• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
ZHAO Zi-ke, CHEN Chun-liang, KE Sheng, ZHAO Li-rong, ZHANG Ji-biao, LI Jian. Adsorption Kinetics of Low Mercury Solution with Durian Shell and Activated Carbon[J]. Rock and Mineral Analysis, 2022, 41(1): 90-98. DOI: 10.15898/j.cnki.11-2131/td.202106010069
Citation: ZHAO Zi-ke, CHEN Chun-liang, KE Sheng, ZHAO Li-rong, ZHANG Ji-biao, LI Jian. Adsorption Kinetics of Low Mercury Solution with Durian Shell and Activated Carbon[J]. Rock and Mineral Analysis, 2022, 41(1): 90-98. DOI: 10.15898/j.cnki.11-2131/td.202106010069

Adsorption Kinetics of Low Mercury Solution with Durian Shell and Activated Carbon

More Information
  • Received Date: May 31, 2021
  • Revised Date: July 19, 2021
  • Accepted Date: August 27, 2021
  • Published Date: January 27, 2022
  • HIGHLIGHTS
    (1) Durian shell could be used as an effective adsorbent to remove low-concentration Hg (Ⅱ) in aqueous solution.
    (2) The adsorption effect of durian shell on removing Hg(Ⅱ) from aqueous solution was better than that of activated carbon made by coconut shell.
    (3) Increasing temperature was helpful to improve the adsorption capacity of durian shell for Hg(Ⅱ) in aqueous solution.
    BACKGROUNDThe direct discharge of Hg(Ⅱ) is harmful to the environment. At present, activated carbon is used to remove it, but the production of activated carbon through high-temperature pyrolysis and activation is very expensive.
    OBJECTIVESTo investigate the adsorption difference and mechanism on low-concentration Hg(Ⅱ) for durian shell, coconut shell activated carbon and activated carbon fiber under different conditions.
    METHODSThe remaining Hg(Ⅱ) in the adsorption solution was determined by atomic fluorescence spectrometry. The adsorb kinetic parameters of different adsorbents were determined by Lagergren pseudo-second-order kinetic model.
    RESULTSIn the Lagergren pseudo-second-order kinetic model, the maximum adsorption capacity (QM) of the three materials was as follows: activated carbon fiber (5.61μg/g)>durian shell (1.68μg/g)>coconut shell activated carbon (0.96μg/g). The adsorption test and thermodynamic equation showed that the adsorption of Hg(Ⅱ) by the three materials was spontaneous (ΔG < 0). The adsorption of Hg(Ⅱ) by coconut shell activated carbon was mainly physical adsorption (ΔH>0), while the adsorption of durian shell was an endothermic process (ΔH < 0). Due to the increase of temperature, the adsorption rate and adsorption capacity were improved.
    CONCLUSIONSDurian shell from a wide range of sources can be used as an effective adsorbent to treat wastewater containing Hg(Ⅱ).

  • 曹艳芝, 郭少青, 高丽兵. 以Hg2+离子为前驱体标定煤热解气中气相元素汞量[J]. 岩矿测试, 2017, 36(6): 581-586. doi: 10.15898/j.cnki.11-2131/td.201703070027

    Cao Y Z, Guo S Q, Gao L B. Determination of gaseous element mercury in coal pyrolysis gas using Hg2+ as precursor[J]. Rock and Mineral Analysis, 2017, 36(6): 581-586. doi: 10.15898/j.cnki.11-2131/td.201703070027
    徐春霞, 孟郁苗, 黄诚, 等. 汞同位素地球化学研究及其在矿床学中的应用进展[J]. 岩矿测试, 2021, 40(2): 173-186. doi: 10.15898/j.cnki.11-2131/td.202009210125

    Xu C X, Meng Y M, Huang C, et al. Mercury isotope geochemistry and its application in ore deposit science[J]. Rock and Mineral Analysis, 2021, 40(2): 173-186. doi: 10.15898/j.cnki.11-2131/td.202009210125
    南雪娇, 余晓平, 郭金玲, 等. 水生生态系统中汞-硒相互作用研究进展[J]. 岩矿测试, 2016, 35(1): 1-9. doi: 10.15898/j.cnki.11-2131/td.2016.01.002

