Citation: | XIAO Xilian, XIA Jinlong, LI Xiaodan, LU Youyue, YANG Xiaoli, YANG Hongmei. Determination of Tin, Lead and Zinc in a Tin-Lead-Zinc Deposit in Xianghualing Mining Area, Hunan Province by Inductively Coupled Plasma-Optical Emission Spectrometry with Alkali Fusion[J]. Rock and Mineral Analysis, 2023, 42(1): 125-135. DOI: 10.15898/j.cnki.11-2131/td.202107290087 |
The Xianghualing mining area in Hunan Province is an important part of the east-west tectonic-magmatic-metallogenic belt in the Nanling area.The ore-forming geological conditions in the mining area are superior, and it is famous for its many types of deposits and complex types of minerals.The tin-lead-zinc deposit in the Xianghualing mining area is a very important polymetallic deposit in the Nanling metallogenic belt.The ore types are mainly cassiterite sulfide tin ore, tin-lead-zinc ore and sulfide lead-zinc ore.Tin, lead and zinc are very important nonferrous metal elements.The abundance and variation characteristics of these three elements can reflect the regional metallogenic conditions, indicate the existence of deposits or mineralization, and are the important basis for studying the metallogenic model, deepening the understanding of the genesis of the deposit, and identifying the metallogenic control factors.Therefore, it is very necessary to accurately determine the content of tin, lead and zinc in the tin, lead and zinc deposits in the Xianghualing mining area, and it is important to study the regional metallogenic conditions The geological characteristics of the deposit, the occurrence state of elements, mineral processing and comprehensive utilization of non-ferrous metal minerals are of great significance.However, the average grades of tin, lead and zinc in the deposit are percentage contents and tin itself is a refractory element.Conventional open acid dissolution or closed acid dissolution in the dissolution of high content of tin, lead and zinc in the ore will have the disadvantages of incomplete digestion and easy precipitation of the solution, resulting in serious low determination results.However, alkali fusion is more capable of decomposing minerals than acid dissolution.As long as the appropriate alkali fusion reagent, temperature and time are optimized, some high content of inorganic elements, even insoluble elements, can be completely decomposed, which is an ideal method of mineral decomposition pretreatment.
To rapidly and accurately determine the concentrations of tin, lead and zinc in high contents of tin, lead and zinc samples of a tin-lead-zinc deposit in the Xianghualing mining area, Hunan Province.
Inductively coupled plasma-optical emission spectrometry (ICP-OES) with alkali fusion was used to determine the levels of tin, lead and zinc.The selection of alkali fusion reagent, reagent dosage, alkali fusion temperature and time as well as the plasma excitation conditions, element spectral lines, button background position and other instrumental determination conditions were optimized.The effects of three kinds of fluxes: sodium hydroxide, anhydrous sodium carbonate and sodium peroxide were compared.
The measured value of tin was greatly affected by the alkali flux.Under the flux of sodium hydroxide or anhydrous sodium carbonate, the measured value of tin was low, while the measured value of tin was consistent with the standard value under the flux of sodium peroxide.Based on the comparison of the effects of various fluxes on the analysis results, sodium peroxide was selected as the flux, melting at a constant temperature of 750℃ for 20 minutes, and acidification with 20mL of hydrochloric acid after 30mL of boiling water extraction to ensure the complete decomposition of the sample.The calibration series was prepared with blank alkali melt solution as the medium, so that the calibration series matched the sample matrix and eliminated the influence of matrix interference.The national first-class geochemical reference materials were used for method quality evaluation, and the results showed that the absolute value of the logarithmic difference between the measured value and the certified value of the reference material was less than 0.04.The detection limits of the method for tin, lead and zinc were 13.60μg/g, 36.45μg/g and 53.83μg/g, respectively.The precision of the method was better than 8%.The determination range of the calibration curve was between 0 to 100μg/mL.
