Citation: | WANG Guan, DONG Jun, XU Gongdong, HU Zhizhong. Determination of Tin, Tungsten, Zinc, Copper, Iron, and Manganese in Tin Ore by Lithium Metaborate Fusion-Inductively Coupled Plasma-Optical Emission Spectrometry Combined with Scanning Electron Microscopy-Energy Dispersive X-ray Spectrometry[J]. Rock and Mineral Analysis, 2023, 42(1): 114-124. DOI: 10.15898/j.cnki.11-2131/td.202102100023 |
Tin is widely distributed in the crust, and more than 20 kinds of tin minerals are known, mainly in the form of cassiterite SnO2.Cassiterite is insoluble in hydrochloric acid, nitric acid and aqua regia.Even when sulfuric acid is heated for a long time or treated with hydrofluoric acid-sulfuric acid, only a small part of it is dissolved.Therefore, for the analysis of tin ore, the alkali fusion method is usually used for sample pretreatment.
The determination methods of tin in ore include polarography, spectrophotometry, hydride generation atomic fluorescence spectrometry, emission spectrometry, inductively coupled plasma-optical emission spectrometry (ICP-OES), and inductively coupled plasma-mass spectrometry (ICP-MS).The selection of these methods mainly depends on the characteristics of the ore itself and the content of tin, but also depends on the operating conditions, the selection of reagents and other objective factors.
The ICP-OES has high sensitivity, a wide linear range and low matrix effect, which can not only be used to simultaneously determine the main and secondary elements of tin ore, but also has good precision and reproducibility, and can greatly improve the test efficiency.However, when the elemental contents are determined by ICP-OES, traditional sodium peroxide or other oxidizing fluxes introduce a large amount of salts, and the solution after acidification and extraction needs to be further separated or diluted, which not only affects the accuracy of the analysis and the determination limit of lower content elements, but also causes the signal to decrease and cause damage to the instrument during the long-term determination.
Lithiummetaborate is a non-oxidizing flux with high melting point and has strong resolution.Since Ingamells reported in 1964 that lithium metaborate is a good flux, it has been successfully applied in the decomposition of soil, silicate rocks, and even some refractory rock and mineral samples.In this study, the analysis of the elemental contents of tin ores are attempted, which are fused by lithium metaborate and measured by ICP-OES.
To develop a method for simultaneous determination of Sn, W, Zn, Cu, Fe and Mn in tin ores which is decomposed by lithium metaborate and determined by ICP-OES.
Lithium metaborate, a non-oxidizing flux with a high melting point, was used to replace the traditional sodium peroxide and other oxidizing fluxes to melt the sample.After ultrasonic water treatment, Sn, W, Zn, Cu, Fe and Mn of tin ores were determined by ICP-OES.Scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDX) was used to observe the morphological characteristics of the sample molten beads under different flux amounts and analyze the elemental content in the molten beads.It was found that the surface structure of molten beads changed from loose and brittle to fine and compact with the proportion of flux to sample from small to large.When the ratio of flux to sample reached 7:1, the surface morphology of the molten bead had no obvious change.When the ratio of flux to sample was 8:1, the Boron element was detected on the surface of the molten bead, indicating that the flux was excessive at this time.In this way the optimal ratio of flux and sample was finally determined.
The optimal ratio of flux to sample was 7:1, the sample was melted at 1000℃ and extracted by 5% nitric acid solution.The method precision (RSD) was 1.20%-8.06% by determination of tin ore standard substance GBW07281.The method detection limit was 0.0012%-0.0098%.Each element was compared by this method with classical chemical analysis methods and the relative error was within 7%.
The content of tin, tungsten, zinc, copper, iron and manganese in tin ore is determined by ICP-OES method by means of matrix matching.There is no obvious interference between the elements to be measured.The sample pretreatment is simple, the molten salt extraction is fast, the analysis cost is low, and the environmental pollution is small.The method meets the requirement of content analysis of tin, tungsten, zinc, copper, iron and manganese in tin ore.Compared with the traditional chemical analysis method, this method is more convenient, saves a lot of time and cost, and is easy to master.
