Citation: | LI Jin-cheng, CAO Wen-geng, PAN Deng, WANG Shuai, LI Ze-yan, REN Yu. Influences of Nitrogen Cycle on Arsenic Enrichment in Shallow Groundwater from the Yellow River Alluvial Fan Plain[J]. Rock and Mineral Analysis, 2022, 41(1): 120-132. DOI: 10.15898/j.cnki.11-2131/td.202110080140 |
Daniele P, Stefano G, Eleonora F, et al. Arsenic-fluoride co-contamination in groundwater: Background and anomalies in a volcanic-sedimentary aquifer in central Italy[J]. Journal of Geochemical Exploration, 2020, 217. http://www.sciencedirect.com/science/article/pii/S0375674220301837
|
Podgorski J, Berg M. Global threat of arsenic in groundwater[J]. Science, 2020, 368(6493): 845-850. doi: 10.1126/science.aba1510
|
杨文蕾, 沈亚婷. 水稻对砷吸收的机理及控制砷吸收的农艺途径研究进展[J]. 岩矿测试, 2020, 39(4): 475-492. doi: 10.15898/j.cnki.11-2131/td.202004160052
Yang W L, Shen Y T. A review of research progress on the absorption mechanism of arsenic and agronomic pathwaysto control arsenic absorption[J]. Rock and Mineral Analysis, 2020, 39(4): 475-492. doi: 10.15898/j.cnki.11-2131/td.202004160052
|
郭华明, 倪萍, 贾永锋, 等. 原生高砷地下水的类型、化学特征及成因[J]. 地学前缘, 2014, 21(4): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201404002.htm
Guo H M, Ni P, Jia Y F, et al. Chemical characteristics and genesis of geogenic high-arsenic groundwater in the world[J]. Earth Science Frontiers, 2014, 21(4): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201404002.htm
|
Cao W G, Guo H M, Zhang Y L, et al. Controls of paleo-channels on groundwater arsenic distribution in shallow aquifers of alluvial plain in the Hetao Basin, China[J]. Science of the Total Environment, 2018, 613-614(1): 958-968. http://www.sciencedirect.com/science/article/pii/s0048969717325330
|
Kumar M, Das A, Das N, et al. Co-occurrence perspective of arsenic and fluoride in the groundwater of Diphu, Assam, northeastern India[J]. Chemosphere, 2016, 150: 227-238. doi: 10.1016/j.chemosphere.2016.02.019
|
Pi K F, Wang Y X, Xie X J, et al. Hydrogeochemistry of co-occurring geogenic arsenic, fluoride and iodine in groundwater at Datong Basin, northern China[J]. Journal of Hazardous Materials, 2015, 300: 652-661. doi: 10.1016/j.jhazmat.2015.07.080
|
Wen D G, Zhang F C, Zhang E Y, et al. Arsenic, fluoride and iodine in groundwater of China[J]. Journal of Geochemical Exploration, 2013, 135: 1-21. doi: 10.1016/j.gexplo.2013.10.012
|
Janardhana R N. Arsenic in the geo-environment: A review of sources, geochemical processes, toxicity and removal technologies[J]. Environmental Research, 2021, 203: 111782. http://www.sciencedirect.com/science/article/pii/S0013935121010768
|
郭华明, 郭琦, 贾永锋, 等. 中国不同区域高砷地下水化学特征及形成过程[J]. 地球科学与环境学报, 2013, 35(3): 83-96. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX201303010.htm
Guo H M, Guo Q, Jia Y F, et al. Chemical characteristics and geochemical processes of high arsenic groundwater in different regions of China[J]. Journal of Earth Sciences and Environment, 2013, 35(3): 83-96. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX201303010.htm
|
董会军, 董建芳, 王昕洲, 等. pH值对HPLC-ICP-MS测定水体中不同形态砷化合物的影响[J]. 岩矿测试, 2019, 38(5): 510-517. doi: 10.15898/j.cnki.11-2131/td.201808230096
Dong H J, Dong J F, Wang X Z, et al. Effect of pH on determination of various arsenic species in water by HPLC-ICP-MS[J]. Rock and Mineral Analysis, 2019, 38(5): 510-517. doi: 10.15898/j.cnki.11-2131/td.201808230096
|
