• DOAJ
  • Scopus
  • Core Journal of China
  • Chinese Science Citation Database (CSCD)
  • Chinese Scientific and Technical Paper and Citation Database (CSTPCD)
YANG Yini,WANG Shuangshuang,WEI Xiaoyan,et al. Automatic Purification of Li Isotopes from Geological Samples by High-Pressure Ion Chromatography[J]. Rock and Mineral Analysis,2025,44(2):230−244. DOI: 10.15898/j.ykcs.202407310165
Citation: YANG Yini,WANG Shuangshuang,WEI Xiaoyan,et al. Automatic Purification of Li Isotopes from Geological Samples by High-Pressure Ion Chromatography[J]. Rock and Mineral Analysis,2025,44(2):230−244. DOI: 10.15898/j.ykcs.202407310165

Automatic Purification of Li Isotopes from Geological Samples by High-Pressure Ion Chromatography

More Information
  • Received Date: July 30, 2024
  • Revised Date: November 13, 2024
  • Accepted Date: November 19, 2024
  • Available Online: January 15, 2025
  • Published Date: January 14, 2025
  • HIGHLIGHTS
    (1) The acid tolerance, sample-loading capacity and matrix effect of a CS16 cationic chromatographic column were systematically investigated, which laid a foundation for automatic separation and purification of alkali metals and alkaline earth metals by high-pressure ion chromatography.
    (2) By optimizing the dissolution method, the acidity of the geological sample solution was greatly reduced to satisfy the sampling requirements of high-pressure ion chromatography, which extended the application of HP-IC to geological samples with a complex matrix.
    (3) The Li purification time was greatly shortened to 25min by high-pressure ion chromatography, which remarkably improved the efficiency of the Li isotope analysis.

    High-quality purification of lithium (Li) is crucial in measuring 7Li/6Li ratios of whole rocks precisely by MC-ICP-MS. Many scholars have proposed traditional manual Li purification methods by cross-combining the types of eluents, types of resin, resin particle size, column tube size, and resin volume. However, the process is still cumbersome. In contrast, high-pressure ion chromatography (HP-IC) provides single-step separation, shorter durations, and online quantification; it is underutilized due to insufficient systematic research on its elution processes. Here, an automatic purification method of Li by HP-IC was established by optimizing IC parameters, laying a foundation for the wide application of IC in the field of isotope purification. The testing results of Li collections for four national geological standard samples indicate that the recovery rate exceeds 99.3%, and the blank measurement is lower than that of the traditional manual column method. The amount of separated Li also meets the demand of MC-ICP-MS for Li isotope analysis. The BRIEF REPORT is available for this paper at http://www.ykcs.ac.cn/en/article/doi/10.15898/j.ykcs.202407310165.