    Nan X J, Yu X P, Guo J L, et al. Research progress of mercury selenium interaction in aquatic ecosystem[J]. Rock and Mineral Analysis, 2016, 35(1): 1-9. doi: 10.15898/j.cnki.11-2131/td.2016.01.002
    Li K, Wang Y, Huang M, et al. Preparation of chitosan-graft-polyacrylamide magnetic composite microspheres for enhanced selective removal of mercury ions from water[J]. Journal of Colloid & Interface Science, 2015, 455: 261-270. http://www.onacademic.com/detail/journal_1000037829582210_a5d5.html
    Rahul B, Padmaj P. A chitosan-thiomer polymer for highly efficacious adsorption of mercury[J]. Carbohydrate Polymers, 2019, 207: 663-674. doi: 10.1016/j.carbpol.2018.12.018
    李玉堂, 李柱, 刘志阳, 等. 表面功能化活性炭对水溶液中汞离子的吸附[J]. 广州化工, 2019, 47(5): 72-74, 77. https://www.cnki.com.cn/Article/CJFDTOTAL-GZHA201905032.htm

    Li Y T, Li Z, Liu Z Y, et al. Adsorption of mercury ions in aqueous solution by surface functionalized activated carbon[J]. Guangzhou Chemical Industry, 2019, 47(5): 72-74, 77. https://www.cnki.com.cn/Article/CJFDTOTAL-GZHA201905032.htm
    贾里, 李泽鹏, 郭晋荣, 等. 多元金属定向修饰的改性生物焦微观特性及单质汞脱除性能研究[J]. 环境科学学报, 2021, 41(8): 3100-3111. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX202108015.htm

    Jia L, Li Z P, Guo J R, et al. Study on the micro-characteristics and elemental mercury removal performance of biochar doped by multi-metal directional modification[J]. Acta Scientiae Circumstantiae, 2021, 41(8): 3100-3111. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX202108015.htm
    熊佰炼, 崔译霖, 张进忠, 等. 改性甘蔗渣吸附废水中低浓度Cd2+和Cr3+的研究[J]. 西南大学学报(自然科学版), 2010, 2(1): 118-123. https://www.cnki.com.cn/Article/CJFDTOTAL-XNND201001024.htm

    Xiong B L, Cui Y L, Zhang J Z, et al. Study on the adsorption of low concentration Cd2+ and Cr3+ in wastewater from modified sugarcane residue[J]. Journal of Southwest University (Natural Science Edition), 2010, 32(1): 118-123. https://www.cnki.com.cn/Article/CJFDTOTAL-XNND201001024.htm
    Shaikh A A, Yaagoob I Y, Mazumder M, et al. Fast re-moval of methylene blue and Hg(Ⅱ) from aqueous solution using a novel super-adsorbent containing residues of glycine and maleic acid[J]. Journal of Hazardous Materials, 2019, 369: 642-654. doi: 10.1016/j.jhazmat.2019.02.082
    Zou W, Han R, Chen Z, et al. Kinetic study of adsorption of Cu(Ⅱ) and Pb(Ⅱ) from aqueous solutions using manganese oxide coated zeolite in batch mode[J]. Colloids & Surfaces A: Physicochemical & Engineering Aspects, 2006, 279(1-3): 238-246. http://www.sciencedirect.com/science/article/pii/S092777570600029X
    Lin G, Hu T, Wang S, et al. Selective removal behavior and mechanism of trace Hg(Ⅱ) using modified corn husk leaves[J]. Chemosphere, 2019, 225: 65-72. doi: 10.1016/j.chemosphere.2019.03.006
    黄锦波, 邵灵达, 祝成炎. 活性炭纤维的制备及其应用进展[J]. 棉纺织技术, 2020(10): 11-14. doi: 10.3969/j.issn.1001-7415.2020.10.003