Due to the use of alkali fusion method and blank alkali fusion solution as the standard preparation medium, this method is suitable for the determination of high contents of tin, lead and zinc in cassiterite-sulfide type tin ores, tin-lead-zinc ores, and sulfide type lead-zinc ores, and it has good application prospects.At present, this method has been successfully applied to the analysis of actual samples in the Xianghualing mining area, Hunan Province, with satisfactory results.
[1] |
王婵, 刘皓, 缪秉魁, 等. 湖南香花岭矿区稀有金属分布特征和成矿模式[J]. 桂林理工大学学报, 2016, 36(1): 66-75. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGX201601010.htm
Wang C, Liu H, Miao B K, et al. Distribution characteristics and mineralization models of rare metals in Xianghualing ore district of Hunan[J]. Journal of Guilin University of Technology, 2016, 36(1): 66-75. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGX201601010.htm
|
[2] |
易元顺, 肖颖斌, 黎原, 等. 湖南省东坡—香花岭地区锡矿成矿地质条件及找矿前景[J]. 资源环境与工程, 2020, 34(2): 200-206. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK202002007.htm
Yi Y S, Xiao Y B, Li Y, et al. The metallogenic geological conditions and prospecting prospects of tin deposits in Dongpo—Xianghualing area, Hunan Province[J]. Resources Environment & Engineering, 2020, 34(2): 200-206. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK202002007.htm
|
[3] |
赵博, 张德会, 于蕾, 等. 从克拉克值到元素的地球化学性质或行为再到成矿作用[J]. 矿物岩石地球化学通报, 2014, 33(2): 252-261. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201402015.htm
Zhao B, Zhang D H, Yu L, et al. Fromclark values to elemental geochemical properties or behaviors, and to mineralization[J]. Bulletin of Mineralogy, Petroloy and Geochemisty, 2014, 33(2): 252-261. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201402015.htm
|
[4] |
李惠, 张国义, 禹斌, 等. 构造叠加晕找盲矿法及其在矿山深部找矿效果[J]. 地学前缘, 2010, 17(1): 287-293. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201001028.htm
Li H, Zhang G Y, Yu B, et al. Structural superimposed halos method for prospecting blind ore-body in the deep of ore districts[J]. Earth Science Frontiers, 2010, 17(1): 287-293. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201001028.htm
|
[5] |
钟江临. 湖南香花岭地区有色、稀有多金属矿床主要类型及找矿方向[J]. 华南地质与矿产, 2014, 30(2): 99-108. https://www.cnki.com.cn/Article/CJFDTOTAL-HNKC201402003.htm
Zhang J L. Major types and prospecting direction of nonferrous and rare polymetallic ore deposit in Xianghualing area, South China[J]. Geology and Mineral Resources of South China, 2014, 30(2): 99-108. https://www.cnki.com.cn/Article/CJFDTOTAL-HNKC201402003.htm
|
[6] |
马生凤, 朱云, 孙红宾, 等. 封闭溶样-电感耦合等离子体质谱法测定硫化铅矿石中40种微量元素[J]. 矿物岩石地球化学通报, 2016, 35(3): 527-533.
Ma S F, Zhu Y, Sun H B, et al. Determination of 40 elements in lead sulfide ores by inductively coupled plasma mass spectrometry with pressurized acid digestion of samples[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 35(3): 527-533.