  • [1]
    Li W S, Liu X M, Chadwick O A, et al. Lithium isotope behavior in Hawaiian regoliths: Soil-atmosphere-biosphere exchanges[J]. Geochimica et Cosmochimica Acta, 2020, 285: 175−192. doi: 10.1016/j.gca.2020.07.012
    [2]
    Liu X M, Rudnick R L. Constraints on continental crustal mass loss via chemical weathering using lithium and its isotopes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(52): 20873−20880. doi: 10.1073/pnas.1115671108
    [3]
    Zhang J W, Zhao Z Q, Yan, Y N, et al. Lithium and its isotopes behavior during incipient weathering of granite in the eastern Tibetan Plateau, China[J]. Chemical Geology, 2021, 559: 119969. doi: 10.1016/j.chemgeo.2020.119969
    [4]
    Bergquist B A, Boyle E A. Iron isotopes in the Amazon river system: Weathering and transport signatures[J]. Earth and Planetary Science Letters, 2006, 248: 54−68. doi: 10.1016/j.jpgl.2006.05.004
    [5]
    Ma L, Teng F Z, Jin L X, et al. Magnesium isotope fractionation during shale weathering in the shale hills critical zone observatory: Accumulation of light Mg isotopes in soils by clay mineral transformation[J]. Chemical Geology, 2015, 397: 37−50. doi: 10.1016/j.chemgeo.2015.01.010
    [6]
    Teng F Z, Hu Y, Ma J L, et al. Potassium isotope fractionation during continental weathering and implications for global K isotopic balance[J]. Geochimica et Cosmochimica Acta, 2020, 278: 261−271. doi: 10.1016/j.gca.2020.02.029
    [7]
    Liu X M, Rudnick R L, McDonough W F, et al. Influence of chemical weathering on the composition of the continental crust: Insights from Li and Nd isotopes in bauxite profiles developed on Columbia River basalts[J]. Geochimica et Cosmochimica Acta, 2013, 115: 73−91. doi: 10.1016/j.gca.2013.03.043
    [8]
    Hindshaw R S, Tosca R, Goût T L, et al. Experimental constraints on Li isotope fractionation during clay formation[J]. Geochimica et Cosmochimica Acta, 2019, 250: 219−237. doi: 10.1016/j.gca.2019.02.015
    [9]
    Murphy M J, Porcelli D, von Strandmann P V, et al. Tracing silicate weathering processes in the permafrost-dominated Lena River watershed using lithium isotopes[J]. Geochimica et Cosmochimica Acta, 2019, 245: 154−171. doi: 10.1016/j.gca.2018.10.024
    [10]
    Yang C H, Vigier N, Yang S Y, et al. Clay Li and Nd isotopes response to hydroclimate changes in the Changjiang (Yangtze) Basin over the past 14,000 years[J]. Earth and Planetary Science Letters, 2021, 561: 116793. doi: 10.1016/j.jpgl.2021.116793
    [11]
    Zhu G H, Ma J L, Wei G J, et al. Lithium isotope fractionation during the weathering of granite: Responses to pH[J]. Geochimica et Cosmochimica Acta, 2023, 345: 117−129. doi: 10.1016/j.gca.2022.12.028
    [12]
    Elliott T, Thomas A, Jeffcoate A, et al. Lithium isotope evidence for subduction-enriched mantle in the source of mid-ocean-ridge basalts[J]. Nature, 2006, 443: 565−568. doi: 10.1038/nature05144
    [13]
    Fan J J, Tang G J, Wei G J, et al. Lithium isotope fractionation during fluid exsolution: Implications for Li mineralization of the Bailongshan pegmatites in the West Kunlun, NW Tibet[J]. Lithos, 2020, 352−353: 105236. doi: 10.1016/j.lithos.2019.105236
    [14]
    Miao W L, Zhang X Y, Li Y L, et al. Lithium and strontium isotopic systematics in the Nalenggele River catchment of Qaidam Basin, China: Quantifying contributions to lithium brines and deciphering lithium behavior in hydrological processes[J]. Journal of Hydrology (Part B), 2022, 614: 128630. doi: 10.1016/j.jhydrol.2022.128630
    [15]
    刘丽君, 王登红, 侯可军, 等. 锂同位素在四川甲基卡新三号矿脉研究中的应用[J]. 地学前缘, 2017, 24(5): 167−171. doi: 10.13745/j.esf.yx.2017-1-16

    Liu L J, Wang D H, Hou K J, et al. Application of lithium isotope to Jiajika new No.3 pegmate lithium polymetallic vein in Sichuan[J]. Earth Science Frontiers, 2017, 24(5): 167−171. doi: 10.13745/j.esf.yx.2017-1-16
    [16]
    Misra S, Froelich P N. Lithium isotope history of cenozoic seawater: Changes in silicate weathering and reverse weathering[J]. Science, 2012, 335(6070): 818−823. doi: 10.1126/science.1214697
    [17]
    Liu M C, McKeegan K D, Goswami J N, et al. Isotopic records in CM hibonites: Implications for timescales of mixing of isotope reservoirs in the Solar nebula[J]. Geochimica et Cosmochimica Acta, 2009, 73: 5051−5079. doi: 10.1016/j.gca.2009.02.039
    [18]
    Kaplan L, Wilzbach K E. Lithium isotope determination by neutron activation[J]. Analytical Chemistry, 1954, 26: 1797−1798. doi: 10.1021/ac60095a031
    [19]
    Magna T, Wiechert U H, Halliday A N. Low-blank isotope ratio measurement of small samples of lithium using multiple-collector ICP-MS[J]. International Journal of Mass Spectrometry, 2004, 239: 67−76. doi: 10.1016/j.ijms.2004.09.008
    [20]
    唐清雨, 陈露, 田世洪, 等. 锂硼同位素MC-ICP-MS分析中的记忆效应研究[J]. 岩矿测试, 2024, 43(2): 201−212. doi: 10.15898/j.ykcs.202310260167