    Huang J B, Shao L D, Zhu C Y. Preparation and application progress of activated carbon fiber[J]. Cotton Textile Technology, 2020(10): 11-14. doi: 10.3969/j.issn.1001-7415.2020.10.003
    王洪杰, 兰依博, 李晓东. KMnO4改性稻壳、稻杆水热炭吸附染料的研究[J]. 应用化工, 2019, 48(6): 1344-1350. doi: 10.3969/j.issn.1671-3206.2019.06.022

    Wang H J, Lan Y B, Li X D. Study on the adsorption of dyes by KMnO4 modified rice husk and rice straw hydrothermal carbon[J]. Applied Chemical Industry, 2019, 48(6): 1344-1350. doi: 10.3969/j.issn.1671-3206.2019.06.022
    马培, 张继伟. 茶树菇废弃物对汞吸附特性的研究[J]. 江苏农业科学, 2017, 45(9): 253-255. https://www.cnki.com.cn/Article/CJFDTOTAL-JSNY201709069.htm

    Ma P, Zhang J W. Study on mercury adsorption characteristics of agrocybe aegerita waste[J]. Jiangsu Agricultural Sciences, 2017, 45(9): 253-255. https://www.cnki.com.cn/Article/CJFDTOTAL-JSNY201709069.htm
    Sadegh H, Ali G, Makhlouf A, et al. MWCNTs-Fe3O4 nanocomposite for Hg(Ⅱ) high adsorption efficiency[J]. Journal of Molecular Liquids, 2018: 345-353.
    韩严和. 电增强活性炭纤维吸附水中部分有机物的研究[D]. 大连: 大连理工大学, 2006.

    Han Y H. Study on adsorption of some organic compounds in water by electro enhanced activated carbon fiber[D]. Dalian: Dalian University of Technology, 2006.
    Qiu K Z, Zhou J S, Qi P, et al. Experimental study on ZnO-TiO2 sorbents for the removal of elemental mercury[J]. Korean Journal of Chemical Engineering, 2017, 34(9): 2383-2389. doi: 10.1007/s11814-017-0154-6
    Seyedeh S G, Mojtaba H, Behrooz M, et al. Adsorption of mercury ions from synthetic aqueous solution using polydopamine decorated SWCNTs[J]. Journal of Water Process Engineering, 2019, 32: 100964-100975. doi: 10.1016/j.jwpe.2019.100964
    Zakaria A, Abdallah A, Mohammed M, et al. New amino group functionalized porous carbon for strong chelation ability towards toxic heavy metals[J]. RSC Advances, 2020, 10(52): 31087-31100. doi: 10.1039/D0RA05220E
    Esmail M, Mojtaba H, Hojat V. Kinetics and thermo-dynamics of mercury adsorption onto thiolated graphene oxide nanoparticles[J]. Polyhedron, 2019, 173: 1-9.
    孙荣国, 范丽, 尹晓刚, 等. 香蕉皮对汞的吸附特征研究[J]. 地球与环境, 2018(5): 498-504. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201805012.htm

    Sun R G, Fan L, Yin X G, et al. Study on mercury adsorption characteristics of banana peel[J]. Earth and Environment, 2018(5): 498-504. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201805012.htm
    李朝丽, 周立祥. 黄棕壤不同粒级组分对镉的吸附动力学与热力学研究[J]. 环境科学, 2008, 29(5): 1406-1411. doi: 10.3321/j.issn:0250-3301.2008.05.044

    Li C L, Zhou L X. Kinetics and thermodynamics of cadmium adsorption by different fractions of yellow brown soil[J]. Environmental Science, 2008, 29(5): 1406-1411. doi: 10.3321/j.issn:0250-3301.2008.05.044
    Agrawal A, Sahu K K. Kinetic and isotherm studies of cadmium adsorption on manganese nodule residue[J]. Journal of Hazardous Materials, 2006, 137(2): 915-924. doi: 10.1016/j.jhazmat.2006.03.039
    甄豪波, 胡勇有, 程建华. 壳聚糖交联沸石小球对Cu2+, Ni2+及Cd2+的吸附特性[J]. 环境科学学报, 2011, 31(7): 1369-1376. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201107006.htm