Sahoo P K, Zhu W, Kim S H, et al. Relations of arsenic concentrations among groundwater, soil and paddy from an alluvial plain of Korea[J]. Geosciences Journal, 2013, 17(3): 363-370. doi: 10.1007/s12303-013-0031-1
|
吴昆明, 郭华明, 魏朝俊. 改性磁铁矿对水体中砷的吸附特性研究[J]. 岩矿测试, 2017, 36(6): 624-632. doi: 10.15898/j.cnki.11-2131/td.201709110147
Wu K M, Guo H M, Wei C J. Adsorption characteristics of arsenic in water by modified magnetite[J]. Rock and Mineral Analysis, 2017, 36(6): 624-632. doi: 10.15898/j.cnki.11-2131/td.201709110147
|
Stüben D, Berner Z, Chandrasekharam D, et al. Arsenic enrichment in groundwater of West Bengal, India: Geochemical evidence for mobilization of As under reducing conditions[J]. Applied Geochemistry, 2003, 18(9): 1417-1434. doi: 10.1016/S0883-2927(03)00060-X
|
Ravenscroft P, Burgess W G, Ahmed K M, et al. Arsenic in groundwater of the Bengal Basin, Bangladesh: Distribution, field relations, and hydrogeological setting[J]. Hydrogeology Journal, 2006, 13(5-6): 727-751.
|
Kurosawa K, Egashira K, Tani M, et al. Variation in arsenic concentration relative to ammonium nitrogen and oxidation reduction potential in surface and groundwater[J]. Communications in Soil Science and Plant Analysis, 2008, 39(9-10): 1467-1475. doi: 10.1080/00103620802004318
|
Canfield D E, Glazer A N, Falkowski P G. The evolution and future of Earth's nitrogen cycle[J]. Science, 2010, 330(6001): 192-196. doi: 10.1126/science.1186120
|
Berner R A. Geological nitrogen cycle and atmospheric N2 over phanerozoic time[J]. Geology, 2006, 34(5): 413-415. doi: 10.1130/G22470.1
|
Norrman J, Sparrenbom C J, Berg M, et al. Tracing sources of ammonium in reducing groundwater in a well field in Hanoi (Vietnam) by means of stable nitrogen isotope (δ15N) values[J]. Applied Geochemistry, 2015, 61(15): 248-258.
|
祝贤彬. 砷氧化还原微生物催化的硝酸盐转化及其对环境的影响[D]. 北京: 中国地质大学(北京), 2020.
Zhu X B. Nitrate transformations catalyzed by the arsenic redox microorganisms and their environmental influences[D]. Beijing: China University of Geosciences(Beijing), 2020.
|
贾正雷. 土壤砷和氮含量的空间变异及其相互关系研究[D]. 广州: 华南农业大学, 2016.
Jia Z L. Study on spatial variability and relationship of soil arsenic and soil nitrogen[D]. Guangzhou: South China Agricultural University, 2016.
|
Gao Z P, Weng H C, Guo H M. Unraveling influences of nitrogen cycling on arsenic enrichment in groundwater from the Hetao Basin using geochemical and multi-isotopic approaches[J]. Journal of Hydrology, 2021, 595: 125981. doi: 10.1016/j.jhydrol.2021.125981
|
Smith R L, Kent D B, Repert D A, et al. Anoxic nitrate reduction coupled with iron oxidation and attenuation of dissolved arsenic and phosphate in a sand and gravel aquifer[J]. Geochimica et Cosmochimica Acta, 2017, 196(1): 102-120.
|
Karunanidhi D, Aravinthasamy P, Subramani T, et al. Potential health risk assessment for fluoride and nitrate contamination in hard rock aquifers of Shanmuganadhi River Basin, South India[J]. Human & Ecological Risk Assessment, 2019, 25(1-2): 250-270. http://www.onacademic.com/detail/journal_1000041611805999_e41a.html
|
Singh G, Rishi M S, Herojeet R, et al. Evaluation of groundwater quality and human health risks from fluoride and nitrate in semi-arid region of northern India[J]. Environmental Geochemistry and Health, 2020, 42(7): 1833-1862. doi: 10.1007/s10653-019-00449-6
|
Böhlke J K, Smith R L, Miller D N. Ammonium transport and reaction in contaminated groundwater: Application of isotope tracers and isotope fractionation studies[J]. Water Resources Research, 2007, 42(5): W05411(1-19).
