• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
LI Jin-cheng, CAO Wen-geng, PAN Deng, WANG Shuai, LI Ze-yan, REN Yu. Influences of Nitrogen Cycle on Arsenic Enrichment in Shallow Groundwater from the Yellow River Alluvial Fan Plain[J]. Rock and Mineral Analysis, 2022, 41(1): 120-132. DOI: 10.15898/j.cnki.11-2131/td.202110080140
Citation: LI Jin-cheng, CAO Wen-geng, PAN Deng, WANG Shuai, LI Ze-yan, REN Yu. Influences of Nitrogen Cycle on Arsenic Enrichment in Shallow Groundwater from the Yellow River Alluvial Fan Plain[J]. Rock and Mineral Analysis, 2022, 41(1): 120-132. DOI: 10.15898/j.cnki.11-2131/td.202110080140

Influences of Nitrogen Cycle on Arsenic Enrichment in Shallow Groundwater from the Yellow River Alluvial Fan Plain

More Information
  • Received Date: October 07, 2021
  • Revised Date: November 03, 2021
  • Accepted Date: November 10, 2021
  • Published Date: January 27, 2022
  • HIGHLIGHTS
    (1) High arsenic groundwater was distributed in alluvial-proluvial fan depressions in front of Taihang Mountain and the alluvial-proluvial fan of the Yellow River.
    (2) The redox process and competitive adsorption were key for the release of arsenic.
    (3) Feammox and denitrification promoted the reduction of As-bearing iron oxides.
    BACKGROUNDArsenic content in shallow groundwater of the Yellow River alluvial fan plain exceeds the standard. A comprehensive understanding of the arsenic enrichment mode driven by the nitrogen cycle of shallow groundwater in the northern Henan Plain is essential for the sustainable use of groundwater resources and the health of residents. The main area of the North Henan plain is the Yellow River alluvial fan plain. The sedimentary environment in the northern Henan plain is complex, and is influenced by the Yellow River breach, diversion and oscillation, as well as alluvial diluvial in the mountainous area around the basin. The distribution, migration and release mechanism of As, NH4+ and NO3- are quite different under different sedimentary environment conditions. The joint enrichment mechanism of the three is still unclear, which is worth further study.
    OBJECTIVESTo investigate the effect of nitrogen cycling on arsenic migration and enrichment in groundwater in the Northern Henan Plain.
    METHODS513 shallow groundwater samples were collected from the northern Henan Plain. Atomic fluorescence spectroscopy was used to determine the arsenic content, atomic absorption spectroscopy and ion chromatography, and other methods for major and trace element analysis. The correlation between nitrate, ammonia nitrogen and arsenic was investigated, and the influence of nitrogen cycle on the migration and enrichment of arsenic in groundwater was studied.
    RESULTSThe over-standard rate of arsenic concentration in shallow groundwater in the study area was 17.3%. The occurrence and transformation modes of nitrogen under different depositional environmental conditions were important driving factors for arsenic enrichment. A large amount of NO3- was produced by nitrification in the groundwater of the alluvial fan in the piedmont alluvial fan, which had the average concentration of 9.3mg/L and was the highest in the district. At the same time, the concentration of arsenic was the lowest in the district, with the average of 1.3μg/L. The good negative correlation between NO3- and As concentration indicated that nitrification produced a large amount of NO3-, which was not conducive to the dissolution of arsenic-containing iron oxide. The depressions in front of the alluvial fan and the Yellow River crater fan with higher NH4+ content were the gathering places of high-arsenic groundwater. The average concentration of arsenic in groundwater from these two areas was 49.7μg/L and 18.9μg/L, respectively, and the exceeding rate reached 87.5% and 71.4%. The good positive correlation between arsenic content and NH4+ in groundwater indicated that the process of denitrification and dissimilative reduction of nitric acid to ammonium (DNRA) consumed NO3- in groundwater and generated a large amount of NH4+, which promoted the reduction and dissolution of iron oxides that adsorbed arsenic, forming an environment rich in arsenic.
    CONCLUSIONSThe nitrogen cycle plays an important role in the migration and enrichment of arsenic. The migration and enrichment mode of arsenic driven by the nitrogen cycle provides a scientific basis for the treatment and supervision of groundwater with high arsenic content.