SEM-EDX is used to observe and analyze the morphology characteristics and composition content of sample residue and bead under different flux amounts, which provides a theoretical basis for determining the optimal ratio of flux and sample.
The low result of lead in the experiment may be due to the high melting temperature of lithium metaborate and the low melting point of lead oxide, which can be further studied in future work.The limitations of a single instrument in detection sensitivity, resolution, analysis rate and efficiency can be solved by the combination of a variety of analysis means, to obtain more abundant information and accurate results, which is one of the most important directions in the development of modern instrument technology.
[1] |
曹斌, 卢静, 夏建新. 重金属锡的测定方法综述[J]. 中央民族大学学报(自然科学版), 2007(16): 350-355. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYMZ200704016.htm
Chao B, Lu J, Xia J X. Summary of determination methods of tin[J]. Journal of Central University for Nationalities (Natural Science Edition), 2007(16): 350-355. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYMZ200704016.htm
|
[2] |
陈波, 胡兰, 陈园园, 等. 地质样品中总锡测定方法的研究进展[J]. 理化检验(化学分册), 2017, 53(2): 236-241. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201702029.htm
Chen B, Hu L, Chen Y Y, et al. Recent progress of research on methods for determination of total tin in geological samples[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2017, 53(2): 236-241. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201702029.htm
|
[3] |
陈慰娟. 矿石中锡的测定方法研究[J]. 世界有色金属, 2018(21): 141-143. https://www.cnki.com.cn/Article/CJFDTOTAL-COLO201821086.htm
Chen W J. Study on the determination method of tin in ore[J]. World Nonferrous Metals, 2018(21): 141-143. https://www.cnki.com.cn/Article/CJFDTOTAL-COLO201821086.htm
|
[4] |
张灿. 矿物岩石中锡的催化极谱测定[J]. 岩矿测试, 1986, 2(5): 137-139. http://www.ykcs.ac.cn/cn/article/id/ykcs_19860242
Zhang C. Catalytic polarographic determination of tin in rocks and minerals[J]. Rock and Mineral Analysis, 1986, 2(5): 137-139. http://www.ykcs.ac.cn/cn/article/id/ykcs_19860242
|
[5] |
朱尚志, 李红, 刘钢, 等. 矿石中高含量锡的示波极谱法测定[J]. 冶金分析, 1989, 9(4): 48-49.
Zhu S Z, Li H, Liu G, et al. Determination of high content tin in ore by oscillo polarography[J]. Metallurgical Analysis, 1989, 9(4): 48-49.
