• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
ZHANG Linghuo,MA Na,CHEN Haijie,et al. Inductively Coupled Plasma-Mass Spectrometric Analysis of Mercury in Biological Samples and Interference Correction Methods[J]. Rock and Mineral Analysis,2025,44(1):140−148. DOI: 10.15898/j.ykcs.202407020145
Citation: ZHANG Linghuo,MA Na,CHEN Haijie,et al. Inductively Coupled Plasma-Mass Spectrometric Analysis of Mercury in Biological Samples and Interference Correction Methods[J]. Rock and Mineral Analysis,2025,44(1):140−148. DOI: 10.15898/j.ykcs.202407020145

Inductively Coupled Plasma-Mass Spectrometric Analysis of Mercury in Biological Samples and Interference Correction Methods

More Information
  • Received Date: July 01, 2024
  • Revised Date: August 22, 2024
  • Accepted Date: August 25, 2024
  • Available Online: September 25, 2024
  • Published Date: September 24, 2024
  • HIGHLIGHTS
    (1) Hg is difficult to determine by ICP-MS in biological samples directly and accurately due to high ionization energy, low ionization efficiency and interference from polyatomic ions, such as tungsten oxides or hydroxides.
    (2) The interference amount of W with Hg was linearly related to the concentration of W. It was proposed to minimize the mass spectral interferences of W by using the KED mode combined with mathematical correction.
    (3) The matrix interference was eliminated with internal standard (Rh concentration of 50μg/L) and sample dilution (dilution of 100 times), and the detection limit was 1.2ng/g.

    It is difficult to directly and accurately determine Hg in biological samples using inductively coupled plasma-mass spectrometry (ICP-MS) due to polyatomic interferences, such as tungsten oxide, and matrix effects. We established an ICP-MS method for the determination of Hg in biological samples based on the kinetic energy discrimination (KED) mode combined with mathematical correction and internal standard correction. In this experiment, spectral interferences of Hg in standard (STD) mode and KED mode were investigated. 202Hg was selected as the analyzed isotope in the KED mode, effectively reducing but not completely eliminating the interference. It was found that the interference amount of W with Hg was linearly related to the concentration of W (R2=0.9997). The matrix interference was eliminated with internal standard (Rh concentration of 50μg/L) and sample dilution (dilution of 100 times). The reliability of the method was tested with 9 reference materials, and the results were in agreement with certified values (or reference values). In particular, the accuracy of GBW10028 (Astragalus membranaceus), GBW10025 (spirulina) and GBW10015a (spinach) was significantly improved. The relative standard deviation (n=10) was 0.7% to 7.0%. The method is suitable for the analysis of Hg in biological samples.

  • [1]
    Wang B, Chen M, Ding L, et al. Fish, rice, and human hair mercury concentrations and health risks in typical Hg-contaminated areas and fish-rich areas, China[J]. Environment International, 2021, 154: 106561. doi: 10.1016/j.envint.2021.106561
    [2]
    Bulska E, Krata A, Kałabun M, et al. On the use of certified reference materials for assuring the quality of results for the determination of mercury in environ-mental samples[J]. Environmental Science and Pollution Research, 2017, 24(9): 7889−7897. doi: 10.1007/s11356-016-7262-4
    [3]
    于宏洋, 王萌, 汪冰, 等. 碰撞/反应池电感耦合等离子体质谱(ICP-MS)法测定血液中16种元素[J]. 中国无机分析化学, 2024, 14(1): 131−138. doi: 10.3969/j.issn.2095-1035.2024.01.016