  • Daniele P, Stefano G, Eleonora F, et al. Arsenic-fluoride co-contamination in groundwater: Background and anomalies in a volcanic-sedimentary aquifer in central Italy[J]. Journal of Geochemical Exploration, 2020, 217. http://www.sciencedirect.com/science/article/pii/S0375674220301837
    Podgorski J, Berg M. Global threat of arsenic in groundwater[J]. Science, 2020, 368(6493): 845-850. doi: 10.1126/science.aba1510
    杨文蕾, 沈亚婷. 水稻对砷吸收的机理及控制砷吸收的农艺途径研究进展[J]. 岩矿测试, 2020, 39(4): 475-492. doi: 10.15898/j.cnki.11-2131/td.202004160052

    Yang W L, Shen Y T. A review of research progress on the absorption mechanism of arsenic and agronomic pathwaysto control arsenic absorption[J]. Rock and Mineral Analysis, 2020, 39(4): 475-492. doi: 10.15898/j.cnki.11-2131/td.202004160052
    郭华明, 倪萍, 贾永锋, 等. 原生高砷地下水的类型、化学特征及成因[J]. 地学前缘, 2014, 21(4): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201404002.htm

    Guo H M, Ni P, Jia Y F, et al. Chemical characteristics and genesis of geogenic high-arsenic groundwater in the world[J]. Earth Science Frontiers, 2014, 21(4): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201404002.htm
    Cao W G, Guo H M, Zhang Y L, et al. Controls of paleo-channels on groundwater arsenic distribution in shallow aquifers of alluvial plain in the Hetao Basin, China[J]. Science of the Total Environment, 2018, 613-614(1): 958-968. http://www.sciencedirect.com/science/article/pii/s0048969717325330
    Kumar M, Das A, Das N, et al. Co-occurrence perspective of arsenic and fluoride in the groundwater of Diphu, Assam, northeastern India[J]. Chemosphere, 2016, 150: 227-238. doi: 10.1016/j.chemosphere.2016.02.019
    Pi K F, Wang Y X, Xie X J, et al. Hydrogeochemistry of co-occurring geogenic arsenic, fluoride and iodine in groundwater at Datong Basin, northern China[J]. Journal of Hazardous Materials, 2015, 300: 652-661. doi: 10.1016/j.jhazmat.2015.07.080
    Wen D G, Zhang F C, Zhang E Y, et al. Arsenic, fluoride and iodine in groundwater of China[J]. Journal of Geochemical Exploration, 2013, 135: 1-21. doi: 10.1016/j.gexplo.2013.10.012
    Janardhana R N. Arsenic in the geo-environment: A review of sources, geochemical processes, toxicity and removal technologies[J]. Environmental Research, 2021, 203: 111782. http://www.sciencedirect.com/science/article/pii/S0013935121010768
    郭华明, 郭琦, 贾永锋, 等. 中国不同区域高砷地下水化学特征及形成过程[J]. 地球科学与环境学报, 2013, 35(3): 83-96. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX201303010.htm

    Guo H M, Guo Q, Jia Y F, et al. Chemical characteristics and geochemical processes of high arsenic groundwater in different regions of China[J]. Journal of Earth Sciences and Environment, 2013, 35(3): 83-96. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX201303010.htm
    董会军, 董建芳, 王昕洲, 等. pH值对HPLC-ICP-MS测定水体中不同形态砷化合物的影响[J]. 岩矿测试, 2019, 38(5): 510-517. doi: 10.15898/j.cnki.11-2131/td.201808230096

