• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
ZHAO Zi-ke, CHEN Chun-liang, KE Sheng, ZHAO Li-rong, ZHANG Ji-biao, LI Jian. Adsorption Kinetics of Low Mercury Solution with Durian Shell and Activated Carbon[J]. Rock and Mineral Analysis, 2022, 41(1): 90-98. DOI: 10.15898/j.cnki.11-2131/td.202106010069
Citation: ZHAO Zi-ke, CHEN Chun-liang, KE Sheng, ZHAO Li-rong, ZHANG Ji-biao, LI Jian. Adsorption Kinetics of Low Mercury Solution with Durian Shell and Activated Carbon[J]. Rock and Mineral Analysis, 2022, 41(1): 90-98. DOI: 10.15898/j.cnki.11-2131/td.202106010069

Adsorption Kinetics of Low Mercury Solution with Durian Shell and Activated Carbon

More Information
  • Received Date: May 31, 2021
  • Revised Date: July 19, 2021
  • Accepted Date: August 27, 2021
  • Published Date: January 27, 2022
  • HIGHLIGHTS
    (1) Durian shell could be used as an effective adsorbent to remove low-concentration Hg (Ⅱ) in aqueous solution.
    (2) The adsorption effect of durian shell on removing Hg(Ⅱ) from aqueous solution was better than that of activated carbon made by coconut shell.
    (3) Increasing temperature was helpful to improve the adsorption capacity of durian shell for Hg(Ⅱ) in aqueous solution.
    BACKGROUNDThe direct discharge of Hg(Ⅱ) is harmful to the environment. At present, activated carbon is used to remove it, but the production of activated carbon through high-temperature pyrolysis and activation is very expensive.
    OBJECTIVESTo investigate the adsorption difference and mechanism on low-concentration Hg(Ⅱ) for durian shell, coconut shell activated carbon and activated carbon fiber under different conditions.
    METHODSThe remaining Hg(Ⅱ) in the adsorption solution was determined by atomic fluorescence spectrometry. The adsorb kinetic parameters of different adsorbents were determined by Lagergren pseudo-second-order kinetic model.
    RESULTSIn the Lagergren pseudo-second-order kinetic model, the maximum adsorption capacity (QM) of the three materials was as follows: activated carbon fiber (5.61μg/g)>durian shell (1.68μg/g)>coconut shell activated carbon (0.96μg/g). The adsorption test and thermodynamic equation showed that the adsorption of Hg(Ⅱ) by the three materials was spontaneous (ΔG < 0). The adsorption of Hg(Ⅱ) by coconut shell activated carbon was mainly physical adsorption (ΔH>0), while the adsorption of durian shell was an endothermic process (ΔH < 0). Due to the increase of temperature, the adsorption rate and adsorption capacity were improved.
    CONCLUSIONSDurian shell from a wide range of sources can be used as an effective adsorbent to treat wastewater containing Hg(Ⅱ).

  • 曹艳芝, 郭少青, 高丽兵. 以Hg2+离子为前驱体标定煤热解气中气相元素汞量[J]. 岩矿测试, 2017, 36(6): 581-586. doi: 10.15898/j.cnki.11-2131/td.201703070027

    Cao Y Z, Guo S Q, Gao L B. Determination of gaseous element mercury in coal pyrolysis gas using Hg2+ as precursor[J]. Rock and Mineral Analysis, 2017, 36(6): 581-586. doi: 10.15898/j.cnki.11-2131/td.201703070027
    徐春霞, 孟郁苗, 黄诚, 等. 汞同位素地球化学研究及其在矿床学中的应用进展[J]. 岩矿测试, 2021, 40(2): 173-186. doi: 10.15898/j.cnki.11-2131/td.202009210125

    Xu C X, Meng Y M, Huang C, et al. Mercury isotope geochemistry and its application in ore deposit science[J]. Rock and Mineral Analysis, 2021, 40(2): 173-186. doi: 10.15898/j.cnki.11-2131/td.202009210125
    南雪娇, 余晓平, 郭金玲, 等. 水生生态系统中汞-硒相互作用研究进展[J]. 岩矿测试, 2016, 35(1): 1-9. doi: 10.15898/j.cnki.11-2131/td.2016.01.002