    Tang Q Y, Chen L, Tian S H, et al. A study on memory effects in lithium and boron isotope analysis using MC-ICP-MS[J]. Rock and Mineral Analysis, 2024, 43(2): 201−212. doi: 10.15898/j.ykcs.202310260167
    [21]
    Zhu G H, Ma J L, Wei G J, et al. A rapid and simple method for lithium purification and isotopic analysis of geological reference materials by MC-ICP-MS[J]. Frontiers in Chemistry, 2020, 8: 557489. doi: 10.3389/fchem.2020.557489
    [22]
    Li X, Han G, Zhang Q, et al. Accurate lithium isotopic analysis of twenty geological reference materials by multi-collector inductively coupled plasma mass spectrometry[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2022, 188: 106348. doi: 10.1016/j.sab.2021.106348
    [23]
    Macpherson G L, Phan T T, Stewart B W. Direct determination (without chromatographic separation) of lithium isotopes in saline fluids using MC-ICP-MS: Establishing limits on water chemistry[J]. Journal of Analytical Atomic Spectrometry, 2015, 30(7): 1673−1678. doi: 10.1039/c5ja00060b
    [24]
    Yoshimura T, Araoka D, Tamenori Y, et al. Lithium, magnesium and sulfur purification from seawater using an ion chromatograph with a fraction collector system for stable isotope measurements[J]. Journal of Chromatography A, 2018, 1531: 157−162. doi: 10.1016/j.chroma.2017.11.052
    [25]
    Zhu Z Y, Yang T, Zhu X K. Achieving rapid analysis of Li isotopes in high-matrix and low-Li samples with MC-ICPMS: New developments in sample preparation and mass bias behavior of Li in ICPMS[J]. Journal of Analytical Atomic Spectrometry, 2019, 34(7): 1503−1513. doi: 10.1039/c9ja00076c
    [26]
    Li W S, Liu X M, Godfrey L V. Optimisation of lithium chromatography for isotopic analysis in geological reference materials by MC-ICP-MS[J]. Geostandards and Geoanalytical Research, 2019, 43(2): 261−276. doi: 10.1111/ggr.12254
    [27]
    Gou L F, Jin Z D, Deng L, et al. Effects of different cone combinations on accurate and precise determination of Li isotopic composition by MC-ICP-MS[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2018, 146: 1−8. doi: 10.1016/j.sab.2018.04.015
    [28]
    He M Y, Luo C G, Lu H, et al. Measurements of lithium isotopic compositions in coal using MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2019, 34(9): 1773−1778. doi: 10.1039/c9ja00204a
    [29]
    Lin J, Liu Y S, Hu Z C, et al. Accurate determination of lithium isotope ratios by MC-ICP-MS without strict matrix-matching by using a novel washing method[J]. Journal of Analytical Atomic Spectrometry, 2016, 31(2): 390−397. doi: 10.1039/c5ja00231a
    [30]
    苏嫒娜, 田世洪, 李真真, 等. MC-ICP-MS高精度测定Li同位素分析方法[J]. 地学前缘, 2011, 18(2): 304−314.