|
[7] |
张亚峰, 冯俊, 唐杰, 等. 基于五酸溶样体系-ICP-MS同时测定地质样品中稀土等46种元素[J]. 质谱学报, 2016, 37(2): 186-192. https://www.cnki.com.cn/Article/CJFDTOTAL-ZPXB201602012.htm
Zhang Y F, Feng J, Tang J, et al. Simultaneous determination of 46 species of micro, trace and rare earth elements by ICP-MS[J]. Journal of Chinese Mass Spectrometry Society, 2016, 37(2): 186-192. https://www.cnki.com.cn/Article/CJFDTOTAL-ZPXB201602012.htm
|
[8] |
龚仓, 丁洋, 陆海川, 等. 五酸溶样-电感耦合等离子体质谱法同时测定地质样品中的稀土等28种金属元素[J]. 岩矿测试, 2021, 40(3): 340-348. doi: 10.15898/j.cnki.11-2131/td.202011030136
Gong C, Ding Y, Lu H C, et al. Simultaneous determination of 28 elements including rare earth elements by ICP-MS with five-acid dissolution[J]. Rock and Mineral Analysis, 2021, 40(3): 340-348. doi: 10.15898/j.cnki.11-2131/td.202011030136
|
[9] |
Eggin S M, Woodhead J D, Kinslet L P J, et al. A sample method for the precise analysis determination of ≥40 trace elements in geological samples by ICP-MS using enriched isotope internal standardisation[J]. Chemical Geology, 1996, 134: 311-326.
|
[10] |
张廷忠, 何建华. 氢化物发生-原子荧光光谱法测定化探样品中痕量锡[J]. 理化检验(化学分册), 2012, 48(12): 1490-1491. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201212037.htm
Zhang T Z, He J H. Determination of trace tin in geochemical samples by hydride generation atomic fluorescence spectrometry[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2012, 48(12): 1490-1491. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201212037.htm
|
[11] |
常青, 蔡玉曼, 周康民, 等. 氢化物发生原子荧光光谱法测定钨钼矿石中锡[J]. 分析试验室, 2008, 27(增刊2): 401-404. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY2008S2118.htm
Chang Q, Cai Y M, Zhou K M, et al. Determination of tin in tungsten molybdenum ore by hydride generation atomic fluorescence spectrometry[J]. Chinese Journal of Analysis Laboratory, 2008, 27(Supplement 2): 401-404. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY2008S2118.htm
|
[12] |
张泽儒. 石墨炉原子吸收法测定化探样品中的微量锡[J]. 化学分析计量, 2015, 24(4): 65-67. https://www.cnki.com.cn/Article/CJFDTOTAL-HXFJ201504040.htm
Zhang Z R. Determination of trace tin in geochemical samples by graphite furnace atomic absorption spectrometry[J]. Chemical Analysis and Meterage, 2015, 24(4): 65-67. https://www.cnki.com.cn/Article/CJFDTOTAL-HXFJ201504040.htm
|
[13] |
田小亭, 董海成, 田甜. 火焰原子吸收光谱法测定锌精矿中锌、铅含量[J]. 理化检验(化学分册), 2014, 50(8): 1035-1037. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201408031.htm
Tian X T, Dong H C, Tian T. Determination of zinc and lead in zinc concentrate by flame atomic absorption spectrometry[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2014, 50(8): 1035-1037. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201408031.htm
|
[14] |
冀飞, 魏振园, 王卫东. X射线荧光光谱法在线检测铅锌矿浆品位的试验探讨[J]. 冶金分析, 2019, 39(8): 30-37. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201908006.htm
Ji F, Wei Z Y, Wang W D. Experimental discussion on on-line detection of lead-zinc ore slurry grade by X-ray fluorescence spectrometry[J]. Metallurgical Analysis, 2019, 39(8): 30-37. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201908006.htm
|
[15] |