    Nan X J, Yu X P, Guo J L, et al. Research progress of mercury selenium interaction in aquatic ecosystem[J]. Rock and Mineral Analysis, 2016, 35(1): 1-9. doi: 10.15898/j.cnki.11-2131/td.2016.01.002
    Li K, Wang Y, Huang M, et al. Preparation of chitosan-graft-polyacrylamide magnetic composite microspheres for enhanced selective removal of mercury ions from water[J]. Journal of Colloid & Interface Science, 2015, 455: 261-270. http://www.onacademic.com/detail/journal_1000037829582210_a5d5.html
    Rahul B, Padmaj P. A chitosan-thiomer polymer for highly efficacious adsorption of mercury[J]. Carbohydrate Polymers, 2019, 207: 663-674. doi: 10.1016/j.carbpol.2018.12.018
    李玉堂, 李柱, 刘志阳, 等. 表面功能化活性炭对水溶液中汞离子的吸附[J]. 广州化工, 2019, 47(5): 72-74, 77. https://www.cnki.com.cn/Article/CJFDTOTAL-GZHA201905032.htm

    Li Y T, Li Z, Liu Z Y, et al. Adsorption of mercury ions in aqueous solution by surface functionalized activated carbon[J]. Guangzhou Chemical Industry, 2019, 47(5): 72-74, 77. https://www.cnki.com.cn/Article/CJFDTOTAL-GZHA201905032.htm
    贾里, 李泽鹏, 郭晋荣, 等. 多元金属定向修饰的改性生物焦微观特性及单质汞脱除性能研究[J]. 环境科学学报, 2021, 41(8): 3100-3111. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX202108015.htm

    Jia L, Li Z P, Guo J R, et al. Study on the micro-characteristics and elemental mercury removal performance of biochar doped by multi-metal directional modification[J]. Acta Scientiae Circumstantiae, 2021, 41(8): 3100-3111. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX202108015.htm
    熊佰炼, 崔译霖, 张进忠, 等. 改性甘蔗渣吸附废水中低浓度Cd2+和Cr3+的研究[J]. 西南大学学报(自然科学版), 2010, 2(1): 118-123. https://www.cnki.com.cn/Article/CJFDTOTAL-XNND201001024.htm

    Xiong B L, Cui Y L, Zhang J Z, et al. Study on the adsorption of low concentration Cd2+ and Cr3+ in wastewater from modified sugarcane residue[J]. Journal of Southwest University (Natural Science Edition), 2010, 32(1): 118-123. https://www.cnki.com.cn/Article/CJFDTOTAL-XNND201001024.htm
    Shaikh A A, Yaagoob I Y, Mazumder M, et al. Fast re-moval of methylene blue and Hg(Ⅱ) from aqueous solution using a novel super-adsorbent containing residues of glycine and maleic acid[J]. Journal of Hazardous Materials, 2019, 369: 642-654. doi: 10.1016/j.jhazmat.2019.02.082
    Zou W, Han R, Chen Z, et al. Kinetic study of adsorption of Cu(Ⅱ) and Pb(Ⅱ) from aqueous solutions using manganese oxide coated zeolite in batch mode[J]. Colloids & Surfaces A: Physicochemical & Engineering Aspects, 2006, 279(1-3): 238-246. http://www.sciencedirect.com/science/article/pii/S092777570600029X
    Lin G, Hu T, Wang S, et al. Selective removal behavior and mechanism of trace Hg(Ⅱ) using modified corn husk leaves[J]. Chemosphere, 2019, 225: 65-72. doi: 10.1016/j.chemosphere.2019.03.006
    黄锦波, 邵灵达, 祝成炎. 活性炭纤维的制备及其应用进展[J]. 棉纺织技术, 2020(10): 11-14. doi: 10.3969/j.issn.1001-7415.2020.10.003

    Huang J B, Shao L D, Zhu C Y. Preparation and application progress of activated carbon fiber[J]. Cotton Textile Technology, 2020(10): 11-14. doi: 10.3969/j.issn.1001-7415.2020.10.003
    王洪杰, 兰依博, 李晓东. KMnO4改性稻壳、稻杆水热炭吸附染料的研究[J]. 应用化工, 2019, 48(6): 1344-1350. doi: 10.3969/j.issn.1671-3206.2019.06.022