    Zhen H B, Hu Y Y, Cheng J H. Adsorption properties of chitosan crosslinked zeolite beads for Cu2+, Ni2+ and Cd2+[J]. Acta Scientiae Circumstantiae, 2011, 31(7): 1369-1376. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201107006.htm
  • Related Articles

    [1]WU Chao, SUN Binbin, CHENG Xiaomeng, LIU Dong, QIAO Yu, He Ling, ZENG Daoming. Cadmium Bioavailability Based on Diffusive Gradients in Thin Films Technique and Conventional Chemical Extraction in High Geological Background Soil Area of Northwestern Zhejiang Province, China[J]. Rock and Mineral Analysis, 2023, 42(4): 823-838. DOI: 10.15898/j.ykcs.202211230223
    [2]WANG Lingxiao, YU Tao, LI Fengyan, YANG Zhongfang, HOU Qingye, REN Rui. A Summary of Research Progress on Bioavailability Assessment Method of Selenium in Soil and Its Influencing Factors[J]. Rock and Mineral Analysis, 2023, 42(2): 239-253. DOI: 10.15898/j.cnki.11-2131/td.202207240140
    [3]LI Ying-chun, ZHANG Lei, SHANG Wen-yu. Determination of Selenium, Major and Minor Elements in Selenium-rich Soil Samples by X-ray Fluorescence Spectrometry with Powder Pellet Preparation[J]. Rock and Mineral Analysis, 2022, 41(1): 145-152. DOI: 10.15898/j.cnki.11-2131/td.202007090102
    [4]LIU Bing-quan, SHA Min, XIE Chang-yu, ZHOU Qiang-qiang, WEI Xing-xing, ZHOU Fan. Geochemical Characteristics of Soil Selenium and Influencing Factors of Selenium Bioavailability in Rice Root Soils in Qingxi Area, Ganxian County, Jiangxi Province[J]. Rock and Mineral Analysis, 2021, 40(5): 740-750. DOI: 10.15898/j.cnki.11-2131/td.202107230082
    [5]XIE Wei, YANG Yao-dong, JIAN Gui-qin, LI Guo-cheng, ZHAO Xin-hua, HOU Jia-yu. A Comparative Study of Four Extractants on the Extraction of Available Selenium in Vegetable and Orchard Soils[J]. Rock and Mineral Analysis, 2020, 39(3): 434-441. DOI: 10.15898/j.cnki.11-2131/td.201905150063
    [6]ZHOU Guo-hua. Research Progress of Selenium-enriched Land Resources and Evaluation Methods[J]. Rock and Mineral Analysis, 2020, 39(3): 319-336. DOI: 10.15898/j.cnki.11-2131/td.201911140158
    [7]KUANG Qin, WU Shan, HUANG Ting, WU Dai-she, XIANG Jing. Effect and Mechanism of Biomass Carbon and Steel Slag as Ameliorants on Soil Selenium Availability in a Typical Se-rich Area of Fengcheng City, Jiangxi Province[J]. Rock and Mineral Analysis, 2019, 38(6): 705-714. DOI: 10.15898/j.cnki.11-2131/td.201901190014
    [8]FENG Hui, ZHANG Xue-jun, ZHANG Qun, DU Li-na. Distribution Characteristics and Sources Identification of Selenium-rich Soils in the Ecological Conservation Area of the Daqinghe River Watershed, Beijing[J]. Rock and Mineral Analysis, 2019, 38(6): 693-704. DOI: 10.15898/j.cnki.11-2131/td.201905270071
    [9]Bang-ting XIE, Ling HE, Guan-jun JIANG, Bin-bin SUN, Dao-ming ZENG, Guo-hua ZHOU. Regulation and Evaluation of Selenium Availability in Se-rich Soils in Southern China[J]. Rock and Mineral Analysis, 2017, 36(3): 273-281. DOI: 10.15898/j.cnki.11-2131/td.201610100152
    [10]Determination of Trace Selenium in Soil Samples by Hydride Generation-Atomic Fluorescence Spectrometry with Baking Separation[J]. Rock and Mineral Analysis, 2008, 27(2): 120-122.
  • Cited by