    Dong H J, Dong J F, Wang X Z, et al. Effect of pH on determination of various arsenic species in water by HPLC-ICP-MS[J]. Rock and Mineral Analysis, 2019, 38(5): 510-517. doi: 10.15898/j.cnki.11-2131/td.201808230096
    Sahoo P K, Zhu W, Kim S H, et al. Relations of arsenic concentrations among groundwater, soil and paddy from an alluvial plain of Korea[J]. Geosciences Journal, 2013, 17(3): 363-370. doi: 10.1007/s12303-013-0031-1
    吴昆明, 郭华明, 魏朝俊. 改性磁铁矿对水体中砷的吸附特性研究[J]. 岩矿测试, 2017, 36(6): 624-632. doi: 10.15898/j.cnki.11-2131/td.201709110147

    Wu K M, Guo H M, Wei C J. Adsorption characteristics of arsenic in water by modified magnetite[J]. Rock and Mineral Analysis, 2017, 36(6): 624-632. doi: 10.15898/j.cnki.11-2131/td.201709110147
    Stüben D, Berner Z, Chandrasekharam D, et al. Arsenic enrichment in groundwater of West Bengal, India: Geochemical evidence for mobilization of As under reducing conditions[J]. Applied Geochemistry, 2003, 18(9): 1417-1434. doi: 10.1016/S0883-2927(03)00060-X
    Ravenscroft P, Burgess W G, Ahmed K M, et al. Arsenic in groundwater of the Bengal Basin, Bangladesh: Distribution, field relations, and hydrogeological setting[J]. Hydrogeology Journal, 2006, 13(5-6): 727-751.
    Kurosawa K, Egashira K, Tani M, et al. Variation in arsenic concentration relative to ammonium nitrogen and oxidation reduction potential in surface and groundwater[J]. Communications in Soil Science and Plant Analysis, 2008, 39(9-10): 1467-1475. doi: 10.1080/00103620802004318
    Canfield D E, Glazer A N, Falkowski P G. The evolution and future of Earth's nitrogen cycle[J]. Science, 2010, 330(6001): 192-196. doi: 10.1126/science.1186120
    Berner R A. Geological nitrogen cycle and atmospheric N2 over phanerozoic time[J]. Geology, 2006, 34(5): 413-415. doi: 10.1130/G22470.1
    Norrman J, Sparrenbom C J, Berg M, et al. Tracing sources of ammonium in reducing groundwater in a well field in Hanoi (Vietnam) by means of stable nitrogen isotope (δ15N) values[J]. Applied Geochemistry, 2015, 61(15): 248-258.
    祝贤彬. 砷氧化还原微生物催化的硝酸盐转化及其对环境的影响[D]. 北京: 中国地质大学(北京), 2020.

    Zhu X B. Nitrate transformations catalyzed by the arsenic redox microorganisms and their environmental influences[D]. Beijing: China University of Geosciences(Beijing), 2020.
    贾正雷. 土壤砷和氮含量的空间变异及其相互关系研究[D]. 广州: 华南农业大学, 2016.