    Wang H J, Lan Y B, Li X D. Study on the adsorption of dyes by KMnO4 modified rice husk and rice straw hydrothermal carbon[J]. Applied Chemical Industry, 2019, 48(6): 1344-1350. doi: 10.3969/j.issn.1671-3206.2019.06.022
    马培, 张继伟. 茶树菇废弃物对汞吸附特性的研究[J]. 江苏农业科学, 2017, 45(9): 253-255. https://www.cnki.com.cn/Article/CJFDTOTAL-JSNY201709069.htm

    Ma P, Zhang J W. Study on mercury adsorption characteristics of agrocybe aegerita waste[J]. Jiangsu Agricultural Sciences, 2017, 45(9): 253-255. https://www.cnki.com.cn/Article/CJFDTOTAL-JSNY201709069.htm
    Sadegh H, Ali G, Makhlouf A, et al. MWCNTs-Fe3O4 nanocomposite for Hg(Ⅱ) high adsorption efficiency[J]. Journal of Molecular Liquids, 2018: 345-353.
    韩严和. 电增强活性炭纤维吸附水中部分有机物的研究[D]. 大连: 大连理工大学, 2006.

    Han Y H. Study on adsorption of some organic compounds in water by electro enhanced activated carbon fiber[D]. Dalian: Dalian University of Technology, 2006.
    Qiu K Z, Zhou J S, Qi P, et al. Experimental study on ZnO-TiO2 sorbents for the removal of elemental mercury[J]. Korean Journal of Chemical Engineering, 2017, 34(9): 2383-2389. doi: 10.1007/s11814-017-0154-6
    Seyedeh S G, Mojtaba H, Behrooz M, et al. Adsorption of mercury ions from synthetic aqueous solution using polydopamine decorated SWCNTs[J]. Journal of Water Process Engineering, 2019, 32: 100964-100975. doi: 10.1016/j.jwpe.2019.100964
    Zakaria A, Abdallah A, Mohammed M, et al. New amino group functionalized porous carbon for strong chelation ability towards toxic heavy metals[J]. RSC Advances, 2020, 10(52): 31087-31100. doi: 10.1039/D0RA05220E
    Esmail M, Mojtaba H, Hojat V. Kinetics and thermo-dynamics of mercury adsorption onto thiolated graphene oxide nanoparticles[J]. Polyhedron, 2019, 173: 1-9.
    孙荣国, 范丽, 尹晓刚, 等. 香蕉皮对汞的吸附特征研究[J]. 地球与环境, 2018(5): 498-504. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201805012.htm

    Sun R G, Fan L, Yin X G, et al. Study on mercury adsorption characteristics of banana peel[J]. Earth and Environment, 2018(5): 498-504. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201805012.htm
    李朝丽, 周立祥. 黄棕壤不同粒级组分对镉的吸附动力学与热力学研究[J]. 环境科学, 2008, 29(5): 1406-1411. doi: 10.3321/j.issn:0250-3301.2008.05.044

    Li C L, Zhou L X. Kinetics and thermodynamics of cadmium adsorption by different fractions of yellow brown soil[J]. Environmental Science, 2008, 29(5): 1406-1411. doi: 10.3321/j.issn:0250-3301.2008.05.044
    Agrawal A, Sahu K K. Kinetic and isotherm studies of cadmium adsorption on manganese nodule residue[J]. Journal of Hazardous Materials, 2006, 137(2): 915-924. doi: 10.1016/j.jhazmat.2006.03.039
    甄豪波, 胡勇有, 程建华. 壳聚糖交联沸石小球对Cu2+, Ni2+及Cd2+的吸附特性[J]. 环境科学学报, 2011, 31(7): 1369-1376. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201107006.htm

    Zhen H B, Hu Y Y, Cheng J H. Adsorption properties of chitosan crosslinked zeolite beads for Cu2+, Ni2+ and Cd2+[J]. Acta Scientiae Circumstantiae, 2011, 31(7): 1369-1376. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201107006.htm
  • Related Articles