    Yu H Y, Wang M, Wang B, et al. Determination of 16 elements in blood samples by inductively coupled plasma mass spectrometry (ICP-MS) with collision/reaction cell[J]. Chinese Journal of Inorganic Analytical Chemistry, 2024, 14(1): 131−138. doi: 10.3969/j.issn.2095-1035.2024.01.016
    [4]
    Kwaansa-Ansah E E, Adimado A A, Nriagu J O, et al. Comparison of three analytical methods for the quantitation of mercury in environmental samples from the Volta Lake, Ghana[J]. Bulletin of Environmental Contamination and Toxicology, 2016, 97(5): 677−683. doi: 10.1007/s00128-016-1920-6
    [5]
    Zhang S Y, Zhou M X. Comparison of DMA-80 and ICP-MS combined with closed-vessel microwave digestion for the determination of mercury in coal[J]. Journal of Analytical Methods in Chemistry, 2020(1): 8867653. doi: 10.1155/2020/8867653
    [6]
    颜巧丽, 聂小力, 杨远, 等. 交互模式-电感耦合等离子体质谱(ICP-MS)法测定生态地球化学植物样品中7种金属元素[J]. 中国无机分析化学, 2023, 13(5): 455−462. doi: 10.3969/j.issn.2095-1035.2023.05.008

    Yan Q L, Nie X L, Yang Y, et al. Determination of 7 metal elements in biogeochemical plant samples by ICP-MS with interactive mode[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(5): 455−462. doi: 10.3969/j.issn.2095-1035.2023.05.008
    [7]
    生书晶, 曾庆彤, 谢婕, 等. 电感耦合等离子体质谱(ICP-MS)法测定市售鱿鱼中5种重金属[J]. 中国无机分析化学, 2023, 13(12): 1299−1303. doi: 10.3969/j.issn.2095-1035.2023.12.005

    Sheng S J, Zeng Q T, Xie J, et al. Determination of five heavy metals in commercially available squid by inductively coupled plasma mass spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(12): 1299−1303. doi: 10.3969/j.issn.2095-1035.2023.12.005
    [8]
    张浩然, 徐汀, 田恺, 等. 快速消解-电感耦合等离子体质谱法测定水产配合饲料中的铬、铜、锌、砷、镉、汞和铅[J]. 食品安全质量检测学报, 2021, 12(11): 4365−4372. doi: 10.13557/j.cnki.issn1002-2813.2021.19.023

    Zhang H R, Xu T, Tian K, et al. Determination of chromium, copper, zinc, arsenic, cadmium, mercury and lead in aquatic formula feeds by rapid digestion-inductively coupled plasma mass spectrometry[J]. Journal of Food Safety and Quality, 2021, 12(11): 4365−4372. doi: 10.13557/j.cnki.issn1002-2813.2021.19.023
    [9]
    黄子敬, 陈孟君, 邓华阳, 等. 微波消解-ICP-MS混合模式测定动植物源食品中11种金属元素[J]. 分析试验室, 2017, 36(1): 24−28. doi: 10.13595/j.cnki.issn1000-0720.2017.0006

    Huang Z J, Chen M J, Deng H Y, et al. Determination of 11 trace elements in animal and plant origin food by microwave digestion with ICP-MS in mixed mode[J]. Chinese Journal of Analysis Laboratory, 2017, 36(1): 24−28. doi: 10.13595/j.cnki.issn1000-0720.2017.0006
    [10]
    李霞雪, 刘爱平, 陈亚, 等. 微波消解-电感耦合等离子体质谱法测定蔬菜中铬、镉、砷、铅、汞的含量[J]. 理化检验(化学分册), 2019, 55(1): 39−45. doi: 10.11973/lhjy-hx201901007

    Li X X, Liu A P, Chen Y, et al. ICP-MS determination of chromium, cadmium, arsenic, lead and mercury in vegetables with microwave digestion of samples[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2019, 55(1): 39−45. doi: 10.11973/lhjy-hx201901007
    [11]
    Planchon F A M, Gabrielli P, Gauchard P A, et al. Direct determination of mercury at the sub-picogram per gram level in polar snow and ice by ICP-SFMS[J]. Journal of Analytical Atomic Spectrometry, 2004, 19(7): 823−830. doi: 10.1039/b402711f
    [12]
    Guo W, Hu S H, Wang X J, et al. Application of ion molecule reaction to eliminate WO interference on mercury determination in soil and sediment samples by ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2011, 26(6): 1198−1203. doi: 10.1039/C1JA00005E
    [13]
    Kulomki S, Permki S, Visnen A. Addition of thiourea and hydrochloric acid: Accurate nanogram level analysis of mercury in humic-rich natural waters by inductively coupled plasma mass spectrometry[J]. Talanta, 2020, 218: 121125. doi: 10.1016/j.talanta.2020.121125
    [14]
    Jones D R, Jarrett J M, Tevis D S, et al. Analysis of whole human blood for Pb, Cd, Hg, Se, and Mn by ICP-DRC-MS for biomonitoring and acute exposures[J]. Talanta, 2017, 162: 114−122. doi: 10.1016/j.talanta.2016.09.060
    [15]
    王海鹰, 白建军, 师熙撼, 等. 动态反应池电感耦合等离子体质谱法消除钨的氧化物对汞的质谱干扰[J]. 理化检验(化学分册), 2015, 51(5): 659−663. doi: CNKI:SUN:LHJH.0.2015-05-028