    Jia Z L. Study on spatial variability and relationship of soil arsenic and soil nitrogen[D]. Guangzhou: South China Agricultural University, 2016.
    Gao Z P, Weng H C, Guo H M. Unraveling influences of nitrogen cycling on arsenic enrichment in groundwater from the Hetao Basin using geochemical and multi-isotopic approaches[J]. Journal of Hydrology, 2021, 595: 125981. doi: 10.1016/j.jhydrol.2021.125981
    Smith R L, Kent D B, Repert D A, et al. Anoxic nitrate reduction coupled with iron oxidation and attenuation of dissolved arsenic and phosphate in a sand and gravel aquifer[J]. Geochimica et Cosmochimica Acta, 2017, 196(1): 102-120.
    Karunanidhi D, Aravinthasamy P, Subramani T, et al. Potential health risk assessment for fluoride and nitrate contamination in hard rock aquifers of Shanmuganadhi River Basin, South India[J]. Human & Ecological Risk Assessment, 2019, 25(1-2): 250-270. http://www.onacademic.com/detail/journal_1000041611805999_e41a.html
    Singh G, Rishi M S, Herojeet R, et al. Evaluation of groundwater quality and human health risks from fluoride and nitrate in semi-arid region of northern India[J]. Environmental Geochemistry and Health, 2020, 42(7): 1833-1862. doi: 10.1007/s10653-019-00449-6
    Böhlke J K, Smith R L, Miller D N. Ammonium transport and reaction in contaminated groundwater: Application of isotope tracers and isotope fractionation studies[J]. Water Resources Research, 2007, 42(5): W05411(1-19).
    Utom A U, Werban U, Leven C, et al. Groundwater nitrification and denitrification are not always strictly aerobic and anaerobic processes, respectively: An assessment of dual-nitrate isotopic and chemical evidence in a stratified alluvial aquifer[J]. Biogeochemistry, 2020, 147(2): 211-223. doi: 10.1007/s10533-020-00637-y
    Savard M M, Paradis D, Somers G, et al. Winter nitrification contributes to excess NO3- in groundwater of an agricultural region: A dual-isotope study[J]. Water Resources Research, 2008, 43(6): W06422(1-10). doi: 10.1029/2006wr005469
    Rivett M O, Buss S R, Morgan P, et al. Nitrate attenuation in groundwater: A review of biogeochemical controlling processes[J]. Water Research, 2008, 42(16): 4215-4232. doi: 10.1016/j.watres.2008.07.020
    Singha S, Anilb A G, Kumarc V, et al. Nitrates in the environment: A critical review of their distribution, sensing techniques, ecological effects and remediation[J]. Chemosphere, 2021, 287(1): 131996.
    Rütting T, Huygens D, Müller C, et al. Functional role of DNRA and nitrite reduction in a pristine south Chilean Nothofagus forest[J]. Biogeochemistry, 2008, 90(3): 243-258. doi: 10.1007/s10533-008-9250-3
    杨杉, 吴胜军, 蔡延江, 等. 硝态氮异化还原机制及其主导因素研究进展[J]. 生态学报, 2016, 36(5): 1224-1232. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201605005.htm

    Yang S, Wu S J, Cai Y J, et al. The synergetic and competitive mechanism andthe dominant factors of dissimilatory nitrate reduction processes: A review[J]. Acta Ecologica Sinica, 2016, 36(5): 1224-1232. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201605005.htm
    Yang W H, Weber K A, Silver W L. Nitrogen loss from soil through anaerobic ammonium oxidation coupled to iron reduction[J]. Nature Geoscience, 2012, 5(8): 538-541. doi: 10.1038/ngeo1530
    Ding B J, Chen Z H, Li Z K, et al. Nitrogen loss through anaerobic ammonium oxidation coupled to iron reduction from ecosystem habitats in the Taihu estuary region[J]. Science of the Total Environment, 2019, 662(1): 600-606. http://www.ncbi.nlm.nih.gov/pubmed/30699380
    Ding L J, An X L, Li S, et al. Nitrogen loss through anaerobic ammonium oxidation coupled to iron reduction from paddy soils in a chronosequence[J]. Environmental Science & Technology, 2014, 48(18): 10641-10647. http://www.onacademic.com/detail/journal_1000036708963710_7935.html
    Chen Y, Syvitski J P, Gao S, et al. Socio-economic impacts on flooding: A 4000-year history of the Yellow River, China[J]. Ambio, 2012, 41(7): 682-698. doi: 10.1007/s13280-012-0290-5
    Guo H M, Zhang Y, Jia Y F, et al. Dynamic behaviors of water levels and arsenic concentration in shallow groundwater from the Hetao Basin, Inner Mongolia[J]. Journal of Geochemical Exploration, 2013, 135: 130-140. doi: 10.1016/j.gexplo.2012.06.010
    Stachowicz M, Hiemstra T, Riemsdijk W H. Arsenic-bicarbonate interaction on goethite particles[J]. Environmental Science & Technology, 2007, 41(16): 5620-5625. doi: 10.1021/es063087i/suppl_file/es063087isi20070419_090234.pdf
    DeVore C L, Rodriguez-Freire L, Mehdi-Ali A, et al. Effect of bicarbonate and phosphate on arsenic release from mining-impacted sediments in the Cheyenne River watershed, South Dakota, USA[J]. Environmental Science Processes & Impacts, 2019, 21(3): 456-468.
    Gao X B, Su C L, Wang Y X, et al. Mobility of arsenic in aquifer sediments at Datong Basin, northern China: Effect of bicarbonate and phosphate[J]. Journal of Geochemical Exploration, 2013, 135: 93-103. doi: 10.1016/j.gexplo.2012.09.001
    Anawar H M, Akai J, Sakugawa H. Mobilization of arsenic from subsurface sediments by effect of bicarbonate ions in groundwater[J]. Chemosphere, 2004, 54(6): 753-762. doi: 10.1016/j.chemosphere.2003.08.030
    Appelo C A J, Van Der Weiden M J J, Tournassat C, et al. Surface complexation of ferrous iron and carbonate on ferrihydrite and the mobilization of arsenic[J]. Environmental Science & Technology, 2002, 36(14): 3096-3103.
    Smedley P L, Kinniburgh D G. A review of the source, behaviour and distribution of arsenic in natural waters[J]. Applied Geochemistry, 2002, 17(5): 517-568.
  • Related Articles

