Citation: | ZHANG Pengfei,WANG Chengjun,QIU Yibo,et al. Quantitative Calculation Model for the Secondary Porosity of Sandstone Based on Mineral Dissolution Experiment and Its Application[J]. Rock and Mineral Analysis,2025,44(2):277−287. DOI: 10.15898/j.ykcs.202404200091 |
The formation mechanism and quantitative evaluation of secondary pore is the key problem for deep sandstone reservoirs. The experiments on dissolution-precipitation behavior of formation water and minerals in reservoirs were carried out by using high temperature and pressure geochemical experimental simulation system based on the present temperature and pressure conditions of Minfeng sub-sag in Dongying depression and the corresponding formation water characteristics. The experimental results show that under the current formation water and temperature pressure conditions, quartz and plagioclase could undergo dissolution, and the solubility increased with the increase of temperature, while calcite underwent cementation, and its growth rate changed little with the increase of temperature, generally concentrated at around 70×10−3g/L. Based on the experimental simulation results, taking into account factors such as permeability flow velocity, precipitation velocity, burial time, porosity and other factors of the formation, a mathematical model of secondary porosity due to dissolution of sandstone reservoirs was established. According to the mathematical model calculation, the CaCl2 water type at 171℃ in Feng 8 well had the maximum contribution value of 2.52% to the physical properties of the reservoir, which was the most favorable water type and temperature for the development of secondary porosity zone within the simulation depth range of this well. The model calculation showed that the seepage rate was the main factor affecting the development of secondary dissolution pores. Combined with the diagenetic phenomenon of actual reservoirs in Feng 8 well, it had good correlation and obvious dissolution of quartz and feldspar, development of carbonate minerals in the form of cementation and metasomatism, which was consistent with the experimental simulation results. Based on mineral solubility, mineral content, reservoir temperature and pressure conditions and formation water chemistry, the quantitative calculation model established in this paper can predict the deep secondary pore development zone.
[1] |
陈勇, 王成军, 孙祥飞, 等. 碎屑岩储层矿物溶解度与溶蚀次生孔隙形成机理研究进展[J]. 矿物岩石地球化学通报, 2015, 34(4): 830−836.
Chen Y, Wang C J, Sun X F, et al. Progress on Mineral Solubility and Mechanism of Dissolution Secondary Porosity Forming in Clastic Reservoir[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(4): 830−836.
|
[2] |
Surdam R C, Crossey L J. Organic-Inorganic Reactions during Progressive Burial: Key to Porosity and Permeability Enhancement and Preservation[J]. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1985, 315(1531): 135−156. doi: 10.1098/rsta.1985.0034
|
[3] |
黄思静, 杨俊杰, 张文正, 等. 不同温度条件下乙酸对长石溶蚀过程的实验研究[J]. 沉积学报, 1995, 13(1): 7−17.
Huang S J, Yang J J, Zhang W Z, et al. Experimental Study of Feldspar Dissolution by Acetic Acid at Different Burial Temperatures[J]. Acta Sedimentologica Sinica, 1995, 13(1): 7−17.
|
[4] |
Blake R E, Walter L M. Effects of Organic Acids on the Dissolution of Orthoclase at 80℃ and pH 6[J]. Chemical Geology, 1996, 132(1−4): 91−102. doi: 10.1016/S0009-2541(96)00044-7
|
[5] |
Welch S A, Ullman W J. Feldspar Dissolution in Acidic and Organic Solutions: Compositional and pH Dependence of Dissolution Rate[J]. Geochimica et Cosmochimica Acta, 1996, 60(16): 2939−2948. doi: 10.1016/0016-7037(96)00134-2
|
[6] |
Huang W L, Longo J M. The Effect of Organics on Feldspar Dissolution and the Development of Secondary Porosity[J]. Chemical Geology, 1992, 98(3−4): 271−292. doi: 10.1016/0009-2541(92)90189-C
|
[7] |
罗孝俊, 杨卫东. 有机酸对长石溶解度影响的热力学研究[J]. 矿物学报, 2001, 21(2): 183−188. doi: 10.16461/j.cnki.1000-4734.2001.02.014
Luo X J, Yang W D. The Effect of Organic Acid on Feldspar Solubility: A Thermodynamic Study[J]. Acta Mineralogica Sinica, 2001, 21(2): 183−188. doi: 10.16461/j.cnki.1000-4734.2001.02.014
|
[8] |