    Wang H Y, Bai J J, Shi X H, et al. Elimination of mass interferences for WO to mercury by DRC-ICP-MS[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2015, 51(5): 659−663. doi: CNKI:SUN:LHJH.0.2015-05-028
    [16]
    刘跃, 王记鲁, 李静, 等. 氧气动态反应-电感耦合等离子体串联质谱法测定土壤和沉积物中汞及其他6种元素的含量[J]. 理化检验(化学分册), 2022, 58(11): 1241−1248. doi: 10.11973/lhjy-hx202211001

    Liu Y, Wang J L, Li J, et al. Determination of mercury and other 6 elements in soil and sediment by inductively coupled plasma tandem mass spectrometry with oxygen dynamic reaction[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2022, 58(11): 1241−1248. doi: 10.11973/lhjy-hx202211001
    [17]
    刘雷, 杨帆, 刘足根, 等. 微波消解ICP-AES法测定土壤及植物中的重金属[J]. 环境化学, 2008, 27(4): 511−514. doi: 10.3321/j.issn:0254-6108.2008.04.022

    Liu L, Yang F, Liu Z G, et al. Determination of heavy metals in soils and plants with microwave digestion and ICP-AES[J]. Environmental Chemistry, 2008, 27(4): 511−514. doi: 10.3321/j.issn:0254-6108.2008.04.022
    [18]
    张浩宇, 付彪, 王娇, 等. 电感耦合等离子体串联质谱法测定煤灰中痕量稀土元素[J]. 光谱学与光谱分析, 2023, 43(7): 2074−2081. doi: 10.3964/j.issn.1000-0593(2023)07-2074-08

    Zhang H Y, Fu B, Wang J, et al. Determination of trace rare earth elements in coal ash by inductively coupled plasma tandem mass spectrometry[J]. Spectroscopy and Spectral Analysis, 2023, 43(7): 2074−2081. doi: 10.3964/j.issn.1000-0593(2023)07-2074-08
    [19]
    徐进力, 邢夏, 唐瑞玲, 等. 动能歧视模式ICP-MS测定地球化学样品中14种痕量元素[J]. 岩矿测试, 2019, 38(4): 394−402. doi: 10.15898/j.cnki.11-2131/td.201812070131

    Xu J L, Xing X, Tang R L, et al. Determination of 14 trace elements in geochemical samples by ICP-MS using kinetic energy discrimination mode[J]. Rock and Mineral Analysis, 2019, 38(4): 394−402. doi: 10.15898/j.cnki.11-2131/td.201812070131
    [20]
    刘静波, 张更宇. 全自动消解电感耦合等离子体质谱仪测定环境土壤中铍钡铊银[J]. 分析试验室, 2018, 37(2): 207−211. doi: 10.13595/j.cnki.issn1000-0720.2018.0040

    Liu J B, Zhang G Y. Determination of Be, Ba, TI and Ag in environmental soil by inductively coupled plasma mass spectrometry with automatic digestion instrument[J]. Chinese Journal of Analysis Laboratory, 2018, 37(2): 207−211. doi: 10.13595/j.cnki.issn1000-0720.2018.0040
    [21]
    刘柳, 刘喆, 杨一兵, 等. KED-ICP-MS法测定尿样中21种无机元素[J]. 光谱学与光谱分析, 2019, 39(4): 1262−1266. doi: 10.3964/j.issn.1000-0593(2019)04-1262-05