|
[6] |
黄桂芳, 李文涛. 分光光度法测定痕量锡[J]. 岩矿测试, 1991, 10(1): 38-40. http://www.ykcs.ac.cn/cn/article/id/ykcs_19910115
Huang G F, Li W T. Spectrophotometric determination of trace tin-multicomponent complex of Sn(Ⅳ)-NTA-SAF-CTMAB[J]. Rock and Mineral Analysis, 1991, 10(1): 38-40. http://www.ykcs.ac.cn/cn/article/id/ykcs_19910115
|
[7] |
杨旭东. 原子荧光法对矿物中痕量锡的测定[J]. 世界有色金属, 2017(19): 226-227. https://www.cnki.com.cn/Article/CJFDTOTAL-COLO201719132.htm
Yang X D. Determination of trace tin in minerals by atomic fluorescence spectrometry[J]. World Nonferrous Metals, 2017(19): 226-227. https://www.cnki.com.cn/Article/CJFDTOTAL-COLO201719132.htm
|
[8] |
姚建贞, 郝志红, 唐瑞玲, 等. 固体发射光谱法测定地球化学样品中的高含量锡[J]. 光谱学与光谱分析, 2013, 33(11): 3124-3127. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201311060.htm
Yao J Z, Hao Z H, Tang R L, et al. Determination of high content of tin in geochemical samples by solid emission spectrometry[J]. Spectroscopy and Spectral Analysis, 2013, 33(11): 3124-3127. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201311060.htm
|
[9] |
丁春霞, 王琳, 孙慧莹, 等. 发射光谱法测定生态地球化学调查样品中的银锡硼[J]. 黄金, 2012, 33(10): 55-58. https://www.cnki.com.cn/Article/CJFDTOTAL-HJZZ201210016.htm
Ding C X, Wang L, Sun H Y, et al. Determination of sliver, tin and boron in ecological geochemistry samples by emission spectrometry[J]. Gold, 2012, 33(10): 55-58. https://www.cnki.com.cn/Article/CJFDTOTAL-HJZZ201210016.htm
|
[10] |
刘江斌, 武永芝. 原子发射光谱法快速测定矿石中锡[J]. 冶金分析, 2013, 33(3): 65-68. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201303014.htm
Liu J B, Wu Y Z. Rapid determination of tin in ore by atomic emission spectrometry[J]. Metallurgical Analysis, 2013, 33(3): 65-68. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201303014.htm
|
[11] |
朱英. 改进电极发射光谱法测定地球化学样品中Ag、B、Sn[J]. 资源环境与工程, 2007, 21(4): 489-491. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK200704032.htm
Zhu Y. Measuring Ag, B, Sn in the geochemical sample based on modified electrode emission spectra method[J]. Resources Environment & Engineering, 2007, 21(4): 489-491. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK200704032.htm
|
[12] |
颜忠国, 白家源, 杨绍辉, 等. 电感耦合等离子体发射光谱仪测定锡精矿中锌、铜、铁、铅、镉、硫、锰、钨八种杂质元素含量[J]. 世界有色金属, 2019(19): 201-203. https://www.cnki.com.cn/Article/CJFDTOTAL-COLO201919117.htm
Yan Z G, Bai J Y, Yang S H, et al. Determination of the contents of eight impurity elements of zinc, copper, iron, lead, cadmium, sulfur, manganese, and tungsten in tin concentrate by inductively coupled plasma emission spectrometer[J]. World Nonferrous Metals, 2019(19): 201-203. https://www.cnki.com.cn/Article/CJFDTOTAL-COLO201919117.htm
|
[13] |
王凤祥. 电感耦合等离子体原子发射光谱法测定锡矿石中锡[J]. 冶金分析, 2017, 37(11): 59-63. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201711013.htm
Wang F X. Determination of tin in tin ore by inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2017, 37(11): 59-63. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201711013.htm