    Su Y N, Tian S H, Li Z Z, et al. High-precision measurement of lithium isotopes using MC-ICP-MS[J]. Earth Science Frontiers, 2011, 18(2): 304−314.
    [31]
    Tomascak P B, Magna T, Dohemen R. Advances in lithium isotope geochemistry[M]. Switzerland: Springer International Publishing, 2016: 1−195.
    [32]
    Xu L, Luo C, Wen H. A revisited purification of Li for ‘Na breakthrough’ and its isotopic determination by MC-ICP-MS[J]. Geostandards and Geoanalytical Research, 2020, 44(1): 201−214. doi: 10.1111/ggr.12305
    [33]
    Chan L H. Lithium isotope analysis by thermal ionization mass spectrometry of lithium tetraborate[J]. Analytical Chemistry, 1987, 59(22): 2662−2665. doi: 10.1021/ac00149a007
    [34]
    Nishio Y, Nakai S I. Accurate and precise lithium isotopic determinations of igneous rock samples using multi-collector inductively coupled plasma mass spectrometry[J]. Analytica Chimica Acta, 2002, 456(2): 271−281. doi: 10.1016/S0003-2670(02)00042-9
    [35]
    Misra S, Froelich P N. Measurement of lithium isotope ratios by quadrupole-ICP-MS: Application to seawater and natural carbonates[J]. Journal of Analytical Atomic Spectrometry, 2009, 24(11): 1524−1533. doi: 10.1039/b907122a
    [36]
    Bohlin M S, Misra S, Lloyd N, et al. High-precision determination of lithium and magnesium isotopes utilising single column separation and multi-collector iductively coupled plasma mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2018, 32(2): 93−104. doi: 10.1002/rcm.8020
    [37]
    宋以龙, 刘敏, 侯可军. 锂同位素阳离子交换树脂分离提纯方法与应用进展[J]. 岩矿测试, 2024, 43(5): 677−692. doi: 10.15898/j.ykcs.202409050181

    Song Y L, Liu M, Hou K J. Research progress on separation and purification methods of lithium isotopes using cation exchange resin and their applications[J]. Rock and Mineral Analysis, 2024, 43(5): 677−692. doi: 10.15898/j.ykcs.202409050181
    [38]
    Latkoczy C, Prohaska T, Watkins M, et al. Strontium isotope ratio determination in soil and bone samples after on-line matrix separation by coupling ion chromatography (HPIC) to an inductively coupled plasma sector field mass spectrometer (ICP-SFMS)[J]. Journal of Analytical Atomic Spectrometry, 2001, 16(8): 806−811. doi: 10.1039/b102797m
    [39]
    Karasinski J, Bulska E, Wojciechowski M, et al. On-line separation of strontium from a matrix and determination of the 87Sr/86Sr ratio by ion chromatography/multi-collector-ICPMS[J]. Journal of Analytical Atomic Spectrometry, 2016, 31(7): 1459−1463. doi: 10.1039/c6ja00109b
    [40]
    Schmitt A D, Gangloff S, Cobert F, et al. High performance automated ion chromatography separation for Ca isotope measurements in geological and biological samples[J]. Journal of Analytical Atomic Spectrometry, 2009, 24(8): 1089−1097. doi: 10.1039/b903303c
    [41]
    Morgan L E, Santiago Ramos D P, Davidheiser-Kroll B, et al. High-precision 41K/39K measurements by MC-ICPMS indicate terrestrial variability of δ41K[J]. Journal of Analytical Atomic Spectrometry, 2018, 33(2): 175−186. doi: 10.1039/c7ja00257b
    [42]
    Karasinski J, Bulska E, Wojciechowski M, et al. High precision direct analysis of magnesium isotope ratio by ion chromatography/multicollector-ICPMS using wet and dry plasma conditions[J]. Talanta, 2017, 165: 64−68. doi: 10.1016/j.talanta.2016.12.033
    [43]
    Zakon Y, Halicz L, Gelman F. Isotope analysis of sulfur, bromine, and chlorine in individual anionic species by ion chromatography/multicollector-ICPMS[J]. Analytical Chemistry, 2014, 86(13): 6495−6500. doi: 10.1021/ac5010025
    [44]
    Shimizu K, Suzuki K, Saitoh M, et al. Simultaneous determinations of fluorine, chlorine, and sulfur in rock samples by ion chromatography combined with pyrohydrolysis[J]. Geochemical Journal, 2015, 49(1): 113−124. doi: 10.2343/geochemj.2.0338
    [45]
    García-Ruiz S, Moldovan M, Alonso J I G. Measurement of strontium isotope ratios by MC-ICP-MS after on-line Rb-Sr ion chromatography separation[J]. Journal of Analytical Atomic Spectrometry, 2008, 23(1): 84−93. doi: 10.1039/b708936h
    [46]
    董学林. 典型地质样品的前处理方法及其应用[D]. 武汉: 华中科技大学, 2020.