    Periodical cited type(15)

    1. 何小虎,游亚元,明添学,杨斯琦,闫庆贺,陈会,刘梦帆. 滇西晚白垩世-始新世花岗伟晶岩型稀有金属成矿事件:来自铌钽铁矿、独居石、锆石U-Pb年代学的约束. 岩石学报. 2024(02): 510-538 .
    2. 胡军亮,谭洪旗,倪志耀,周家云,朱志敏,周雄,骆志红,岳相元,牛腾,徐力,黄驰轩. 川西九龙白台花岗岩地球化学特征、锆石U-Pb年龄和Hf同位素组成及其稀有金属成矿意义. 地质论评. 2024(02): 449-475 .
    3. 朱文斌,许志琴,林和丰,周明召,朱鋆悦,靳文楷,罗祥龙,章荣清,车旭东,李广伟,郑碧海. 川西甲基卡锂矿床伟晶岩结构分带及多期岩浆成矿作用. 地质学报. 2024(05): 1358-1379 .
    4. 李鑫,代鸿章,王登红,刘善宝,范小东,梁志,高原,文佳豪,朱海洋. 四川阿坝可尔因锂矿田成矿规律与成矿预测. 岩石学报. 2024(09): 2819-2840 .
    5. 游亚元,何小虎,明添学,闫庆贺,陈会. 滇西新生代黄连沟铍矿床花岗伟晶岩演化及其对成矿的指示. 岩石学报. 2024(09): 2878-2904 .
    6. 韩梓衡,李建康,刘永超,邓静仪. 四川甲基卡伟晶岩型稀有金属矿床的地质特征及成矿机制概述. 岩石学报. 2024(09): 2841-2862 .
    7. 谭洪旗,朱志敏,罗林洪,胡军亮. 川西洛莫地区燕山早期花岗岩对稀有金属成矿的制约. 地质学报. 2023(02): 396-416 .
    8. 赵振华,严爽. 花岗伟晶岩成矿有关的几个问题讨论. 大地构造与成矿学. 2023(01): 1-41 .
    9. Tao Liu,Hai Wang,Shihong Tian,Denghong Wang,Xianfang Li,Xiaofang Fu,Xuefeng Hao,Yujie Zhang,Kejun Hou. Genesis of the Jiajika superlarge lithium deposit, Sichuan, China:constraints from He–Ar–H–O isotopes. Acta Geochimica. 2023(03): 517-534 .
    10. 朱汇派,费光春,谭华,蔡云华,陈治坪,罗小龙,袁彦伟,李天瑞. 四川可尔因矿田党坝伟晶岩型稀有金属矿床中带伟晶岩地质特征及成矿时代. 矿物岩石地球化学通报. 2023(02): 350-359 .
    11. 赵正,陈毓川,王登红,李建康,刘善宝,陈振宇,郭春丽,王平安. 华南中生代动力体制转换与钨锡锂铍铌钽稀土矿床成矿系列的叠加演化. 岩石学报. 2022(02): 301-322 .
    12. 谭洪旗,朱志敏,周雄,胡军亮. 川西九龙地区两期伟晶岩型稀有金属成矿作用. 矿产综合利用. 2022(01): 15-24 .
    13. 崔玉荣,肖志斌,涂家润,周红英,李国占. 氧化物型含铀矿物微区原位Hf同位素分析技术研究进展. 岩矿测试. 2022(05): 691-703 . 本站查看
    14. 张永清,周红英,耿建珍,肖志斌,涂家润,张然,叶丽娟. 应用激光拉曼光谱鉴别桂中铝土矿TiO_2同质异象矿物. 岩矿测试. 2022(06): 978-986 . 本站查看
    15. 宋立强,宋玮,柴重阳,吕国营,燕长海. 四川省小金县小草坝钨钼矿床成矿时限探析. 矿产勘查. 2022(11): 1612-1623 .

    Other cited types(1)

Catalog

    Article views (352) PDF downloads (21) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return