    [1]XIAO Xilian, XIA Jinlong, LI Xiaodan, LU Youyue, YANG Xiaoli, YANG Hongmei. Determination of Tin, Lead and Zinc in a Tin-Lead-Zinc Deposit in Xianghualing Mining Area, Hunan Province by Inductively Coupled Plasma-Optical Emission Spectrometry with Alkali Fusion[J]. Rock and Mineral Analysis, 2023, 42(1): 125-135. DOI: 10.15898/j.cnki.11-2131/td.202107290087
    [2]WANG Guan, DONG Jun, XU Gongdong, HU Zhizhong. Determination of Tin, Tungsten, Zinc, Copper, Iron, and Manganese in Tin Ore by Lithium Metaborate Fusion-Inductively Coupled Plasma-Optical Emission Spectrometry Combined with Scanning Electron Microscopy-Energy Dispersive X-ray Spectrometry[J]. Rock and Mineral Analysis, 2023, 42(1): 114-124. DOI: 10.15898/j.cnki.11-2131/td.202102100023
    [3]Jian-ping HU, Ri-zhong WANG, Bao-hua DU, Di-bo SHENG, Zhi-xiang LUO. Determination of Silver, Copper, Lead and Zinc in Sulfide Ores by Flame Atomic Absorption Spectrometry and Inductively Coupled Plasma-Optical Emission Spectrometry[J]. Rock and Mineral Analysis, 2018, 37(4): 388-395. DOI: 10.15898/j.cnki.11-2131/td.201706270110
    [4]De-ping YANG, Lei SHU, Yu-xin XIONG, Xu WANG, Peng-rui LIU, Zhi LIU. Determination of Solid-Liquid Phase Composition of Fluid Inclusions in Minerals by SEM-EDS Coupled with Cryotransfer[J]. Rock and Mineral Analysis, 2015, 34(5): 550-557. DOI: 10.15898/j.cnki.11-2131/td.2015.05.009
    [5]WEI Ling-qiao, FU Sheng-bo, LUO Lei, HUANG Xiao-hua, LONG An-ying, SHUAI Qin. Simultaneous Determination of Sb, As, Cu, Pb and Zn in Antimony Ores by Inductively Coupled Plasma-Atomic Emission Spectrometry with a Multi-Directional Observation Mode[J]. Rock and Mineral Analysis, 2012, 31(6): 967-970.
    [6]WANG Xiao-qiang, HOU Xiao-lei, YANG Hui-ling. Simultaneous Quantification of Silver, Copper, Lead and Zinc in Lead-Zinc Ores by Inductively Coupled Plasma-Atomic Emission Spectrometry[J]. Rock and Mineral Analysis, 2011, 30(5): 576-579.
    [7]ZHANG Ning, LIU Hai-bo, FANG Zeng-kun. Determination of SiO2 in Zinc Concentrates by Inductively Coupled Plasma-Atomic Emission Spectrometry[J]. Rock and Mineral Analysis, 2011, 30(3): 325-327.
    [8]XU Jin-li, XING Xia, ZHANG Qin, BAI Jin-feng. Direct Determination of Silver, Copper, Lead and Zinc in Copper Ores by Inductively Coupled Plasma-Atomic Emission Spectrometry[J]. Rock and Mineral Analysis, 2010, 29(4): 377-382.
    [9]Analysis of Smelting Relics from Lidegui Site of Daye City[J]. Rock and Mineral Analysis, 2008, 27(2): 99-102.
    [10]Analysis of Ancient Smelting Products from Ore Refinery Sites in Zhongtiaoshan Shanxi Province and Southern Anhui Ancient Copper Area of Province[J]. Rock and Mineral Analysis, 2007, 26(3): 209-212.
  • Cited by