    Dong X L. A study on new pretreatment methods for typical geological samples and their applications in trace analysis[D]. Wuhan: Huazhong University of Science and Technology, 2020.
  • Related Articles

    [1]ZHANG Zhaoxin, CAO Ningning, LI Linji, LIU Suqing, LI Jiahao, CAO Cui, LI Heping, ZHANG Kai, SHI Yongli. In situ Adsorption Technology for Remediation of Cr(Ⅵ) Contaminated Soil[J]. Rock and Mineral Analysis, 2024, 43(2): 302-314. DOI: 10.15898/j.ykcs.202307090090
    [2]LIN Xiaochun, LIU Xiaoyu, YUAN Xin, ZHANG Longlong, LIU Siwen, FENG Yaxin, ZHAO Xiaoqian, HUANG Yuanying. Alkali-Modified Zeolite: Adsorption Performance for Pb and Ammonia-Nitrogen and Its Remediation Effect on Soil from Rare Earth Mines[J]. Rock and Mineral Analysis, 2023, 42(6): 1177-1188. DOI: 10.15898/j.ykcs.202211150217
    [3]YANG Qing. Accurate Determination of Polycyclic Aromatic Hydrocarbons in Soil Remedied with Sodium Persulfate[J]. Rock and Mineral Analysis, 2022, 41(3): 404-411. DOI: 10.15898/j.cnki.11-2131/td.202110130148
    [4]Mao-guo AN, Qing-ling ZHAO, Xian-feng TAN, Yong-gang WANG, Qing-cai LI. Research on the Effect of Chemical Reduction-Stabilization Combined Remediation of Cr-contaminated Soil[J]. Rock and Mineral Analysis, 2019, 38(2): 204-211. DOI: 10.15898/j.cnki.11-2131/td.201806040068
    [5]Ri-xin DENG, Wei-jia LUO, Yi-tong HAN, Zhi-xiong LI, Jia-wei CHEN. Simultaneous Removal of TCE and Cr(Ⅵ) in Groundwater by Using Bentonite-supported Nanoscale Fe/Ni[J]. Rock and Mineral Analysis, 2018, 37(5): 541-548. DOI: 10.15898/j.cnki.11-2131/td.201801280013
    [6]WANG Rui, LIU Fei, ZHANG Yuan, CHEN Hong-han, QIN Li-hong. A Review on Pollution Status and Microbial Remediation Technologies of Perchlorate in the Environmental Medium[J]. Rock and Mineral Analysis, 2012, 31(4): 689-698.
    [7]TAN Ke-yan, LIU Xiao-duan, LIU Jiu-chen, TANG Qi-feng, HUANG Yuan-ying, LUO Song-guang. Remediation Experiments of Attapulgite Clay to Heavy Metal Contaminated Soil[J]. Rock and Mineral Analysis, 2011, 30(4): 451-456.
    [8]XIE Yuan-li, RAO Zhu, WANG Mo, LI Song, SONG Shu-ling, TIAN Qin. Environmental Behaviors of Toxaphene and Development on Its Detection Techniques[J]. Rock and Mineral Analysis, 2008, 27(5): 363-370.
    [9]Rapid Determination of Chemical Oxygen Demand in Environmental Water Samples by Merging Zone Stop-Flow Injection Spectrophotometry[J]. Rock and Mineral Analysis, 2008, 27(2): 87-90.
    [10]Investigation for Environmental Quality of Soil and Groundwater in the East Outer Ring Road in Shanghai[J]. Rock and Mineral Analysis, 2006, 25(2): 173-176.

Catalog

    Article views (51) PDF downloads (9) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return