陈传平, 固旭, 周苏闽, 等. 不同有机酸对矿物溶解的动力学实验研究[J]. 地质学报, 2008, 82(7): 1007−1012. doi: 10.3321/j.issn:0001-5717.2008.07.019
Chen C P, Gu X, Zhou S M, et al. Experimental Research on Dissolution Dynamics of Main Minerals in Several Aqueous Organic Acid Solutions[J]. Acta Geologica Sinica, 2008, 82(7): 1007−1012. doi: 10.3321/j.issn:0001-5717.2008.07.019
|
[9] |
曹正林, 袁剑英, 黄成刚, 等. 高温高压碎屑岩储层中石膏溶解对方解石沉淀的影响[J]. 石油学报, 2014, 35(3): 450−454. doi: 10.7623/syxb201403005
Cao Z L, Yuan J Y, Huang C G, et al. Influence of Plaster Dissolution on calcite Precipitation in Clastic Reservoirs under High-Temperature and High-Pressure Conditions[J]. Acta Petrolei Sinica, 2014, 35(3): 450−454. doi: 10.7623/syxb201403005
|
[10] |
Shmulovich K, Graham C, Yardley B. Quartz, Albite and Diopside Solubilities in H2O-NaCl and H2O-CO2 Fluids at 0.5-0.9GPa[J]. Contributions to Mineralogy and Petrology, 2001, 141(1): 95−108. doi: 10.1007/s004100000224
|
[11] |
曲希玉, 刘立, 马瑞, 等. CO2流体对岩屑长石砂岩改造作用的实验[J]. 吉林大学学报(地球科学版), 2008, 38(6): 959−964. doi: 10.13278/j.cnki.jjuese.2008.06.002
Qu X Y, Liu L, Ma R, et al. Experiment on Debris-Arkosic Sandstone Reformation by CO2 Fluid[J]. Journal of Jilin University (Earth Science Edition), 2008, 38(6): 959−964. doi: 10.13278/j.cnki.jjuese.2008.06.002
|
[12] |
任拥军, 陈勇. 东营凹陷民丰洼陷深部天然气储层酸性溶蚀作用的流体包裹体证据[J]. 地质学报, 2010, 84(2): 257−262. doi: 10.19762/j.cnki.dizhixuebao.2010.02.011
Ren Y J, Chen Y. Acid Dissolution of Deep Natural Gas Reservoirs in the Minfeng Sag in the Dongying Depression: Evidence from Fluid Inclusions[J]. Acta Geologica Sinica, 2010, 84(2): 257−262. doi: 10.19762/j.cnki.dizhixuebao.2010.02.011
|
[13] |
Shiraki R, Rock P A, Casey W H. Dissolution Kinetics of Calcite in 0.1M NaCl Solution at Room Temperature: An Atomic Force Microscopic (AFM) Study[J]. Aquatic Geochemistry, 2000, 6: 87−108. doi: 10.1023/A:1009656318574
|
[14] |
Newton R C, Manning C E. Experimental Determination of Calcite Solubility in H2O-NaCl Solutions at Deep Crust/Upper Mantle Pressures and Temperatures: Implications for Metasomatic Processes in Shear Zones[J]. American Mineralogist, 2002, 87(10): 1401−1409. doi: 10.2138/am-2002-1016
|
[15] |
Shmulovich K I, Yardley B W D, Graham C M. Solubility of Quartz in Crustal Fluids: Experiments and General Equations for Salt Solutions and H2O-CO2 Mixtures at 400−800℃ and 0.1−0.9GPa[J]. Geofluids, 2006, 6(2): 154−167. doi: 10.1111/j.1468-8123.2006.00140.x
|
[16] |
Li M, Li C, Xing J, et al. An Experimental Study on Dynamic Coupling Process of Alkaline Feldspar Dissolution and Secondary Mineral Precipitation[J]. Acta Geochim, 2019, 38: 872−882. doi: 10.1007/s11631-019-00326-0
|
[17] |
Meng W, Sui F, Hao X, et al. Thermodynamic Characteristics and Mineral Dissolution Model of the H2O-CO2-CaCO3-Albite-SiO2 System in Sedimentary Basins[J]. Fuel, 2022, 308: 121992. doi: 10.1016/j.fuel.2021.121992
|
[18] |
Yuan G H, Cao Y C, Gluyas J, et al. How Important is Carbonate Dissolution in Buried Sandstones: Evidences from Petrography, Porosity, Experiments, and Geochemical Calculations[J]. Petroleum Science, 2019, 16: 729−751. doi: 10.1007/s12182-019-0344-4
|
[19] |
Cao Y, Yuan G, Wang Y, et al. Successive Formation of Secondary Pores via Feldspar Dissolution in Deeply Buried Feldspar-Rich Clastic Reservoirs in Typical Petroliferous Basins and Its Petroleum Geological Significance[J]. Science China Earth Sciences, 2022, 65(9): 1673−1703. doi: 10.1007/s11430-020-9931-9
|
[20] |
郭欣欣, 刘立, 曲希玉, 等. 碱性地层水对火山碎屑岩改造作用的实验研究[J]. 石油实验地质, 2013, 35(3): 314−319. doi: 10.11781/sysydz201303314
Guo X X, Liu L, Qu X Y, et al. Experimental Study on Reformation of Volcanic Clastic Rocks by Alkaline Formation Water[J]. Petroleum Geology & Experiment, 2013, 35(3): 314−319. doi: 10.11781/sysydz201303314
|
[21] |
徐梅桂, 张哨楠, 伏美燕, 等. 不同淡水成岩体系下长石溶蚀的对比实验[J]. 现代地质, 2013, 27(4): 925−933. doi: 10.3969/j.issn.1000-8527.2013.04.019
Xu M G, Zhang S N, Fu M Y, et al. Contrast Experiments about Dissolution of Feldspar in Different FreshWater Diagenetic Systems[J]. Geoscience, 2013, 27(4): 925−933. doi: 10.3969/j.issn.1000-8527.2013.04.019
|
[22] |
Blatt H, Middleton G, Murray R. Origin of Sedimentary Rocks (The Second Edition)[M]. New Jersey: Prentice Hall Inc, 1980: 332−362.