    Periodical cited type(32)

    1. 张阳阳,王梦园,周伟,汪丹,闫加力. 调理剂对酸性富硒土壤改良效果的初步研究. 资源环境与工程. 2024(01): 34-39+91 .
    2. 李媛媛,焦洪鹏,冯先翠,曹鹏,江海燕,雷满奇. 施用硒内源调控剂对水稻吸收硒、镉和砷的影响. 中国稻米. 2024(02): 18-25 .
    3. 谭卓贤,杜建军,孙星,易琼,徐培智,张木. 石灰、磷酸盐及硅酸盐对土壤硒有效性及水稻累积硒的影响. 江苏农业学报. 2024(03): 450-456 .
    4. 覃惠松,蒋代华,黄雪娇,邓华为,黄金兰,王明释. 有机质对广西酸性富硒土中Se(Ⅳ)吸附解吸特性的影响. 土壤. 2023(02): 363-371 .
    5. 秦王武,邵树勋,夏勇,田弋夫,王大州,余德顺,林剑,林庆华. 水城茶园硒的地球化学特征及富硒茶开发探讨. 地球与环境. 2023(05): 527-536 .
    6. 余蕾,岳蕴辉,张朝青,李慧. 新疆气流床煤气化炉渣的特性研究及在砂质土壤改良中的应用. 现代化工. 2023(S2): 148-152 .
    7. 路丹,黄太庆,陈锦平,廖青,韦燕燕,邢颖,梁潘霞,潘丽萍,江泽普,刘永贤. 施用生物炭对红壤富硒区硒生物有效性的影响. 中国土壤与肥料. 2023(10): 118-126 .
    8. 高晴盈,胡允祝,张辉,陈静静,倪芝芝. 温州市西部山区耕地质量综合评价. 乡村科技. 2023(24): 144-149 .
    9. 杨谨铭,胡岗,范成五,罗沐欣键,秦松. 提高土壤硒生物有效性的技术措施研究进展. 安徽农业科学. 2022(01): 12-14 .
    10. 冯德庆,黄秀声,黄小云,王俊宏,韩海东,陈钟佃,罗涛. 富硒土壤施用特贝钙土壤调理剂对黑麦草产量和硒含量的影响. 黑龙江畜牧兽医. 2022(02): 102-106 .
    11. 李迎春,张磊,尚文郁. 粉末压片-X射线荧光光谱法分析富硒土壤样品中的硒及主次量元素. 岩矿测试. 2022(01): 145-152 . 本站查看
    12. 次仁旺堆,多吉卫色,索朗次仁,尼玛次仁,边巴次仁,平措朗杰. 西藏山南市乃东区土壤硒分布特征及影响因素. 岩矿测试. 2022(03): 427-436 . 本站查看
    13. 吴超,孙彬彬,成晓梦,周国华,贺灵,曾道明,梁倍源. 丘陵山区多目标区域地球化学调查不同成因表层土壤代表性研究——以浙江绍兴地区为例. 地质通报. 2022(09): 1539-1549 .
    14. 倪刚,胡承孝,李长印,蔡苗苗,赵小虎. 硒与重金属互作的植物根际过程研究进展. 中国农学通报. 2021(01): 78-83 .
    15. 刘冰权,沙珉,谢长瑜,周强强,魏星星,周梵. 江西赣县清溪地区土壤硒地球化学特征和水稻根系土硒生物有效性影响因素. 岩矿测试. 2021(05): 740-750 . 本站查看
    16. 潘丽萍,谭骏,刘斌,邢颖,黄雁飞,陈锦平,刘永贤. 不同粒径贝壳粉对水稻吸收镉与硒的影响. 农业环境科学学报. 2021(10): 2134-2140 .