    Liu L, Liu Z, Yang Y B, et al. Determination of 21 inorganic elements in urine samples by ICP-MS using KED system[J]. Spectroscopy and Spectral Analysis, 2019, 39(4): 1262−1266. doi: 10.3964/j.issn.1000-0593(2019)04-1262-05
    [22]
    刘向磊, 孙文军, 任彧仲, 等. 微波消解-混合模式电感耦合等离子体质谱法测定土壤或沉积物中银、锡、硼[J]. 质谱学报, 2022, 43(4): 522−531. doi: 10.7538/zpxb.2021.0205

    Liu X L, Sun W J, Ren Y Z, et al. Determination of sliver, tin and boron in soil or sediment samples with microwave digestion by mixed mode inductively coupled plasma-mass spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2022, 43(4): 522−531. doi: 10.7538/zpxb.2021.0205
    [23]
    曹俊飞, 王婷, 李剑, 等. 微波消解-电感耦合等离子体质谱法测定钨钼矿中多种微量稀土元素[J]. 岩矿测试, 2023, 42(4): 863−875. doi: 10.15898/j.ykcs.202210190200

    Cao J F, Wang T, Li J, et al. Determination of trace rare earth elements in tungsten-molybdenum ore by inductively coupled plasma-mass spectrometry with microwave digestion system[J]. Rock and Mineral Analysis, 2023, 42(4): 863−875. doi: 10.15898/j.ykcs.202210190200
    [24]
    禹莲玲, 王干珍, 徐小华, 等. 电感耦合等离子体质谱(ICP-MS)法测定地质样品中Cu和Zn的干扰研究[J]. 中国无机分析化学, 2023, 13(11): 1197−1203. doi: 10.3969/j.issn.2095-1035.2023.11.006

    Yu L L, Wang G Z, Xu X H, et al. Interference study on determination of Cu and Zn in geological samples by inductively coupled plasma mass spectrometry (ICP-MS)[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(11): 1197−1203. doi: 10.3969/j.issn.2095-1035.2023.11.006
    [25]
    李建亭, 张翼明, 杜梅, 等. ICP-MS法测钪的干扰研究及选冶尾矿中钪的直接测定[J]. 光谱学与光谱分析, 2017, 37(4): 1259−1263. doi: 10.3964/j.issn.1000-0593(2017)04-1259-05

    Li J T, Zhang Y M, Du M, et al. Study on the interferences and direct determination of Sc in metallurgical tails with inductively coupled plasma mass spectrometry[J]. Spectroscopy and Spectral Analysis, 2017, 37(4): 1259−1263. doi: 10.3964/j.issn.1000-0593(2017)04-1259-05
    [26]
    于亚辉, 王琳, 王明军, 等. 电感耦合等离子体质谱法测定地球化学样品中痕量铑的干扰消除方法探讨[J]. 冶金分析, 2017, 37(9): 25−32. doi: 10.13228/j.boyuan.issnl000-7571.010151

    Yu Y H, Wang L, Wang M J, et al. Discussion on elimination of interference in determination of trace rhodium in geochemical sample by inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2017, 37(9): 25−32. doi: 10.13228/j.boyuan.issnl000-7571.010151
    [27]
    杨艳明. 电感耦合等离子体质谱法测定水系沉积物中银铜砷锑铋镉[J]. 冶金分析, 2019, 39(7): 58−64. doi: 10.13228/j.boyuan.issn1000-7571.010632

    Yang Y M. Determination of silver, copper, arsenic, antimony, bismuth and cadmium in stream sediment by inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2019, 39(7): 58−64. doi: 10.13228/j.boyuan.issn1000-7571.010632
    [28]
    徐进力, 邢夏, 刘彬, 等. 电感耦合等离子体质谱法测定铁矿石中的痕量钼元素[J]. 质谱学报, 2018, 39(2): 240−249. doi: 10.7538/zpxb.2017.0051