    [1]Chun-xue XU, Ya-ping WANG, Xu ZHANG, Bo DONG, De-zhong SUN, Zi-yi AN. Preparation of Certified Reference Materials of Sillimanite for Chemical Composition Analysis[J]. Rock and Mineral Analysis, 2017, 36(4): 396-404. DOI: 10.15898/j.cnki.11-2131/td.201608190123
    [2]Mei LIU, Zhi-zhong CHENG, Tie-xin GU, Hong-ku HUANG, Wei-dong YAN, Rong YANG, Han-jiang PAN. Preparation of Molybdenum Ore and Molybdenum Concentrate Reference Materials[J]. Rock and Mineral Analysis, 2013, 32(6): 944-951.
    [3]WANG Xiao-hong, WANG Yi-min, GAO Yu-shu, FAN Xing-tao. A Review on Homogeneity Testing Techniques for Geochemical Reference Materials in China[J]. Rock and Mineral Analysis, 2010, 29(6): 739-745.
    [4]MIAO Deren, LIU Yulong, ZHANG Xiaoran, CHEN Hongkun. Timeliness Evaluation for the Application of Certified Reference Materials in Analysis of Polycyclic Aromatic Hydrocarbons[J]. Rock and Mineral Analysis, 2010, 29(2): 109-112.
    [5]WANG Xiao-hong, WANG Yi-min, GAO Yu-shu, ZHANG Xue-hua, HE Hong-liao. Measurement and Characterization of the Particle Size of Geological Reference Materials[J]. Rock and Mineral Analysis, 2009, 28(1): 5-9.
    [6]Foundation of the Standard Curve Database for Quantitative Phase Analysis of 24 Components in Inorganic Materials by X-ray Diffractometry Based on External Standard Method[J]. Rock and Mineral Analysis, 2007, 26(5): 398-400.
    [7]Preparation of Certified Reference Materials for Chemical Phase Analysis of Gold Ore Samples[J]. Rock and Mineral Analysis, 2006, 25(3): 263-269.
    [8]Study on Microanalysis Reference Material for X-Ray Fluorescence Analysis[J]. Rock and Mineral Analysis, 2004, (3): 179-182.
    [9]Geological Certified Reference Materials: A Review Since 1992[J]. Rock and Mineral Analysis, 2003, (3): 188-200.
    [10]Determination of Au,Ag, Cu,Zn in Gold Reference Materials by X-Ray Fluorescence Analysis[J]. Rock and Mineral Analysis, 1993, (3): 234-237.
  • Cited by

    Periodical cited type(7)

    1. 赵令浩,孙冬阳,胡明月,袁继海,范晨子,詹秀春. 激光剥蚀-扇形磁场电感耦合等离子体质谱法同时测定锆石U-Pb年龄和微量元素含量. 岩矿测试. 2024(01): 47-62 . 本站查看
    2. 王奇奇,孙贺,顾海欧,侯振辉,葛粲,汪方跃,周涛发. 磺酸型阳离子树脂的元素分配行为及高精度同位素分析应用. 岩矿测试. 2024(01): 63-75 . 本站查看
    3. 曹瑞芹,杨忠芳,余涛. 镉锌稳定同位素地球化学及其在土壤等地质体中的危害与治理研究进展. 中国地质. 2024(03): 833-864 .
    4. 程文瀚,吴萌,赵艳丽,赵俊哲. 锌同位素环境地球化学研究进展. 高校地质学报. 2024(03): 312-321 .
    5. 李卫娜,蔡虹明,袁玮,郑旺,陈玖斌. 土柱实验在土壤重金属污染研究中的应用进展与展望. 地球与环境. 2024(05): 652-661 .
    6. 帅旺财,刘文奇,马丽雅,蔡虹明,陈玖斌,袁玮. 典型有色金属冶炼场地重金属来源解析及生态健康风险评估. 地球与环境. 2024(06): 756-770 .
    7. 夏亚飞,刘宇晖,高庭,刘承帅. 基于金属稳定同位素的矿冶影响区土壤重金属污染源解析研究进展. 地球科学进展. 2023(04): 331-348 .

    Other cited types(1)

Catalog

    Article views (352) PDF downloads (21) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return