|
Utom A U, Werban U, Leven C, et al. Groundwater nitrification and denitrification are not always strictly aerobic and anaerobic processes, respectively: An assessment of dual-nitrate isotopic and chemical evidence in a stratified alluvial aquifer[J]. Biogeochemistry, 2020, 147(2): 211-223. doi: 10.1007/s10533-020-00637-y
|
Savard M M, Paradis D, Somers G, et al. Winter nitrification contributes to excess NO3- in groundwater of an agricultural region: A dual-isotope study[J]. Water Resources Research, 2008, 43(6): W06422(1-10). doi: 10.1029/2006wr005469
|
Rivett M O, Buss S R, Morgan P, et al. Nitrate attenuation in groundwater: A review of biogeochemical controlling processes[J]. Water Research, 2008, 42(16): 4215-4232. doi: 10.1016/j.watres.2008.07.020
|
Singha S, Anilb A G, Kumarc V, et al. Nitrates in the environment: A critical review of their distribution, sensing techniques, ecological effects and remediation[J]. Chemosphere, 2021, 287(1): 131996.
|
Rütting T, Huygens D, Müller C, et al. Functional role of DNRA and nitrite reduction in a pristine south Chilean Nothofagus forest[J]. Biogeochemistry, 2008, 90(3): 243-258. doi: 10.1007/s10533-008-9250-3
|
杨杉, 吴胜军, 蔡延江, 等. 硝态氮异化还原机制及其主导因素研究进展[J]. 生态学报, 2016, 36(5): 1224-1232. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201605005.htm
Yang S, Wu S J, Cai Y J, et al. The synergetic and competitive mechanism andthe dominant factors of dissimilatory nitrate reduction processes: A review[J]. Acta Ecologica Sinica, 2016, 36(5): 1224-1232. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201605005.htm
|
Yang W H, Weber K A, Silver W L. Nitrogen loss from soil through anaerobic ammonium oxidation coupled to iron reduction[J]. Nature Geoscience, 2012, 5(8): 538-541. doi: 10.1038/ngeo1530
|
Ding B J, Chen Z H, Li Z K, et al. Nitrogen loss through anaerobic ammonium oxidation coupled to iron reduction from ecosystem habitats in the Taihu estuary region[J]. Science of the Total Environment, 2019, 662(1): 600-606. http://www.ncbi.nlm.nih.gov/pubmed/30699380
|
Ding L J, An X L, Li S, et al. Nitrogen loss through anaerobic ammonium oxidation coupled to iron reduction from paddy soils in a chronosequence[J]. Environmental Science & Technology, 2014, 48(18): 10641-10647. http://www.onacademic.com/detail/journal_1000036708963710_7935.html
|
Chen Y, Syvitski J P, Gao S, et al. Socio-economic impacts on flooding: A 4000-year history of the Yellow River, China[J]. Ambio, 2012, 41(7): 682-698. doi: 10.1007/s13280-012-0290-5
|
Guo H M, Liu C, Lu H, et al. Pathways of coupled arsenic and iron cycling in high arsenic groundwater of the Hetao Basin, Inner Mongolia, China: An iron isotope approach[J]. Geochimica et Cosmochimica Acta, 2013, 112(1): 130-145. http://www.researchgate.net/profile/Huaming_Guo/publication/236273971_Pathways_of_coupled_arsenic_and_iron_cycling_in_high_arsenic_groundwater_of_the_Hetao_basin_Inner_Mongolia_China_An_iron_isotope_approach/links/5b8b40cb299bf1d5a737f587/Pathways-of-coupled-arsenic-and-iron-cycling-in-high-arsenic-groundwater-of-the-Hetao-basin-Inner-Mongolia-China-An-iron-isotope-approach.pdf
|
Guo H M, Zhang Y, Jia Y F, et al. Dynamic behaviors of water levels and arsenic concentration in shallow groundwater from the Hetao Basin, Inner Mongolia[J]. Journal of Geochemical Exploration, 2013, 135: 130-140. doi: 10.1016/j.gexplo.2012.06.010
|
Stachowicz M, Hiemstra T, Riemsdijk W H. Arsenic-bicarbonate interaction on goethite particles[J]. Environmental Science & Technology, 2007, 41(16): 5620-5625. doi: 10.1021/es063087i/suppl_file/es063087isi20070419_090234.pdf
|
DeVore C L, Rodriguez-Freire L, Mehdi-Ali A, et al. Effect of bicarbonate and phosphate on arsenic release from mining-impacted sediments in the Cheyenne River watershed, South Dakota, USA[J]. Environmental Science Processes & Impacts, 2019, 21(3): 456-468.