于兆水, 张勤, 李小莉, 等. 高压粉末制样波长色散X射线荧光光谱法测定生物样品中23种元素[J]. 岩矿测试, 2014, 33(6): 844-848. http://www.ykcs.ac.cn/cn/article/id/a3e0ee94-c290-48ad-ae4e-1f3b21dfcb30
Yu Z S, Zhang Q, Li X L, et al. Determination of elements in biological samples by wavelength dispersion X-ray fluorescence spectrometry with high pressure powder pelleting preparation[J]. Rock and Mineral Analysis, 2014, 33(6): 844-848. http://www.ykcs.ac.cn/cn/article/id/a3e0ee94-c290-48ad-ae4e-1f3b21dfcb30
|
[16] |
郝志红, 姚建贞, 唐瑞玲, 等. 交流电弧直读原子发射光谱法测定地球化学样品中银、硼、锡、钼、铅的方法研究[J]. 地质学报, 2016, 90(8): 2070-2082. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201608033.htm
Hao Z H, Yao J Z, Tang R L, et al. Study on method for determination of silver, boron, tin, molybdenum, lead in geochemical samples by AC-arc direct[J]. Acta Geologica Sinica, 2016, 90(8): 2070-2082. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201608033.htm
|
[17] |
郝志红, 姚建贞, 唐瑞玲, 等. 直流电弧全谱直读原子发射光谱法(DC-arc-AES)测定地球化学样品中痕量硼、钼、银、锡、铅的方法研究[J]. 光谱学与光谱分析, 2015, 35(2): 527-533. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201502055.htm
Hao Z H, Yao J Z, Tang R L, et al. Study on the method for the determination of trace boron, molybdenum, silver, tin, lead in geochemical samples by direct current arc of full spectrum direct reading atomic emission spectroscopy (DC-arc-AES)[J]. Spectroscopy and Spectral Analysis, 2015, 35(2): 527-533. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201502055.htm
|
[18] |
肖细炼, 王亚夫, 陈燕波, 等. 交流电弧光电直读发射光谱法测定地球化学样品中银硼锡[J]. 冶金分析, 2018, 38(7): 27-32. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201807004.htm
Xiao X L, Wang Y F, Chen Y B, et al. Determination of silver, boron and tin in geochemical samples by alternating current arc optoelectronic direct reading emission spectrometry[J]. Metallurgical Analysis, 2018, 38(7): 27-32. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201807004.htm
|
[19] |
王鹤龄, 李光一, 曲少鹏, 等. 氟化物固体缓冲剂-交流电弧直读发射光谱法测定化探样品中易挥发与难挥发微量元素[J]. 岩矿测试, 2017, 36(4): 367-373. doi: 10.15898/j.cnki.11-2131/td.201608230125
Wang H L, Li G Y, Qu S P, et al. Determination of volatile and nonvolatile trace elements in geochemical samples by fluoride solid buffer-AC arc direct reading emission spectrometry[J]. Rock and Mineral Analysis, 2017, 36(4): 367-373. doi: 10.15898/j.cnki.11-2131/td.201608230125
|
[20] |
黄海波, 沈加林, 陈宇, 等. 全谱发射光谱仪应用于分析地质样品中的银锡硼钼铅[J]. 岩矿测试, 2020, 39(4): 555-565. doi: 10.15898/j.cnki.11-2131/td.201909230137
Huang H B, Shen J L, Chen Y, et al. Simultaneous determination of silver, boron, tin, molybdenum and lead in geological samples by atomic emission spectrometer with full spectrum[J]. Rock and Mineral Analysis, 2020, 39(4): 555-565. doi: 10.15898/j.cnki.11-2131/td.201909230137
|
[21] |
Matschat R, Haβler J, Traub H, et al. Multielement trace determination in SiC powders: Assessment of interlaboratory comparisons aimed at the validation and standardization of analytical procedures with direct solid sampling based on ETV ICP-OES and DC arc OES[J]. Analytical and Bioanalytical Chemistry, 2005, 383: 1060-1074.