    17. 朱超,文美兰,刘攀峰,陈斌艳,鲍厚银,赵银强,陈昊,杨奕波. 桂林灵川县典型有机水稻田重金属元素分布特征及污染评价. 现代地质. 2021(05): 1433-1440 .
    18. 王锐,胡小兰,张永文,余飞,朱海山,李瑜. 重庆市主要农耕区土壤Cd生物有效性及影响因素. 环境科学. 2020(04): 1864-1870 .
    19. 刘道荣. 浙西丘陵区不同采样密度富硒土壤评价研究. 华东地质. 2020(02): 177-183 .
    20. 周国华. 富硒土地资源研究进展与评价方法. 岩矿测试. 2020(03): 319-336 . 本站查看
    21. 王保欣,韦继康,余晓霞,胡荣荣. 浙江慈溪粮食主产区富硒土壤评价方法对比研究. 现代地质. 2020(04): 672-679 .
    22. 王锐,邓海,严明书,张永文,周皎,余飞,李瑜. 基于回归方程的硒元素生物有效性研究. 土壤通报. 2020(05): 1049-1055 .
    23. 张立,姜侠,崔玉军,窦智慧,李瑛,孙振伟. 松嫩平原吕大火房垂直剖面中硒赋存形态及影响因素分析. 地质与资源. 2020(06): 603-608+584 .
    24. 樊建新,曾宇,孙姣霞,潘瑾. 淹水过程中土壤硒的形态转化. 江苏农业科学. 2019(06): 279-283 .
    25. 王昌宇,张素荣,刘继红,邢怡,杨俊泉. 河北省饶阳县富锌、硒特色土地及其生态效应评价. 地质调查与研究. 2019(01): 49-56 .
    26. 许永东,夏曾润. 保水缓控释功能型复合肥的分析. 当代化工. 2019(07): 1531-1534 .
    27. 邢怡,张素荣,刘继红,王昌宇. 农作物根系土对农产品安全的影响分析——以保定东部地区为例. 地质调查与研究. 2019(03): 219-224+234 .
    28. 顾涛,赵信文,雷晓庆,黄长生,曾敏,刘学浩,王节涛. 珠江三角洲崖门镇地区水稻田土壤-植物系统中硒元素分布特征及迁移规律研究. 岩矿测试. 2019(05): 545-555 . 本站查看
    29. 冯辉,张学君,张群,杜丽娜. 北京大清河流域生态涵养区富硒土壤资源分布特征和来源解析. 岩矿测试. 2019(06): 693-704 . 本站查看
    30. 况琴,吴山,黄庭,吴代赦,向京. 生物质炭和钢渣对江西丰城典型富硒区土壤硒有效性的调控效果与机理研究. 岩矿测试. 2019(06): 705-714 . 本站查看
    31. 王锐,余涛,杨忠芳,侯青叶,曾庆良,马宏宏. 富硒土壤硒生物有效性及影响因素研究. 长江流域资源与环境. 2018(07): 1647-1654 .
    32. 王峰,陈玉真,单睿阳,尤志明,陈常颂,臧春荣,余文权. 大田县茶园土壤和茶叶中硒含量及影响因素分析. 茶叶学报. 2018(03): 126-130 .

    Other cited types(12)

Catalog

    Article views (450) PDF downloads (35) Cited by(44)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return