛. 土壤环境中重金属铬污染现状及智能监测方法. 石化技术. 2021(11): 152-153 .
![]() | |
16. |
何雨江,陈德文,张成,袁广祥. 土壤重金属铬污染修复技术的研究进展. 安全与环境工程. 2020(03): 126-132 .
![]() | |
17. |
徐红纳,靳立国,由丽梅,程艳. 一阶导数分光光度法同时测定水样中Cr(Ⅲ)和Cr(Ⅵ). 岩矿测试. 2020(05): 785-792 .
![]() | |
18. |
傅小丽,曾德升. 我国土壤污染修复治理技术研究进展. 热带农业工程. 2020(06): 66-68 .
![]() |