|
[22] |
胡长春, 王沿方, 陈作王. 电感耦合等离子体原子发射光谱法测定锡铅合金中的锡[J]. 化学分析计量, 2018, 27(5): 72-75. https://www.cnki.com.cn/Article/CJFDTOTAL-HXFJ201805034.htm
Hu C C, Wang Y F, Chen Z W. Determination of tin in tin-lead alloy by inductively coupled plasma atomic emission spectrometry[J]. Chemical Analysis and Meterage, 2018, 27(5): 72-75. https://www.cnki.com.cn/Article/CJFDTOTAL-HXFJ201805034.htm
|
[23] |
胡璇, 李跃平, 石磊. 基体匹配法和内标法-电感耦合等离子体原子发射光谱测定铸造锌合金中高含量铝和铜光谱[J]. 冶金分析, 2014, 34(4): 17-20. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201404004.htm
Hu X, Li Y P, Shi L. Comparison on the spectral interference correction in the determination of high content aluminum and copper in casting zinc alloy by inductively coupled plasma atomic emission spectrometry with matrix matching method and internal standard method[J]. Metallurgical Analysis, 2014, 34(4): 17-20. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201404004.htm
|
[24] |
李清彩, 赵庆令, 孙宁, 等. 电感耦合等离子体发射光谱测定区域地球化学样品中Cu、Mo、Pb、Sn、W、Zn元素[J]. 分析试验室, 2008, 27(增刊): 317-319. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY2008S2095.htm
Li Q C, Zhao Q L, Sun N, et al. Determination of Cu, Mo, Pb, Sn, W, Zn in regional geochemical samples by inductively coupled plasma emission spectrometry[J]. Chinese Journal of Analysis Laboratory, 2008, 27(Supplement): 317-319. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY2008S2095.htm
|
[25] |
肖凡, 张宁, 姜云军, 等. 密闭酸溶-电感耦合等离子体原子发射光谱法测定地球化学调查样品中硼[J]. 冶金分析, 2018, 38(6): 50-54. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201806011.htm
Xiao F, Zhang Y, Jiang Y J, et al. Determination of boron in geochemical survey sample by inductively coupled plasma atomic emission spectrometry after acid dissolution in closed system[J]. Metallurgical Analysis, 2018, 38(6): 50-54. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201806011.htm
|
[26] |
姜云军, 李星, 姜海伦, 等. 四酸敞口溶解-电感耦合等离子体发射光谱法测定土壤中的硫[J]. 岩矿测试, 2018, 37(2): 152-158. doi: 10.15898/j.cnki.11-2131/td.201704010048
Jiang Y J, Li X, Jiang H L, et al. Determination of sulfur in soil by inductively coupled plasma-optical emission spectrometry with four acids open dissolution[J]. Rock and Mineral Analysis, 2018, 37(2): 152-158. doi: 10.15898/j.cnki.11-2131/td.201704010048
|
[27] |
张世龙, 吴周丁, 刘小玲, 等. 电感耦合等离子体原子发射光谱法测定多金属矿石中铁、铜、铅、锌、砷、锑、钼和镉的含量[J]. 理化检验(化学分册), 2015, 51(7): 930-933. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201507009.htm
Zhang S L, Wu Z D, Liu X L, et al. ICP-AES determination of Fe, Cu, Pb, Zn, As, Sb, Mo, and Cd in multi-metal ores[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2015, 51(7): 930-933. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201507009.htm
|
[28] |
王佳翰, 李正鹤, 杨峰, 等. 碱熔-电感耦合等离子体原子发射光谱法测定海洋沉积物中铝铁锰钛[J]. 冶金分析, 2012, 41(3): 68-74. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202103015.htm
Wang J H, Li Z H, Yang F, et al. Determination of aluminum, iron, manganese, titanium in marine sediments by inductively coupled plasma atomic emission spectrometry with alkali fusion[J]. Metallurgical Analysis, 2012, 41(3): 68-74. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202103015.htm
|
[29] |
陈玉秀, 闫月娥, 马小文, 等. ICP-OES测定钒钛铁精矿中钛、镁、钒、锰和铬的含量[J]. 广州化工, 2019, 47(16): 109-111. https://www.cnki.com.cn/Article/CJFDTOTAL-GZHA201916042.htm
Chen Y X, Yan Y E, Ma X W, et al. Determination of titanium, magnesium, vanadium, manganese and chromium content in vanadium-titanium-iron concentrates by ICP-OES[J]. Guangzhou Chemical Industry, 2019, 47(16): 109-111. https://www.cnki.com.cn/Article/CJFDTOTAL-GZHA201916042.htm
|
[30] |
Daniel L, Laird D W, Hefter G T. Sodium peroxide fusion for reliable determination of gold in ores and metallurgical samples[J]. International Journal of Mineral Processing, 2017, 168: 35-39.