|
[23] |
孙致安, 卢寿慈. 钙、镁离子对石英、赤铁矿凝聚与絮凝的作用[J]. 矿冶工程, 1992, 12(2): 19−22.
Sun Z A, Lu S C. Effect of Calcium and Magnesium ions on Aggregation and Flocculation of Quartz and Hematite[J]. Mining and Metallurgical Engineering, 1992, 12(2): 19−22.
|
[24] |
Strandh H, Pettersson L G M, Sjöberg L, et al. Quantum Chemical Studies of the Effects on Silicate Mineral Dissolution Rates by Adsorption of Alkali Metals[J]. Geochimica et Cosmochimica Acta, 1997, 61(13): 2577−2587. doi: 10.1016/S0016-7037(97)00118-X
|
[25] |
Dove P M. The Dissolution Kinetics of Quartz in Aqueous Mixed Cation Solutions[J]. Geochimica et Cosmochimica Acta, 1999, 63(22): 3715−3727. doi: 10.1016/S0016-7037(99)00218-5
|
[26] |
张思亭, 刘耘. 不同pH值条件下石英溶解的分子机理[J]. 地球化学, 2009, 38(6): 549−557. doi: 10.19700/j.0379-1726.2009.06.004
Zhang S T, Liu Y. Molecular Level Dissolution Mechanisms of Quartz under Different pH Conditions[J]. Geochimica, 2009, 38(6): 549−557. doi: 10.19700/j.0379-1726.2009.06.004
|
[27] |
Arnorsson S, Stefansson A. Assessment of Feldspar Solubility Constants in Water in the Range of 0 Degrees to 350 Degrees at Vapor Saturation Pressures[J]. American Journal of Science, 1999, 299(3): 173−209. doi: 10.2475/ajs.299.3.173
|
[28] |
Pokrovski G S, Schott J, Salvi S, et al. Structure and Stability of Aluminum-Silica Complexes in Neutral to Basic Solutions. Experimental Study and Molecular Orbital Calculations[J]. Mineralogical Magazine, 1998, 62: 1194−1195. doi: 10.1180/minmag.1998.62A.2.290
|
[29] |
Davis K J, Dove P M, de Yoreo J J. The Role of Mg2+ as an Impurity in Calcite Growth[J]. Science, 2000, 290(5494): 1134−1137. doi: 10.1126/science.290.5494.1134
|
[30] |
袁静, 张善文, 乔俊, 等. 东营凹陷深层溶蚀孔隙的多重介质成因机理和动力机制[J]. 沉积学报, 2007, 25(6): 840−846. doi: 10.3969/j.issn.1000-0550.2007.06.004
Yuan J, Zhang S W, Qiao J, et al. The Genesis and Dynamic Mechanisms of Multi-Medium Dissolution pores in the Deep Layers of the Dongying Depression[J]. Acta Sedimentologica Sinica, 2007, 25(6): 840−846. doi: 10.3969/j.issn.1000-0550.2007.06.004
|
[31] |
周瑶琪, 周振柱, 陈勇, 等. 东营凹陷民丰地区深部储层成岩环境变化研究[J]. 地学前缘, 2011, 18(2): 268−276.
Zhou Y Q, Zhou Z Z, Chen Y, et al. Research on Diagenetic Environmental Changes of Deep Reservoir in Minfeng Area, Dongying Depression[J]. Earth Science Frontiers, 2011, 18(2): 268−276.
|
[32] |
Wang Y Z, Cao Y C, Zhang S M, et al. Genetic Mechanisms of Secondary pore Development Zones of Es4 x in the North Zone of the Minfeng Sag in the Dongying Depression, East China[J]. Petroleum Science, 2016, 13: 1−17. doi: 10.1007/s12182-016-0076-7
|