    Xu J L, Xing X, Liu B, et al. Determination of trace element molybdenum in iron ore by inductively coupled plasma mass spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2018, 39(2): 240−249. doi: 10.7538/zpxb.2017.0051
    [29]
    刘彤彤, 钱银弟, 黄登丽. 磷酸沉淀分离-电感耦合等离子体质谱法测定化探样品中的痕量银[J]. 岩矿测试, 2021, 40(5): 650−658. doi: 10.15898/j.cnki.11-2131/td.202105060058

    Liu T T, Qian Y D, Huang D L. Determination of trace silver in geochemical samples by inductively coupled plasma-mass spectrometry with phosphoric acid precipitation separation[J]. Rock and Mineral Analysis, 2021, 40(5): 650−658. doi: 10.15898/j.cnki.11-2131/td.202105060058
    [30]
    邱丽, 唐碧玉, 施意华, 等. 联合消解-电感耦合等离子体质谱法测定大米中的铜、铅、锌、镉、铬[J]. 理化检验(化学分册), 2018, 54(9): 1078−1082. doi: 10.11973/lhjy-hx201809020

    Qiu L, Tang B Y, Shi Y H, et al. Determination of copper, lead, zinc, cadmium and chromium in rice by inductively coupled plasma mass spectrometry after joint digestion[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2018, 54(9): 1078−1082. doi: 10.11973/lhjy-hx201809020
    [31]
    陈秋玲, 祝芷琦, 李咏华, 等. 电感耦合等离子体质谱法测定蛋黄卵磷脂中15种金属元素[J]. 中国油脂, 2022, 47(2): 129−135. doi: 10.19902/j.cnki.zgyz.1003-7969.210060

    Chen Q L, Zhu Z Q, Li Y H, et al. Determination of 15 kinds of metal elements in egg yolk lecithin by inductively coupled plasma mass spectrometry[J]. China Oils and Fats, 2022, 47(2): 129−135. doi: 10.19902/j.cnki.zgyz.1003-7969.210060
    [32]
    李琼, 林毅韵, 李樑, 等. 超级微波消解-电感耦合等离子体质谱法与测汞仪法测定茶叶中总汞含量的比较[J]. 食品安全质量检测学报, 2019, 10(13): 4261−4265. doi: 10.3969/j.issn.2095-0381.2019.13.039

    Li Q, Lin Y Y, Li L, et al. Comparison of determination of total mercury content in tea by ultra microwave digestion-inductively coupled plasma mass spectrometry and mercury vapourmeter method[J]. Journal of Food Safety and Quality, 2019, 10(13): 4261−4265. doi: 10.3969/j.issn.2095-0381.2019.13.039
    [33]
    罗琼, 胡建民, 李芳, 等. 全自动石墨消解-电感耦合等离子体质谱法同时测定灌溉水中20种元素[J]. 分析科学学报, 2021, 37(2): 259−263. doi: 10.13526/j.issn.1006-6144.2021.02.021

    Luo Q, Hu J M, Li F, et al. Determination of 20 elements in irrigation water by automatic graphite digestion-inductively coupled plasma mass spectrometry[J]. Journal of Analytical Science, 2021, 37(2): 259−263. doi: 10.13526/j.issn.1006-6144.2021.02.021
    [34]
    陈小红. 电感耦合等离子体质谱法测定皂角刺中26种元素[J]. 化学分析计量, 2022, 31(5): 1−7. doi: 10.3969/j.issn.1008–6145.2022.05.001

    Chen X H. Determination of 26 elements in Gleditsiae Spina by inductively coupled plasma-mass spectrometry[J]. Chemical Analysis and Meterage, 2022, 31(5): 1−7. doi: 10.3969/j.issn.1008–6145.2022.05.001
  • Related Articles