|
[31] |
Wei X J, Tian Z Q. Simultaneous determination of ruthenium and zinc in catalysts for hydrogenation of benzene to cyclohexene using sodium peroxide fusion sample digestion and ICP -OES[J]. Advanced Materials Research, 2014, 1004-1005: 1281-1284.
|
[32] |
赵昕, 严慧, 禹莲玲, 等. 过氧化钠碱熔-电感耦合等离子体发射光谱法测定钛铁矿中的高含量钛[J]. 岩矿测试, 2020, 39(3): 459-466. doi: 10.15898/j.cnki.11-2131/td.201911020150
Zhao X, Yan H, Yu L L, et al. Determination of high content of titanium in ilmenite by inductively coupled plasma-optical emission spectrometry with sodium peroxide alkali fusion[J]. Rock and Mineral Analysis, 2020, 39(3): 459-466. doi: 10.15898/j.cnki.11-2131/td.201911020150
|
[33] |
黄超冠, 蒙义舒, 郭焕花, 等. 过氧化钠碱熔-电感耦合等离子体发射光谱法测定钛铝合金中的铬铁钼硅[J]. 岩矿测试, 2018, 37(1): 30-35. doi: 10.15898/j.cnki.11-2131/td.201704240065
Huang C G, Meng Y S, Guo H H, et al. Determination of chromium, iron, molybdenum and silicon in Ti-Al alloy by inductively coupled plasma-optical emission spectrometry with sodium peroxide alkali fusion[J]. Rock and Mineral Analysis, 2018, 37(1): 30-35. doi: 10.15898/j.cnki.11-2131/td.201704240065
|
[34] |
《岩石矿物分析》编委会. 岩石矿物分析(第四版第一分册)[M]. 北京: 地质出版社, 2011: 471-473, 205-206.
The editorial committee of < Rock and mineral analysis>. Rock and mineral analysis (The fourth edition: Vol. Ⅰ)[M]. Beijing: Geological Publishing House, 2011: 471-473, 205-206.
|
[35] |
郑大中, 李小英, 郑若峰, 等. 过氧化钠超强熔矿能力的新认识[J]. 四川地质学报, 2010, 30(4): 488-499. https://www.cnki.com.cn/Article/CJFDTOTAL-SCDB201004032.htm
Zheng D Z, Li X Y, Zheng R F, et al. New acquaintances of super strong melting ore capacity of Na2O2[J]. Acta Geologica Sichuan, 2010, 30(4): 488-499. https://www.cnki.com.cn/Article/CJFDTOTAL-SCDB201004032.htm
|
1. |
陈彪,金海龙,贾晓琪,孙庆,刘雁江,魏威. 白云鄂博矿床包头矿的矿物学特征研究. 稀土. 2025(01): 14-24 .
![]() | |
2. |
沈啟武,王大钊,冷成彪,余海军,张传昱,苏肖宇,毛金伟,梁丰. 云南普朗超大型斑岩铜金矿床中发现碲化物和硒化物. 岩矿测试. 2023(03): 643-646 .
![]() | |
3. |
韦连军,陈燕清,雷满奇,黄庆柒. 广西桂西地区沉积型铝土矿矿物特征研究. 岩矿测试. 2023(06): 1220-1229 .
![]() | |
4. |
涂家润,卢宜冠,孙凯,周红英,郭虎,崔玉荣,耿建珍,李国占. 应用微束分析技术研究铜钴矿床中钴的赋存状态. 岩矿测试. 2022(02): 226-238 .
![]() |