|
[14] |
杨惠玲, 夏辉, 杜天军, 等. 电感耦合等离子体发射光谱法同时测定锡矿石中锡钨钼铜铅锌[J]. 岩矿测试, 2013, 32(6): 887-892. http://www.ykcs.ac.cn/cn/article/id/12fc9719-0e4a-4249-be27-2e067212525c
Yang H L, Xia H, Du T J, et al. Simultaneous determination of Sn, W, Mo, Cu, Pb and Zn in tin ores by inductively coupled plasma-atomic emission spectrometry[J]. Rock and Mineral Analysis, 2013, 32(6): 887-892. http://www.ykcs.ac.cn/cn/article/id/12fc9719-0e4a-4249-be27-2e067212525c
|
[15] |
王明芳, 耿海燕, 韩文娟. ICP-AES法测定锡矿石中的锡[J]. 广东化工, 2019, 46(8): 185-190. https://www.cnki.com.cn/Article/CJFDTOTAL-GDHG201908079.htm
Wang M F, Geng H Y, Han W J. Determination of tin in tin ore by ICP-AES[J]. Guangdong Chemical Industry, 2019, 46(8): 185-190. https://www.cnki.com.cn/Article/CJFDTOTAL-GDHG201908079.htm
|
[16] |
王艳超, 刘金龙. 电感耦合等离子体发射光谱法测定含锡矿石中的锡[J]. 化工矿产地质, 2016, 38(4): 242-245. https://www.cnki.com.cn/Article/CJFDTOTAL-HGKC201604012.htm
Wang Y C, Liu J L. Determination of tin in tin ore containing by inductively coupled plasma-atomic emission spectrometry[J]. Geology of Chemical Minerals, 2016, 38(4): 242-245. https://www.cnki.com.cn/Article/CJFDTOTAL-HGKC201604012.htm
|
[17] |
韩轲. X射线荧光光谱法同时测定钨钼锡矿石中钨、钼、锡元素含量的分析方法[J]. 中国金属通报, 2018(4): 232-234. https://www.cnki.com.cn/Article/CJFDTOTAL-JSTB201804134.htm
Han K. X-ray fluorescence spectrometry analysis method for simultaneous determination of tungsten, moly-bdenum and tin in tungsten-molybdenum-tin ore[J]. China Metal Bulletin, 2018(4): 232-234. https://www.cnki.com.cn/Article/CJFDTOTAL-JSTB201804134.htm
|
[18] |
马生凤, 赵文博, 朱云, 等. 碘化氨除锡后封闭酸溶-电感耦合等离子体质谱测定锡矿石中的共生和伴生元素[J]. 岩矿测试, 2018, 37(6): 650-656. doi: 10.15898/j.cnki.11-2131/td.201804190047
Ma S F, Zhao W B, Zhu Y, et al. Determination of symbiotic and associated elements in tin ore by ICP-MS combined with pressurized acid digestion and detinning process[J]. Rock and Mineral Analysis, 2018, 37(6): 650-656. doi: 10.15898/j.cnki.11-2131/td.201804190047
|
[19] |
雷占昌, 范志平, 蒋常菊, 等. 过氧化钠熔融电感耦合等离子体质谱测定锡矿石中锡量的方法[P]. CN110031535A[2019.07.19].
Lei Z C, Fan Z P, Jiang C J, et al. Method for measuring tin content in tin ore with sodium peroxide melting by inductively coupled plasma mass spectrometry[P]. CN110031535A[2019.07.19].
|
[20] |
陈义, 曲兰, 李明旭, 等. 岩石矿物高含量锡的测定[J]. 吉林地质, 2019, 38(3): 65-67. https://www.cnki.com.cn/Article/CJFDTOTAL-JLDZ201903017.htm
Chen Y, Qu L, Li M X, et al. Determination of high content tin in rocks and minerals[J]. Jilin Geology, 2019, 38(3): 65-67. https://www.cnki.com.cn/Article/CJFDTOTAL-JLDZ201903017.htm
|
[21] |
梁文先, 张孟星. X射线荧光压片法测定矿石中锡的过程分析[J]. 现代科学仪器, 2017(4): 93-98. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-LFYY201610001022.htm
Liang W X, Zhang M X. Determination of tin in ores by X-ray fluorescence spectrometer (XRF)[J]. Modern Scientific Instruments, 2017(4): 93-98. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-LFYY201610001022.htm
|
[22] |