|
Gao X B, Su C L, Wang Y X, et al. Mobility of arsenic in aquifer sediments at Datong Basin, northern China: Effect of bicarbonate and phosphate[J]. Journal of Geochemical Exploration, 2013, 135: 93-103. doi: 10.1016/j.gexplo.2012.09.001
|
Anawar H M, Akai J, Sakugawa H. Mobilization of arsenic from subsurface sediments by effect of bicarbonate ions in groundwater[J]. Chemosphere, 2004, 54(6): 753-762. doi: 10.1016/j.chemosphere.2003.08.030
|
Appelo C A J, Van Der Weiden M J J, Tournassat C, et al. Surface complexation of ferrous iron and carbonate on ferrihydrite and the mobilization of arsenic[J]. Environmental Science & Technology, 2002, 36(14): 3096-3103.
|
Smedley P L, Kinniburgh D G. A review of the source, behaviour and distribution of arsenic in natural waters[J]. Applied Geochemistry, 2002, 17(5): 517-568.
|
1. |
毛康,薛家奇,陈卓,张华. 激光诱导荧光技术与地下水重金属原位检测应用进展. 岩矿测试. 2025(01): 19-34 .
![]() | |
2. |
张娟娟,李祥志,付世骞,孙玉芳,赵莉花,任宇. 银川平原地下水水化学特征及基于随机森林模型的砷健康风险预测. 干旱区资源与环境. 2025(01): 117-127 .
![]() | |
3. |
肖舜禹,任宇,王帅,潘登,张琳,李祥志. 新乡市平原区浅层地下水砷超标的环境特征及源解析. 环境科学学报. 2025(02): 143-153 .
![]() | |
4. |
王帅,任宇,郭红,曹文庚,李祥志,肖舜禹. 河南黄河改道区浅层地下水化学特征与主控污染源解析. 环境科学. 2024(02): 792-801 .
![]() | |
5. |
刘振超,李志雄,陆迁树,王晓娜,张松,胡耀华. 碱性过硫酸钾-紫外分光光度法测定水质总氮方法的改进. 岩矿测试. 2024(01): 114-123 .
![]() | |
6. |
胡婷婷,李志雄,陈家玮. 不同尺寸纳米塑料团聚行为的定量研究. 岩矿测试. 2024(01): 101-113 .
![]() | |
7. |
潘登,王帅,郭红,王琳,李屹田. 黄河下游(河南段)潜水水文地球化学特征及补给来源识别. 安全与环境工程. 2024(04): 170-180 .
![]() | |
8. |
张振超,梁莹,许洁,姜雪,马瑞. 高砷地下水中氮循环对砷释放过程的影响. 地球科学. 2024(09): 3428-3439 .
![]() | |
9. |
翟文华,付宇,曹文庚,李泽岩,任宇. 黄河下游豫北区高砷地下水空间分布研究. 人民黄河. 2023(01): 112-117+122 .
![]() | |
10. |
孟瑞芳,杨会峰,白华,徐步云. 海河流域大清河平原区地下水化学特征及演化规律分析. 岩矿测试. 2023(02): 383-395 .
![]() | |
11. |
陈秀梅. 南通市深层地下水中氨氮的影响因素研究. 环境监测管理与技术. 2023(04): 72-75 .
![]() | |
12. |
李丽君,刘强. 黑龙江省海伦地区浅层地下水中“三氮”分布特征及来源解析. 岩矿测试. 2023(04): 809-822 .
![]() | |
13. |
郭华明,高志鹏,修伟. 地下水氮循环与砷迁移转化耦合的研究现状和趋势. 水文地质工程地质. 2022(03): 153-163 .
![]() | |
14. |
王妍妍,曹文庚,潘登,王帅,任宇,李泽岩. 豫北平原地下水高砷和高氟分布规律与成因. 岩矿测试. 2022(06): 1095-1109 .
![]() |