    [1]LUO Weijia, FENG Chen, HOU Guohua, CHEN Jiawei. Progress on Redox Characteristics of an Iron Oxide-Ferrous System in the Hyporheic Zone[J]. Rock and Mineral Analysis, 2024, 43(2): 397-406. DOI: 10.15898/j.ykcs.202309090150
    [2]CHEN Kai, LIU Fei, YANG Zihan, XIANG Xin. Review on the Determination of Oxidant Demand for in-situ Chemical Oxidation Application[J]. Rock and Mineral Analysis, 2023, 42(2): 271-281. DOI: 10.15898/j.cnki.11-2131/td.202202170023
    [3]MENG Qing-guo, LIU Chang-ling, LI Cheng-feng, HAO Xi-luo. Characterization of Binary Hydrates Containing Methane by X-ray Diffraction and Microscopic Laser Raman Spectroscopy[J]. Rock and Mineral Analysis, 2021, 40(1): 85-94. DOI: 10.15898/j.cnki.11-2131/td.202005290077
    [4]ZHANG Ye-yu, CAO Qian, HUANG Yi, QI Ming-hui, LI Xiao-fu, LIN Dan. Application of High-temperature Methane Adsorption Experiment to Study the Adsorption Capacity of Methane in Shales from the Wufeng Formation, Northeast Sichuan[J]. Rock and Mineral Analysis, 2020, 39(2): 188-198. DOI: 10.15898/j.cnki.11-2131/td.201908210126
    [5]Zhong-yu LI, Jiang-hua ZHAO, Jun HE, Yan-guang LI, Wei-liang LI, Wei HAN. Research on the Correlation between Methane and Hydrogen in Acid-hydrolyzed Gases for Geochemical Exploration Samples[J]. Rock and Mineral Analysis, 2018, 37(3): 313-319. DOI: 10.15898/j.cnki.11-2131/td.201710240170
    [6]Yu-feng CHEN, Xiu-li ZHENG, Jing LI, Xing-liang HE, Chang-ling LIU, Qing-guo MENG, De-di QIN, Pei-yu ZHANG. Study on Oxidation Rate and Isotope Fractionation of Methane in Bohai Sea Sediments[J]. Rock and Mineral Analysis, 2018, 37(2): 164-174. DOI: 10.15898/j.cnki.11-2131/td.201707100117
    [7]Wei-yi LIU, Yong CHEN, Miao WANG, Han-jing ZHANG. Research Progress on the Effect of Salts on the Stability of Methane Hydrate[J]. Rock and Mineral Analysis, 2018, 37(2): 111-120. DOI: 10.15898/j.cnki.11-2131/td.201706110098
    [8]Hong-bo REN, Chang-ling LIU, Min CHEN, Xue-hui LIN, Yuan-yuan ZHANG, Xing-bo DENG. The Concentration Changes of Major Ions in Seawater During the Methane Hydrate Formation Process[J]. Rock and Mineral Analysis, 2013, 32(2): 278-283.
    [9]BAI Dekui, ZHU Xiaping, WANG Yanyan, ZENG Meilan. Study on Adsorption Behaviors of As(Ⅲ) by Manganese Oxide, Iron Oxide and Aluminium Oxide[J]. Rock and Mineral Analysis, 2010, 29(1): 55-60.
    [10]Determination of Ferrous Oxide in Sea Sediments[J]. Rock and Mineral Analysis, 1999, (3): 198-200.
  • Cited by

    Periodical cited type(4)

    1. 刘明义,吴柏林,杨松林,郝欣,王苗,李琪,林周洋,张效瑞. 松辽盆地砂岩型铀矿铀含量配分比例的半定量分析. 岩矿测试. 2024(02): 224-233 . 本站查看
    2. 李强,赵兴齐,陈擎,陈云杰,陈斌,荣骁,赵旭,康利刚,时志浩,李天石,龚奇福. 柴西缘英东地区上油砂山组黄铁矿与砂岩型铀矿化关系研究. 大地构造与成矿学. 2024(06): 1274-1285 .
    3. 李会来,李凡,张鼎文,郭伟,靳兰兰,胡圣虹. 低温剥蚀LA-ICP-MS准确测定硫化物矿物多元素分析研究. 岩矿测试. 2023(05): 970-982 . 本站查看
    4. 庞康,吴柏林,孙涛,郝关清,雷安贵,杨松林,刘池阳,傅斌,权军明,王苗,郝欣,刘明义,李琪,张效瑞. 鄂尔多斯盆地砂岩型铀矿碳酸盐岩碳氧同位素及其天然气-水混合流体作用特征. 中国地质. 2022(05): 1571-1590 .

    Other cited types(1)

Catalog

    Article views (177) PDF downloads (50) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return