刘恒杰, 贾海峰, 谭清月. 熔融制样-X射线荧光光谱法测定钨钼锡矿中的主次成分[J]. 中国无机分析化学, 2020, 10(1): 70-75. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX202001015.htm
Liu H J, Jia H F, Tan Q Y. Determination of primary and secondary components in tunggium-molybdenum tin mine by X-ray fluorescence with melt sample[J]. Chinese Journal of Inorganic Analytical Chemistry, 2020, 10(1): 70-75. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX202001015.htm
|
[23] |
陈丽梅, 罗正波, 彭琴, 等. 电感耦合等离子体原子发射光谱测定铜浸出渣中的锡[J]. 湖南有色金属, 2020, 36(3): 72-76. https://www.cnki.com.cn/Article/CJFDTOTAL-HNYJ202003021.htm
Chen L M, Luo Z B, Peng Q, et al. Determination of tin in copper leaching residue by ICP-AES[J]. Hunan Nonferrous Metals, 2020, 36(3): 72-76. https://www.cnki.com.cn/Article/CJFDTOTAL-HNYJ202003021.htm
|
[24] |
肖细炼, 王亚夫, 张春林, 等. 交流电弧-光电直读发射光谱同时测定碳酸盐矿物中银硼锡的方法研究[J]. 岩矿测试, 2020, 39(5): 699-708. doi: 10.15898/j.cnki.11-2131/td.201908020116
Xiao X L, Wang Y F, Zhang C L, et al. Simultaneous determination of silver, boron and tin in carbonate minerals by alternating current-arc optoelectronic direct reading-emission spectrometry[J]. Rock and Mineral Analysis, 2020, 39(5): 699-708. doi: 10.15898/j.cnki.11-2131/td.201908020116
|
[25] |
马龙, 付东磊, 马明, 等. 过氧化钠熔融-电感耦合等离子体质谱法测定锡矿石中锡[J]. 冶金分析, 2020, 40(8): 50-54. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202008010.htm
Ma L, Fu D L, Ma M, et al. Determination of tin in tin ore by inductively coupled plasma mass spectrometry after fusion with sodium peroxide[J]. Metallurgical Analysis, 2020, 40(8): 50-54. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202008010.htm
|
[26] |
杨新能, 陈德, 李小青. 碱熔-电感耦合等离子体原子发射光谱法测定铁矿石中铬铌钼钨锡[J]. 冶金分析, 2019, 39(12): 55-60. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201912009.htm
Yang X N, Chen D, Li X Q. Determination of chromium, niobium, molybdenum, tungsten, tin in iron ore by inductively coupled plasma atomic emission spectrometry with alkali fusion[J]. Metallurgical Analysis, 2019, 39(12): 55-60. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201912009.htm
|
[27] |
王学田, 丁力, 李艳娟, 等. X射线荧光光谱法同时测定矿石中钨钼锡[J]. 分析试验室, 2015, 34(9): 1031-1037. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201509016.htm
Wang X T, Ding L, Li Y J, et al. Simultaneous determination of W, Mo and Sn in ore by X-ray fluorescence spectrometry[J]. Chinese Journal of Analysis Laboratory, 2015, 34(9): 1031-1037. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201509016.htm
|
[28] |
童晓民, 王楠. 熔片X射线荧光光谱法测定锡矿石中八种重金属元素[J]. 分析试验室, 2016, 35(1): 97-101. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201601025.htm
Tong X M, Wang N. X-ray fluorescence analysis of eight heavy metallic elements in tin ore using fused glass disc method[J]. Chinese Journal of Analysis Laboratory, 2016, 35(1): 97-101. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201601025.htm
|
[29] |
高才生, 张宝川, 呼世富. 硅酸盐岩石主要成份的快速分析-偏硼酸锂熔样和原子吸收测定[J]. 分析化学, 1985, 13(2): 139-141. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX198502018.htm
Gao C S, Zhang B S, Hu S F. Quick analysis of the main components of silicate rocks-lithium metaborate sample and atomic absorption determination[J]. Analytical Chemistry, 1985, 13(2): 139-141. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX198502018.htm
|
[30] |
凌进中. 含锂硼酸盐熔剂及其在近代硅酸盐快速分析中的应用[J]. 地质地球化学, 1981(6): 45-51. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ198106021.htm
Ling J Z. Lithium-containing borate flux and its application in the rapid analysis of modern silicate[J]. Geo-Earth Chemistry, 1981(6): 45-51. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ198106021.htm
|
[31] |
马生凤, 温宏利, 巩爱华, 等. 偏硼酸锂碱熔-电感耦合等离子体发射光谱法测定硫化物矿中硅酸盐相的主成分[J]. 岩矿测试, 2009, 28(6): 535-540. http://www.ykcs.ac.cn/cn/article/id/ykcs_20090607
Ma S F, Wen H L, Gong A H, et al. Determination of major components in silicate phase of sulphide ores by ICP-AES with lithium metaborate fusion sample pretreatment[J]. Rock and Mineral Analysis, 2009, 28(6): 535-540. http://www.ykcs.ac.cn/cn/article/id/ykcs_20090607
|
[32] |
姜守君, 高永宏, 胡小耕, 等. 偏硼酸锂熔融ICP-AES测定锰矿石中次量元素[J]. 甘肃科技, 2012, 28(14): 35-37. https://www.cnki.com.cn/Article/CJFDTOTAL-GSKJ201214013.htm
Jiang S J, Gao Y H, Hu X G, et al. ICP-AES determination of minor elements in manganese ore with lithium metaborate fusion[J]. Gansu Science and Technology, 2012, 28(14): 35-37. https://www.cnki.com.cn/Article/CJFDTOTAL-GSKJ201214013.htm
|
[33] |
刘虎生, 王耐芬, 刘明, 等. 偏硼酸锂熔样ICP-MS法测定土壤样品中15种痕量稀土元素[J]. 光谱学与光谱分析, 1996, 16(6): 66-69. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN606.013.htm
Liu H S, Wang N F, Liu M, et al. Determination of 15 trace rare earth elements of soil samples by ICP-MS[J]. Spectroscopy and Spectral Analysis, 1996, 16(6): 66-69. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN606.013.htm
|
[34] |
鲁慧文, 王英杰. 用偏硼酸锂熔样ICP-AES法测定岩石中Si、Zr等12个元素[J]. 吉林地质, 2005, 24(2): 118-122. https://www.cnki.com.cn/Article/CJFDTOTAL-JLDZ200502023.htm
Lu H W, Wang Y J. Determination of 12 elements such as Si and Zr in rock by ICP-AES with lithium metaborate fusion sample[J]. Jilin Geology, 2005, 24(2): 118-122. https://www.cnki.com.cn/Article/CJFDTOTAL-JLDZ200502023.htm
|
[35] |
黄劲. 电感耦合等离子体光谱仪测定锡矿石中锡钨钼铜铅锌含量[J]. 西部探矿工程, 2016(10): 151-153. https://www.cnki.com.cn/Article/CJFDTOTAL-XBTK201610049.htm
Huang J. Determination of tin, tungsten, molybdenum, copper, lead and zinc in tin ore by inductively coupled plasma spectrometer[J]. Western Prospecting Project, 2016(10): 151-153. https://www.cnki.com.cn/Article/CJFDTOTAL-XBTK201610049.htm
|
1. |
王家松 ,王力强 ,王娜 ,方蓬达 ,郑智慷 ,曾江萍 . 偏硼酸锂熔融-酒石酸络合-超声提取-电感耦合等离子体原子发射光谱法测定岩矿型锆矿石中10种元素的含量. 理化检验-化学分册. 2024(02): 125-133 .
![]() | |
2. |
郭琳,于汀汀,孙红宾,朱云. 偏硼酸锂熔融-电感耦合等离子体发射光谱法测定铍矿石中的铍及主量元素. 岩矿测试. 2024(02): 356-365 .
![]() | |
3. |
王斌,巩琪,张勇,刘怡昕. 分光光度法测定钨矿石中钨量不确定度评定. 中国钨业. 2024(01): 52-58 .
![]() | |
4. |
陆迁树,叶元顺,王银剑,刘振超,陈金伟. EDTA配位滴定法在野外检测多金属矿石中锌量的应用. 岩矿测试. 2024(05): 812-820 .
![]() |